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LOCAL EXISTENCE OF SOLUTIONS TO A CLASS
OF NONCONVEX SECOND ORDER
DIFFERENTIAL INCLUSIONS

AURELIAN CERNEA

Abstract. We prove the local existence of solutions to the Cauchy problem
2" € F(z,2') + f(t,z,2"), (0) = z0,2'(0) = yo, where F is a set-valued map
contained in the Fréchet subdifferential of a ¢-convex function of order two and
f is a Carathéodory single valued map.
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1. INTRODUCTION

In this paper we consider the Cauchy problem for second order differential
inclusion

(1.1) 2" € F(x,2') + f(t,x,2"), x(0) =m0, 2'(0)=yo,

where F(.,.) is a given set-valued map, f(.,.,.) is a given Carathéodory map
and xg,yo € R™.

Second order differential inclusions were studied by many authors, mainly
in the case when the multifunction is convex valued. Several existence results
may be found in [8], [10], [12], etc.

Recently, in [6], [7], [11], the situation when the multifunction is not convex
valued is considered. More exactly, in [11] it is proved the existence of solutions
of the problem

(1.2) 2" € F(z,2'), x(0) = z9, 2'(0) = yo,

when F(.,.) is an upper semicontinuous compact valued multifunction con-
tained in the subdifferential of a proper convex function. In [7] it is proved
the existence of solutions of the problem (1.1) with F' as in [11] and f(.,.,.)
is a Carathéodory map. In [6] the existence of solutions for problem (1.2) is
obtained with F'(.,.) an upper semicontinuous compact valued multifunction
contained in the Fréchet subdifferential of a ¢-convex function of order two.
The aim of this paper is to unify the results quoted above by proving the
existence of local solutions of the problem (1.1) when F(.,.) is an upper semi-
continuous compact valued multifunction contained in the Fréchet subdiffer-
ential of a ¢-convex function of order two and f(.,.,.) is a Carathéodory map.
Since the class of proper convex functions is strictly contained in the class of
¢-convex functions, our result generalizes the one in [7]. Our existence result
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contains Peano’s existence theorem (for second order differential equations)
as a particular case. On the other hand, our result may be considered as an
extension of the previous result of Ancona and Colombo ([1]) obtained for first
order differential inclusions of the form

(1.3) v € F(z) + f(t,z), x(0) = xo,
with F' a cyclically monotone set-valued map and f a Carathéodory map. The
proof of our main result follows the general ideas in [1], [6] and [11].

The paper is organized as follows: in Section 2 we recall some preliminary
facts that we need in the sequel and in Section 3 we prove our main result.

2. PRELIMINARIES

We denote by P(R") the set of all subsets of R™ and by R the set of all
positive real numbers. For ¢ > 0 we put B(z) = {y € R";|ly — z|| < €}.
With B we denote the unit ball in R". By cl(A) we denote the closure of
the set A C R", by co(A) we denote the convex hull of A and we put ||A|| =
sup{|lal|;a € A}.

Let Q C R™ be an open set and let V' : Q — RU {400} be a function with
domain D(V) = {x € R";V(z) < +o0}.

DEFINITION 2.1. The multifunction 9V : Q — P(R"), defined as:

OrV(z) = {a € R", liminf Viy) = V@)= <ay-z>
y—w |y — ]
and OV (z) = 0 if V(2) = 400 is called the Fréchet subdifferential of V.
We also put D(9pV) = {x € R";0pV (z) # 0}.
According to [9] the values of OpV are closed and convex.

>0} ifV(z) < +o00

DEFINITION 2.2. Let V : Q@ — RU {400} be a lower semicontinuous func-
tion. We say that V is a ¢-convex of order 2 if there exists a continuous
map ¢y : (D(V))? x R? — R, such that for every z,y € D(0rV) and every
a € OpV () we have

V(y) 2 V(@)+ <a,z—y > —ov(z,y, V(e), V()1 + llal*)[z -yl

In [9] there are several examples and properties of such maps.
In what follows, for F': D C R" x R" — P(R"),f: R x D — R" and for
any (zo,y0) € D we consider problem (1.1) under the following assumptions:

HypOTHESIS 2.3. i) D C R™ x R™ is an open set and F' : D — P(R")
is upper semicontinuous (i.e., Yz € D, Ye > 0 there exists 6 > 0 such that
||z — 2'|| < 0 implies F(2") C F(2) 4+ eB) with compact values.

ii) There exists a proper lower semicontinuous ¢-convex function of order
twoV : R — RU {400} such that

F(z,y) COrV(y), V(z,y)€D.
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iii) f: RxD — R™ is Carathéodory, i.e. for every (z,y) € D, t — f(t,z,y)
is measurable, for a.e. t € R (x,y) — f(t,z,y) is continuous and there exists
p(.) € L*(R, Ry) such that

| f(t,z,y)|| <p(t) aeteR, Y(x,y)e€D.

Finally, by a solution of problem (1.1) we mean an absolutely continuous
function z(.) : [0,7] — R™ with absolutely continuous derivative z/(.) such
that 2(0) = xo, 2/(0) = yo and

() € F(z(t),2'(t)) + f(t,z(t),2'(t)) a.e.[0,T].

3. THE MAIN RESULT

Our main result is the following.

THEOREM 3.1. Consider F : D — P(R") and f : R x D — R" that
satisfies Hypothesis 2.3. Then, for every (zo,yo) € D there exist T > 0 and
z(.) 1 [0,T] — R™ solution to problem (1.1).

Proof. Consider (xo,y0) € D. Since D is open, there exists R > 0 such
that Bg(zo,y0) C D. Moreover, by the upper semicontinuity of F and by
Proposition 1.1.3 in [2], the set F(Bgr(zo,0)) is compact, hence there exists
M > 0 such that

sup{||v||; v € F(z,y); (z,y) € Br(zo,y0)} < M < +oo.

Let ¢y the continuous function appearing in Definition 2.2.
Since V(.) is continuous on D(V') (e.g. [9]), by possibly decreasing R one
can assume that for all y € Br(yo) N D(V)

V(y) = Vi)l < 1.
Put
S = sup{¢v(y1, Y2, 21, 22); i € Br(y0),zi € [V(y0) — 1,V (yo) + 1],i = 1,2},
By Hypothesis 2.3 iii) there exists 7' > 0 such that

max{/DT(p(t) + M)dt, T <HyoH +2/OT(p(t) +M)dt>} < g.

We shall prove the existence of solution of the problem (1.1) on the interval
[0, T7].
For each m > 1 and 1 < j < m we define

T o
tgn — Ev qun — [tqun latgn]a x(r)n, = 2o, y?n = Yo,
and for ¢t € [ﬂn we define
t
(B awm(t) =, + (t— )y + / (- $)[f (.24, + ud, ds,
,
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where u, € F(a:%l,y,];n), ji=0,1,...m—1,

. o7 it o .
62) =t [ = 9ok + s
(3.3) uh b=y [ (s ah,yh) + ul,ds.

th

Obviously, from (3.1), if t € Iﬂﬁ, we have

t
(3.4) 2 (t) = b + / f(ssadyyh) + ud )ds,
th,
(3.5) alh (t) = ft,ad, yl,) +ud,.

For t € I}, we set fm(t) = f(t, 2, yh).
From (3.3), for any j = 0,1,...,m — 1 one has

T
g, — ol < /O (p(t) + M)di < R

and hence ||yl < |lyol| + [ (p(t) + M)dt. |
Therefore, from (3.4) and the choice of T, if t € I,

t
2 (8) — gol| < |19, — voll + / s 2yl + ud|ds

J
tm

< 2/T(p(t) + M)dt < R.
0

On the other hand, since
k41

j—1 J t
) T m
T = B0t Y Yt Y /tk (thr = 8)[f (s, 2, uh) + ub]ds,
k=0 k=0""m

we get

1—1 ] k+1
j T < k e
= woll < S Hlhll+ 30 [ 1 = sl(p(e) + M)
k=0 k=0"tm

i+1
th

< 25 (it [ 0+ anar) + [* 7o)+ anas

T
< Tlyol| +2T/ (p(t) + M)dt < R.
0
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Therefore, from (3.1) and the choice of T, if ¢ € I,

[l (t) — zol| < |27, — ol + (t — )|yl

-+/QIt—SKHf@nﬂmy%N\+HU%Hkb
" T

§7ﬂwH+2TA (p(t) + M)dt + T(|lyol|
T T

+A(Mﬂ+hﬁﬁ+TA(Mﬂ+MMt

T
:2ﬂ@m+4T/‘@@+JWMt<R.
0

So from (3.1), (3.4) and (3.5) it follows that

(3.6) |z (#)|| < p(t) + M Vte0,T],
(3.7) |z, @] < llyoll + RVt € [0, T,
(3.8) zm @] < |[zol| + RVt €[0,T].

At the same time, since for all ¢ € Ljﬁ
i+t
e (® = whll < [ (o(t) + M)at,
i

T
lon(® =l < = (Inll+ [ 0+ 200e) + 2 [ oi0) + 211t

m Sy
using the absolute continuity of the Lebesgue integral we infer that for all
t€1[0,7]
(3.9) (2 (t), 20, (t), 2 (£) — fi(t)) € graphF + e(m)(B x B x B),
where ¢(m) — 0 as m — oo.

By (3.6)—(3.8) we obtain that 27, (.) is bounded in L?([0, T], R®) and z,(.),
z!.(.) are bounded in C([0,T], R"™). Moreover, for all t',t" € [0,T]

tl/
[;MMﬂm

t//
LH%@WS
/

i.e. the sequence z,,(.) is equi lipschitzian and the sequence z],(.) is equi
uniformly continuous.

Applying Theorem 0.3.4 in [2] we deduce the existence of a subsequence
(again denoted by) z,(.) and an absolutely continuous function z(.) : [0,7] —

[lm () = 2m ()] < < (llyoll + R — 1",

<

)

‘[@@+Mm

23 (t) = 2, ()] <
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R™ such that z,,(.) converges uniformly to z(.), «],(.) converges uniformly to

2'(.) and 2/ (.) converges weakly in L?([0,T], R") to z”(.).
From Hypothesis 2.1 and Theorem 1.4.1 in [2] we find that

2 (t) — f(t,z(t), 2/ (t)) € coF (z(t),2'(t)) C OpV (2'(t)) a.e.[0,T].

Since the mappings 2/(.) is absolutely continuous and z”(t) € 9V (2/(t))
a.e. ([0,T]) we apply Theorem 2.2 in [5] and we deduce that there exists 71 > 0
such that the mapping t — V (2/(t)) is absolutely continuous on [0, min{7T’, T} }|
and

V(') =< 2"(t),2"(t) — f(t,z(t),2'(t)) > a.e. [0,min{T, T}

Without loss of generality we may assume that 7= min{T, 7} }.
Therefore

T
wwm—wwz/uﬂwmt
(3.10) 0

T

= [ <o), (00 () > s
0

Since

T(8) = Fnlt) = uhy € F(ady ) © 05V (gh,), tE T,

using the properties of the mapping V(.) and the definition of S we have for
j=1,2,...,m and m fixed

V(@ () = Ve (t,) =< U%w Ty

= ov (@, (), a7, (1), V (2, (657), V (2, (,))
(1 [ ) 7 (E37) — 2 ()11

() = (t,) >

m

><ad, 2l (87—l (8) >
t]+1 2
<meu>m/ 2 ()ds
i+t i+t

z/erMQW@—/i < fn(s), 2 (s) > ds
th, th,

2

— S(1+ M?)
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By adding the last inequality for j = 1,2, ..., m, we obtain
T

T
V(@ (T)) - V(o) > /0 a2 ()] 2t — /0 < Fult). 2 (1) > dt

T
S M) a2
(3.11) T T
> / 22 (8) Pt — / < (), 2l (8) > dt
0 0

_ s+ ML / " o) + M.
m Jo

The convergence of f,,,(.) in L2([0,T], R®) and the convergence of z/ (.) in
the weak topology of L%([0,7T], R") implies that
T T
lim < fn (), i (8) > dt :/ < f(t,x(t), 2/ (1), 2" (t) > dt.
0

m—00 0

Passing to the limit with m — oo in (3.11) we get

T
V(@ (T)) ~ V(o) = limsup /0 a2, ()] [2dt

m—00

T
- [ < sttt @) >
0
So, from (3.10) it follows that

T T
limsup/ || (¢)||dt S/ ||=" ()]dt
0 0

m—0o0
and, since {z (.)},n converges weakly in L?([0,T], R") to z"(.), by the lower
semicontinuity of the norm in L2([0,T], R") (e.g. Prop. II1.30 in [3]) we obtain

that
T

T
lim [ |2 (6)]dt = / 2" (6)]2dt.
0

m—00 0

i.e., {27 (.)} converges strongly in L?([0,7], R®). Hence, there exists a sub-
sequence (still denoted) ! (.) that converges pointwise to x(.). Since, by
Hypothesis 2.3, graph(F) is closed (e.g. [2], p. 41) from (3.9) we infer that

d((x(t),2'(t), 2" (t) — f(t, x(t),2'(t))), graph(F)) =0 a.e. [0,T].
Thus
2"(t) € F(z(t),2'(t) + f(t,2(t),2'(), a.e. [0,T].
Obviously, z(.) satisfies the initial conditions and the proof is complete. [

REMARK 3.2. If V(.) : R® — R is a proper lower semicontinuous convex
function then (e.g. [9]) OrV (z) = OV (x), where OV (.) is the subdifferential in
the sense of convex analysis of V(.), and Theorem 3.1 yields the result in [7].
If f(t,x,y) =0 then Theorem 3.1 yields the result in [6], which contains as a
particular case (when V(.) is convex) the result in [11].
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