LOCAL EXISTENCE OF SOLUTIONS TO A CLASS OF NONCONVEX SECOND ORDER DIFFERENTIAL INCLUSIONS

AURELIAN CERNEA

Abstract

We prove the local existence of solutions to the Cauchy problem $x^{\prime \prime} \in F\left(x, x^{\prime}\right)+f\left(t, x, x^{\prime}\right), x(0)=x_{0}, x^{\prime}(0)=y_{0}$, where F is a set-valued map contained in the Fréchet subdifferential of a ϕ-convex function of order two and f is a Carathéodory single valued map. MSC 2000. 34A60. Key words. Differential inclusions, lower regular function, Clarke subdifferential.

1. INTRODUCTION

In this paper we consider the Cauchy problem for second order differential inclusion

$$
\begin{equation*}
x^{\prime \prime} \in F\left(x, x^{\prime}\right)+f\left(t, x, x^{\prime}\right), \quad x(0)=x_{0}, \quad x^{\prime}(0)=y_{0}, \tag{1.1}
\end{equation*}
$$

where $F(.,$.$) is a given set-valued map, f(., .,$.$) is a given Carathéodory map$ and $x_{0}, y_{0} \in R^{n}$.

Second order differential inclusions were studied by many authors, mainly in the case when the multifunction is convex valued. Several existence results may be found in [8], [10], [12], etc.

Recently, in [6], [7], [11], the situation when the multifunction is not convex valued is considered. More exactly, in [11] it is proved the existence of solutions of the problem

$$
\begin{equation*}
x^{\prime \prime} \in F\left(x, x^{\prime}\right), \quad x(0)=x_{0}, x^{\prime}(0)=y_{0} \tag{1.2}
\end{equation*}
$$

when $F(.,$.$) is an upper semicontinuous compact valued multifunction con-$ tained in the subdifferential of a proper convex function. In [7] it is proved the existence of solutions of the problem (1.1) with F as in [11] and $f(., .,$. is a Carathéodory map. In [6] the existence of solutions for problem (1.2) is obtained with $F(.,$.$) an upper semicontinuous compact valued multifunction$ contained in the Fréchet subdifferential of a ϕ-convex function of order two.

The aim of this paper is to unify the results quoted above by proving the existence of local solutions of the problem (1.1) when $F(.,$.$) is an upper semi-$ continuous compact valued multifunction contained in the Fréchet subdifferential of a ϕ-convex function of order two and $f(., .,$.$) is a Carathéodory map.$ Since the class of proper convex functions is strictly contained in the class of ϕ-convex functions, our result generalizes the one in [7]. Our existence result
contains Peano's existence theorem (for second order differential equations) as a particular case. On the other hand, our result may be considered as an extension of the previous result of Ancona and Colombo ([1]) obtained for first order differential inclusions of the form

$$
\begin{equation*}
x^{\prime} \in F(x)+f(t, x), \quad x(0)=x_{0}, \tag{1.3}
\end{equation*}
$$

with F a cyclically monotone set-valued map and f a Carathéodory map. The proof of our main result follows the general ideas in [1], [6] and [11].

The paper is organized as follows: in Section 2 we recall some preliminary facts that we need in the sequel and in Section 3 we prove our main result.

2. PRELIMINARIES

We denote by $\mathcal{P}\left(R^{n}\right)$ the set of all subsets of R^{n} and by R_{+}the set of all positive real numbers. For $\epsilon>0$ we put $B_{\epsilon}(x)=\left\{y \in R^{n} ;\|y-x\|<\epsilon\right\}$. With B we denote the unit ball in R^{n}. By $\operatorname{cl}(A)$ we denote the closure of the set $A \subset R^{n}$, by $\operatorname{co}(A)$ we denote the convex hull of A and we put $\|A\|=$ $\sup \{\|a\| ; a \in A\}$.

Let $\Omega \subset R^{n}$ be an open set and let $V: \Omega \rightarrow R \cup\{+\infty\}$ be a function with domain $D(V)=\left\{x \in R^{n} ; V(x)<+\infty\right\}$.

Definition 2.1. The multifunction $\partial_{F} V: \Omega \rightarrow \mathcal{P}\left(R^{n}\right)$, defined as:

$$
\partial_{F} V(x)=\left\{\alpha \in R^{n}, \liminf _{y \rightarrow x} \frac{V(y)-V(x)-<\alpha, y-x>}{\|y-x\|} \geq 0\right\} \text { if } V(x)<+\infty
$$

and $\partial_{F} V(x)=\emptyset$ if $V(x)=+\infty$ is called the Fréchet subdifferential of V.
We also put $D\left(\partial_{F} V\right)=\left\{x \in R^{n} ; \partial_{F} V(x) \neq \emptyset\right\}$.
According to [9] the values of $\partial_{F} V$ are closed and convex.
Definition 2.2. Let $V: \Omega \rightarrow R \cup\{+\infty\}$ be a lower semicontinuous function. We say that V is a ϕ-convex of order 2 if there exists a continuous $\operatorname{map} \phi_{V}:(D(V))^{2} \times R^{2} \rightarrow R_{+}$such that for every $x, y \in D\left(\partial_{F} V\right)$ and every $\alpha \in \partial_{F} V(x)$ we have

$$
V(y) \geq V(x)+<\alpha, x-y>-\phi_{V}(x, y, V(x), V(y))\left(1+\|\alpha\|^{2}\right)\|x-y\|^{2}
$$

In [9] there are several examples and properties of such maps.
In what follows, for $F: D \subset R^{n} \times R^{n} \rightarrow \mathcal{P}\left(R^{n}\right), f: R \times D \rightarrow R^{n}$ and for any $\left(x_{0}, y_{0}\right) \in D$ we consider problem (1.1) under the following assumptions:

HYpOTHESIS 2.3. i) $D \subset R^{n} \times R^{n}$ is an open set and $F: D \rightarrow \mathcal{P}\left(R^{n}\right)$ is upper semicontinuous (i.e., $\forall z \in D, \forall \epsilon>0$ there exists $\delta>0$ such that $\left\|z-z^{\prime}\right\|<\delta$ implies $\left.F\left(z^{\prime}\right) \subset F(z)+\epsilon B\right)$ with compact values.
ii) There exists a proper lower semicontinuous ϕ-convex function of order two $V: R^{n} \rightarrow R \cup\{+\infty\}$ such that

$$
F(x, y) \subset \partial_{F} V(y), \quad \forall(x, y) \in D
$$

iii) $f: R \times D \rightarrow R^{n}$ is Carathéodory, i.e. for every $(x, y) \in D, t \rightarrow f(t, x, y)$ is measurable, for a.e. $t \in R(x, y) \rightarrow f(t, x, y)$ is continuous and there exists $p(.) \in L^{2}\left(R, R_{+}\right)$such that

$$
\|f(t, x, y)\| \leq p(t) \quad \text { a.e. } t \in R, \quad \forall(x, y) \in D .
$$

Finally, by a solution of problem (1.1) we mean an absolutely continuous function $x():.[0, T] \rightarrow R^{n}$ with absolutely continuous derivative $x^{\prime}($.$) such$ that $x(0)=x_{0}, x^{\prime}(0)=y_{0}$ and

$$
x^{\prime \prime}(t) \in F\left(x(t), x^{\prime}(t)\right)+f\left(t, x(t), x^{\prime}(t)\right) \quad \text { a.e. }[0, T] .
$$

3. THE MAIN RESULT

Our main result is the following.
Theorem 3.1. Consider $F: D \rightarrow \mathcal{P}\left(R^{n}\right)$ and $f: R \times D \rightarrow R^{n}$ that satisfies Hypothesis 2.3. Then, for every $\left(x_{0}, y_{0}\right) \in D$ there exist $T>0$ and $x():.[0, T] \rightarrow R^{n}$ solution to problem (1.1).

Proof. Consider $\left(x_{0}, y_{0}\right) \in D$. Since D is open, there exists $R>0$ such that $\bar{B}_{R}\left(x_{0}, y_{0}\right) \subset D$. Moreover, by the upper semicontinuity of F and by Proposition 1.1.3 in [2], the set $F\left(\bar{B}_{R}\left(x_{0}, y_{0}\right)\right)$ is compact, hence there exists $M>0$ such that

$$
\sup \left\{\|v\| ; v \in F(x, y) ;(x, y) \in \bar{B}_{R}\left(x_{0}, y_{0}\right)\right\} \leq M<+\infty .
$$

Let ϕ_{V} the continuous function appearing in Definition 2.2.
Since $V($.$) is continuous on D(V)$ (e.g. [9]), by possibly decreasing R one can assume that for all $y \in B_{R}\left(y_{0}\right) \cap D(V)$

$$
\left|V(y)-V\left(y_{0}\right)\right| \leq 1 .
$$

Put

$$
S:=\sup \left\{\phi_{v}\left(y_{1}, y_{2}, z_{1}, z_{2}\right) ; y_{i} \in \bar{B}_{r}\left(y_{0}\right), z_{i} \in\left[V\left(y_{0}\right)-1, V\left(y_{0}\right)+1\right], i=1,2\right\},
$$

By Hypothesis 2.3 iii) there exists $T>0$ such that

$$
\max \left\{\int_{0}^{T}(p(t)+M) \mathrm{d} t, T\left(\left\|y_{0}\right\|+2 \int_{0}^{T}(p(t)+M) \mathrm{d} t\right)\right\}<\frac{R}{2} .
$$

We shall prove the existence of solution of the problem (1.1) on the interval $[0, T]$.

For each $m \geq 1$ and $1 \leq j \leq m$ we define

$$
t_{m}^{j}=\frac{j T}{m}, I_{m}^{j}=\left[t_{m}^{j-1}, t_{m}^{j}\right], x_{m}^{0}=x_{0}, y_{m}^{0}=y_{0}
$$

and for $t \in I_{m}^{j}$ we define

$$
\begin{equation*}
x_{m}(t)=x_{m}^{j}+\left(t-t_{m}^{j}\right) y_{m}^{j}+\int_{t_{m}^{j}}^{t}(t-s)\left[f\left(s, x_{m}^{j}, y_{m}^{j}\right)+u_{m}^{j}\right] \mathrm{d} s, \tag{3.1}
\end{equation*}
$$

where $u_{m}^{j} \in F\left(x_{m}^{j}, y_{m}^{j}\right), j=0,1, \ldots, m-1$,

$$
\begin{equation*}
x_{m}^{j+1}=x_{m}^{j}+\frac{T}{m} y_{m}^{j}+\int_{t_{m}^{j}}^{t_{m}^{j+1}}\left(t_{m}^{j+1}-s\right)\left[f\left(s, x_{m}^{j}, y_{m}^{j}\right)+u_{m}^{j}\right] \mathrm{d} s \tag{3.2}
\end{equation*}
$$

$$
\begin{equation*}
y_{m}^{j+1}=y_{m}^{j}+\int_{t_{m}^{j}}^{t_{m}^{j+1}}\left[f\left(s, x_{m}^{j}, y_{m}^{j}\right)+u_{m}^{j}\right] \mathrm{d} s . \tag{3.3}
\end{equation*}
$$

Obviously, from (3.1), if $t \in I_{m}^{j}$, we have

$$
\begin{gather*}
x_{m}^{\prime}(t)=y_{m}^{j}+\int_{t_{m}^{j}}^{t}\left[f\left(s, x_{m}^{j}, y_{m}^{j}\right)+u_{m}^{j}\right] \mathrm{d} s, \tag{3.4}\\
x_{m}^{\prime \prime}(t)=f\left(t, x_{m}^{j}, y_{m}^{j}\right)+u_{m}^{j} . \tag{3.5}
\end{gather*}
$$

For $t \in I_{m}^{j}$ we set $f_{m}(t)=f\left(t, x_{m}^{j}, y_{m}^{j}\right)$.
From (3.3), for any $j=0,1, \ldots, m-1$ one has

$$
\left\|y_{m}^{j}-y_{0}\right\| \leq \int_{0}^{T}(p(t)+M) \mathrm{d} t<R
$$

and hence $\left\|y_{m}^{j}\right\| \leq\left\|y_{0}\right\|+\int_{0}^{T}(p(t)+M) \mathrm{d} t$.
Therefore, from (3.4) and the choice of T, if $t \in I_{m}^{j}$

$$
\begin{aligned}
\left\|x_{m}^{\prime}(t)-y_{0}\right\| & \leq\left\|y_{m}^{j}-y_{0}\right\|+\int_{t_{m}^{j}}^{t}\left[f\left(s, x_{m}^{j}, y_{m}^{j}\right)+u_{m}^{j}\right] \mathrm{d} s \\
& \leq 2 \int_{0}^{T}(p(t)+M) \mathrm{d} t<R .
\end{aligned}
$$

On the other hand, since

$$
x_{m}^{j}=x_{0}+\frac{T}{m} \sum_{k=0}^{j-1} y_{m}^{k}+\sum_{k=0}^{j} \int_{t_{m}^{k}}^{t_{m}^{k+1}}\left(t_{m}^{k+1}-s\right)\left[f\left(s, x_{m}^{k}, y_{m}^{k}\right)+u_{m}^{k}\right] \mathrm{d} s
$$

we get

$$
\begin{aligned}
&\left\|x_{m}^{j}-x_{0}\right\| \leq \frac{T}{m} \sum_{k=0}^{j-1}\left\|y_{m}^{k}\right\|+\sum_{k=0}^{j} \int_{t_{m}^{k}}^{t_{m}^{k+1}}\left|t_{m}^{k+1}-s\right|(p(s)+M) \mathrm{d} s \\
& \leq \frac{T}{m} j\left(\left\|y_{0}\right\|+\int_{0}^{T}(p(t)+M) \mathrm{d} t\right)+\int_{0}^{t_{m}^{j+1}} T(p(s)+M) \mathrm{d} s \\
& \leq T\left\|y_{0}\right\|+2 T \int_{0}^{T}(p(t)+M) \mathrm{d} t<R .
\end{aligned}
$$

Therefore, from (3.1) and the choice of T, if $t \in I_{m}^{j}$

$$
\begin{aligned}
\left\|x_{m}(t)-x_{0}\right\| & \leq\left\|x_{m}^{j}-x_{0}\right\|+\left(t-t_{m}^{j}\right)\left\|y_{m}^{j}\right\| \\
& +\int_{t_{m}^{j}}^{t}|t-s|\left(\left\|f\left(s, x_{m}^{j}, y_{m}^{j}\right)\right\|+\left\|u_{m}^{j}\right\|\right) \mathrm{d} s \\
& \leq T\left\|y_{0}\right\|+2 T \int_{0}^{T}(p(t)+M) \mathrm{d} t+T\left(\left\|y_{0}\right\|\right. \\
& +\int_{0}^{T}(p(t)+M) \mathrm{d} t+T \int_{0}^{T}(p(t)+M) \mathrm{d} t \\
& =2 T\left\|y_{0}\right\|+4 T \int_{0}^{T}(p(t)+M) \mathrm{d} t<R .
\end{aligned}
$$

So from (3.1), (3.4) and (3.5) it follows that

$$
\begin{array}{ll}
\left\|x_{m}^{\prime \prime}(t)\right\| \leq p(t)+M & \forall t \in[0, T], \\
\left\|x_{m}^{\prime}(t)\right\| \leq\left\|y_{0}\right\|+R & \forall t \in[0, T], \\
\left\|x_{m}(t)\right\| \leq\left\|x_{0}\right\|+R & \forall t \in[0, T] . \tag{3.8}
\end{array}
$$

At the same time, since for all $t \in I_{m}^{j}$

$$
\begin{gathered}
\left\|x_{m}^{\prime}(t)-y_{m}^{j}\right\| \leq \int_{t_{m}^{j}}^{t_{m}^{j+1}}(p(t)+M) \mathrm{d} t \\
\left\|x_{m}(t)-x_{m}^{j}\right\| \leq \frac{T}{m}\left(\left\|y_{0}\right\|+\int_{0}^{T}(p(t)+M) \mathrm{d} t\right)+\frac{T}{m} \int_{t_{m}^{j}}^{t_{m}^{j+1}}(p(t)+M) \mathrm{d} t
\end{gathered}
$$

using the absolute continuity of the Lebesgue integral we infer that for all $t \in[0, T]$

$$
\begin{equation*}
\left(x_{m}(t), x_{m}^{\prime}(t), x_{m}^{\prime \prime}(t)-f_{m}(t)\right) \in \operatorname{graph} F+\epsilon(m)(B \times B \times B), \tag{3.9}
\end{equation*}
$$

where $\epsilon(m) \rightarrow 0$ as $m \rightarrow \infty$.
By (3.6)-(3.8) we obtain that $x_{m}^{\prime \prime}($.$) is bounded in L^{2}\left([0, T], R^{n}\right)$ and $x_{m}($.$) ,$ $x_{m}^{\prime}($.$) are bounded in C\left([0, T], R^{n}\right)$. Moreover, for all $t^{\prime}, t^{\prime \prime} \in[0, T]$

$$
\begin{aligned}
& \left\|x_{m}\left(t^{\prime}\right)-x_{m}\left(t^{\prime \prime}\right)\right\| \leq\left|\int_{t^{\prime}}^{t^{\prime \prime}}\left\|x_{m}^{\prime}(s)\right\| \mathrm{d} s\right| \leq\left(\left\|y_{0}\right\|+R\right)\left|t^{\prime}-t^{\prime \prime}\right| \\
& \left\|x_{m}^{\prime}\left(t^{\prime}\right)-x_{m}^{\prime}\left(t^{\prime \prime}\right)\right\| \leq\left|\int_{t^{\prime}}^{t^{\prime \prime}}\left\|x_{m}^{\prime \prime}(s)\right\| \mathrm{d} s\right| \leq\left|\int_{t^{\prime}}^{t^{\prime \prime}}(p(s)+M) \mathrm{d} s\right|
\end{aligned}
$$

i.e. the sequence $x_{m}($.$) is equi lipschitzian and the sequence x_{m}^{\prime}($.$) is equi$ uniformly continuous.

Applying Theorem 0.3.4 in [2] we deduce the existence of a subsequence (again denoted by) $x_{m}($.$) and an absolutely continuous function x():.[0, T] \rightarrow$
R^{n} such that $x_{m}($.$) converges uniformly to x(),. x_{m}^{\prime}($.$) converges uniformly to$ $x^{\prime}($.$) and x_{m}^{\prime \prime}($.$) converges weakly in L^{2}\left([0, T], R^{n}\right)$ to $x^{\prime \prime}($.$) .$

From Hypothesis 2.1 and Theorem 1.4.1 in [2] we find that

$$
x^{\prime \prime}(t)-f\left(t, x(t), x^{\prime}(t)\right) \in \operatorname{coF}\left(x(t), x^{\prime}(t)\right) \subset \partial_{F} V\left(x^{\prime}(t)\right) \quad \text { a.e. }[0, T] .
$$

Since the mappings $x^{\prime}($.$) is absolutely continuous and x^{\prime \prime}(t) \in \partial_{F} V\left(x^{\prime}(t)\right)$ a.e. $([0, T])$ we apply Theorem 2.2 in [5] and we deduce that there exists $T_{1}>0$ such that the mapping $t \rightarrow V\left(x^{\prime}(t)\right)$ is absolutely continuous on $\left[0, \min \left\{T, T_{1}\right\}\right]$ and

$$
\left(V\left(x^{\prime}(t)\right)\right)^{\prime}=<x^{\prime \prime}(t), x^{\prime \prime}(t)-f\left(t, x(t), x^{\prime}(t)\right)>\quad \text { a.e. }\left[0, \min \left\{T, T_{1}\right\}\right]
$$

Without loss of generality we may assume that $T=\min \left\{T, T_{1}\right\}$.
Therefore

$$
\begin{align*}
V\left(x^{\prime}(T)\right)-V\left(y_{0}\right) & =\int_{0}^{T}\left\|x^{\prime \prime}(t)\right\|^{2} \mathrm{~d} t \tag{3.10}\\
& -\int_{0}^{T}<x^{\prime \prime}(s), f\left(s, x(s), x^{\prime}(s)\right)>\mathrm{d} s
\end{align*}
$$

Since

$$
x_{m}^{\prime \prime}(t)-f_{m}(t)=u_{m}^{j} \in F\left(x_{m}^{j}, y_{m}^{j}\right) \subset \partial_{F} V\left(y_{m}^{j}\right), \quad t \in I_{m}^{j}
$$

using the properties of the mapping $V($.$) and the definition of S$ we have for $j=1,2, \ldots, m$ and m fixed

$$
\begin{aligned}
V\left(x_{m}^{\prime}\left(t_{m}^{j+1}\right)\right)- & V\left(x_{m}^{\prime}\left(t_{m}^{j}\right)\right) \geq<u_{m}^{j}, x_{m}^{\prime}\left(t_{m}^{j+1}\right)-x_{m}^{\prime}\left(t_{m}^{j}\right)> \\
- & \phi_{V}\left(x_{m}^{\prime}\left(t_{m}^{j+1}\right), x_{m}^{\prime}\left(t_{m}^{j}\right), V\left(x_{m}^{\prime}\left(t_{m}^{j+1}\right)\right), V\left(x_{m}^{\prime}\left(t_{m}^{j}\right)\right)\right) \\
& \left(1+\left\|u_{m}^{j}\right\|^{2}\right)\left\|x_{m}^{\prime}\left(t_{m}^{j+1}\right)-x_{m}^{\prime}\left(t_{m}^{j}\right)\right\|^{2} \\
\geq< & u_{m}^{j}, x_{m}^{\prime}\left(t_{m}^{j+1}\right)-x_{m}^{\prime}\left(t_{m}^{j}\right)> \\
- & S\left(1+\left\|u_{m}^{j}\right\|^{2}\right)\left\|\int_{t_{m}^{j}}^{t_{m}^{j+1}} x_{m}^{\prime \prime}(s) \mathrm{d} s\right\|^{2} \\
\geq & \int_{t_{m}^{j}}^{t_{m}^{j+1}}\left\|x_{m}^{\prime \prime}(s)\right\|^{2} \mathrm{~d} s-\int_{t_{m}^{j}}^{t_{m}^{j+1}}<f_{m}(s), x_{m}^{\prime \prime}(s)>\mathrm{d} s \\
- & S\left(1+M^{2}\right)\left\|\int_{t_{m}^{j}}^{t_{m}^{j+1}} x_{m}^{\prime \prime}(s) \mathrm{d} s\right\|^{2} .
\end{aligned}
$$

By adding the last inequality for $j=1,2, \ldots, m$, we obtain

$$
\begin{align*}
V\left(x_{m}^{\prime}(T)\right)-V\left(y_{0}\right) & \geq \int_{0}^{T}\left\|x_{m}^{\prime \prime}(t)\right\|^{2} \mathrm{~d} t-\int_{0}^{T}<f_{m}(t), x_{m}^{\prime \prime}(t)>\mathrm{d} t \\
& -S\left(1+M^{2}\right) \frac{T}{m}\left\|x_{m}^{\prime}\right\|_{L^{2}}^{2} \\
& \geq \int_{0}^{T}\left\|x_{m}^{\prime \prime}(t)\right\|^{2} \mathrm{~d} t-\int_{0}^{T}<f_{m}(t), x_{m}^{\prime \prime}(t)>\mathrm{d} t \tag{3.11}\\
& -S\left(1+M^{2}\right) \frac{T}{m} \int_{0}^{T}(p(t)+M)^{2} \mathrm{~d} t .
\end{align*}
$$

The convergence of $f_{m}($.$) in L^{2}\left([0, T], R^{n}\right)$ and the convergence of $x_{m}^{\prime \prime}($.$) in$ the weak topology of $L^{2}\left([0, T], R^{n}\right)$ implies that

$$
\lim _{m \rightarrow \infty} \int_{0}^{T}<f_{m}(t), x_{m}^{\prime \prime}(t)>\mathrm{d} t=\int_{0}^{T}<f\left(t, x(t), x^{\prime}(t)\right), x^{\prime \prime}(t)>\mathrm{d} t .
$$

Passing to the limit with $m \rightarrow \infty$ in (3.11) we get

$$
\begin{aligned}
V\left(x^{\prime}(T)\right)-V\left(y_{0}\right) & \geq \limsup _{m \rightarrow \infty} \int_{0}^{T}\left\|x_{m}^{\prime \prime}(t)\right\|^{2} \mathrm{~d} t \\
& -\int_{0}^{T}<f\left(t, x(t), x^{\prime}(t)\right), x^{\prime \prime}(t)>\mathrm{d} t
\end{aligned}
$$

So, from (3.10) it follows that

$$
\limsup _{m \rightarrow \infty} \int_{0}^{T}\left\|x_{m}^{\prime}(t)\right\|^{2} \mathrm{~d} t \leq \int_{0}^{T}\left\|x^{\prime \prime}(t)\right\|^{2} \mathrm{~d} t
$$

and, since $\left\{x_{m}^{\prime \prime}(.)\right\}_{m}$ converges weakly in $L^{2}\left([0, T], R^{n}\right)$ to $x^{\prime \prime}($.$) , by the lower$ semicontinuity of the norm in $L^{2}\left([0, T], R^{n}\right)$ (e.g. Prop. III. 30 in [3]) we obtain that

$$
\lim _{m \rightarrow \infty} \int_{0}^{T}\left\|x_{m}^{\prime \prime}(t)\right\|^{2} \mathrm{~d} t=\int_{0}^{T}\left\|x^{\prime \prime}(t)\right\|^{2} \mathrm{~d} t
$$

i.e., $\left\{x_{m}^{\prime \prime}().\right\}$ converges strongly in $L^{2}\left([0, T], R^{n}\right)$. Hence, there exists a subsequence (still denoted) $x_{m}^{\prime \prime}($.$) that converges pointwise to x^{\prime \prime}($.$) . Since, by$ Hypothesis 2.3, $\operatorname{graph}(F)$ is closed (e.g. [2], p. 41) from (3.9) we infer that

$$
d\left(\left(x(t), x^{\prime}(t), x^{\prime \prime}(t)-f\left(t, x(t), x^{\prime}(t)\right)\right), \operatorname{graph}(F)\right)=0 \quad \text { a.e. }[0, T] .
$$

Thus

$$
x^{\prime \prime}(t) \in F\left(x(t), x^{\prime}(t)\right)+f\left(t, x(t), x^{\prime}(t)\right), \quad \text { a.e. }[0, T] .
$$

Obviously, $x($.$) satisfies the initial conditions and the proof is complete.$
Remark 3.2. If $V():. R^{n} \rightarrow R$ is a proper lower semicontinuous convex function then (e.g. [9]) $\partial_{F} V(x)=\partial V(x)$, where $\partial V($.$) is the subdifferential in$ the sense of convex analysis of $V($.$) , and Theorem 3.1$ yields the result in [7]. If $f(t, x, y) \equiv 0$ then Theorem 3.1 yields the result in [6], which contains as a particular case (when $V($.$) is convex) the result in [11].$

REFERENCES

[1] Ancona, F. and Colombo, G., Existence of solutions for a class of nonconvex differentials inclusions, Rend. Sem. Mat. Univ. Padova., 83 (1990), 71-76.
[2] Aubin, J.P. and Cellina, A., Differential Inclusions, Springer, Berlin, 1984.
[3] Brézis, H., Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland, Amsterdam, 1973.
[4] Brézis, H., Analyse fonctionelle, theorie et applications, Masson, Paris, 1983.
[5] Cardinali, T., Colombo, G., Papalini, F. and Tosques, M., On a class of evolution equations without convexity, Nonlinear Anal., 28 (1996), 217-234.
[6] Cernea, A., On the local existence of solutions to a class of second order differential inclusions, An. Univ. Buc., to appear.
[7] Cernea, A., On a nonconvex second order differential inclusion, Bull. Math. Soc. Sci. Math. Roum., to appear.
[8] Cornet, B. and Haddad, B., Théoreme de viabilité pour inclusions differentielles du second order, Israel J. Math., 57 (1987), 225-238.
[9] Degiovanni, M., Marino, A. and Tosques, M., Evolution equations with lack of convexity, Nonlinear Anal., 9 (1995), 1401-1443.
[10] Ha, T. D. X. and Marques, M, Nonconvex second order differential inclusions with memory, Set-valued Anal., 5 (1995), 71-86.
[11] Lupulescu, V., Existence of solutions to a class of second order differential inclusions, Cadernos de Matematica, Aveiro Univ. CM01/I-11.
[12] Marco, L. and Murillo, J.A., Viability theorems for higher-order differential inclusions, Set-valued Anal., 6 (1998), 21-37.

Received October 22, 2002

> Faculty of Mathematics and Informatics
> University of Bucharest
> Str. Academiei 14
> RO-010014 Bucharest, Romania
> E-mail: acernea@math.math.unibuc.ro

