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LOCAL EXISTENCE OF SOLUTIONS TO A CLASS
OF NONCONVEX SECOND ORDER

DIFFERENTIAL INCLUSIONS

AURELIAN CERNEA

Abstract. We prove the local existence of solutions to the Cauchy problem
x′′ ∈ F (x, x′) + f(t, x, x′), x(0) = x0, x

′(0) = y0, where F is a set-valued map
contained in the Fréchet subdifferential of a φ-convex function of order two and
f is a Carathéodory single valued map.
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1. INTRODUCTION

In this paper we consider the Cauchy problem for second order differential
inclusion

(1.1) x′′ ∈ F (x, x′) + f(t, x, x′), x(0) = x0, x′(0) = y0,

where F (., .) is a given set-valued map, f(., ., .) is a given Carathéodory map
and x0, y0 ∈ Rn.

Second order differential inclusions were studied by many authors, mainly
in the case when the multifunction is convex valued. Several existence results
may be found in [8], [10], [12], etc.

Recently, in [6], [7], [11], the situation when the multifunction is not convex
valued is considered. More exactly, in [11] it is proved the existence of solutions
of the problem

(1.2) x′′ ∈ F (x, x′), x(0) = x0, x′(0) = y0,

when F (., .) is an upper semicontinuous compact valued multifunction con-
tained in the subdifferential of a proper convex function. In [7] it is proved
the existence of solutions of the problem (1.1) with F as in [11] and f(., ., .)
is a Carathéodory map. In [6] the existence of solutions for problem (1.2) is
obtained with F (., .) an upper semicontinuous compact valued multifunction
contained in the Fréchet subdifferential of a φ-convex function of order two.

The aim of this paper is to unify the results quoted above by proving the
existence of local solutions of the problem (1.1) when F (., .) is an upper semi-
continuous compact valued multifunction contained in the Fréchet subdiffer-
ential of a φ-convex function of order two and f(., ., .) is a Carathéodory map.
Since the class of proper convex functions is strictly contained in the class of
φ-convex functions, our result generalizes the one in [7]. Our existence result
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contains Peano’s existence theorem (for second order differential equations)
as a particular case. On the other hand, our result may be considered as an
extension of the previous result of Ancona and Colombo ([1]) obtained for first
order differential inclusions of the form

(1.3) x′ ∈ F (x) + f(t, x), x(0) = x0,

with F a cyclically monotone set-valued map and f a Carathéodory map. The
proof of our main result follows the general ideas in [1], [6] and [11].

The paper is organized as follows: in Section 2 we recall some preliminary
facts that we need in the sequel and in Section 3 we prove our main result.

2. PRELIMINARIES

We denote by P(Rn) the set of all subsets of Rn and by R+ the set of all
positive real numbers. For ε > 0 we put Bε(x) = {y ∈ Rn; ||y − x|| < ε}.
With B we denote the unit ball in Rn. By cl(A) we denote the closure of
the set A ⊂ Rn, by co(A) we denote the convex hull of A and we put ||A|| =
sup{||a||; a ∈ A}.

Let Ω ⊂ Rn be an open set and let V : Ω → R ∪ {+∞} be a function with
domain D(V ) = {x ∈ Rn;V (x) < +∞}.

Definition 2.1. The multifunction ∂F V : Ω → P(Rn), defined as:

∂F V (x) = {α ∈ Rn, lim inf
y→x

V (y)− V (x)− < α, y − x >

||y − x||
≥ 0} ifV (x) < +∞

and ∂F V (x) = ∅ if V (x) = +∞ is called the Fréchet subdifferential of V .

We also put D(∂F V ) = {x ∈ Rn; ∂F V (x) 6= ∅}.
According to [9] the values of ∂F V are closed and convex.

Definition 2.2. Let V : Ω → R ∪ {+∞} be a lower semicontinuous func-
tion. We say that V is a φ-convex of order 2 if there exists a continuous
map φV : (D(V ))2 × R2 → R+ such that for every x, y ∈ D(∂F V ) and every
α ∈ ∂F V (x) we have

V (y) ≥ V (x)+ < α, x− y > −φV (x, y, V (x), V (y))(1 + ||α||2)||x− y||2.

In [9] there are several examples and properties of such maps.
In what follows, for F : D ⊂ Rn × Rn → P(Rn), f : R ×D → Rn and for

any (x0, y0) ∈ D we consider problem (1.1) under the following assumptions:

Hypothesis 2.3. i) D ⊂ Rn × Rn is an open set and F : D → P(Rn)
is upper semicontinuous (i.e., ∀z ∈ D, ∀ε > 0 there exists δ > 0 such that
||z − z′|| < δ implies F (z′) ⊂ F (z) + εB) with compact values.

ii) There exists a proper lower semicontinuous φ-convex function of order
two V : Rn → R ∪ {+∞} such that

F (x, y) ⊂ ∂F V (y), ∀(x, y) ∈ D.
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iii) f : R×D → Rn is Carathéodory, i.e. for every (x, y) ∈ D, t → f(t, x, y)
is measurable, for a.e. t ∈ R (x, y) → f(t, x, y) is continuous and there exists
p(.) ∈ L2(R,R+) such that

||f(t, x, y)|| ≤ p(t) a.e.t ∈ R, ∀(x, y) ∈ D.

Finally, by a solution of problem (1.1) we mean an absolutely continuous
function x(.) : [0, T ] → Rn with absolutely continuous derivative x′(.) such
that x(0) = x0, x′(0) = y0 and

x′′(t) ∈ F (x(t), x′(t)) + f(t, x(t), x′(t)) a.e. [0, T ].

3. THE MAIN RESULT

Our main result is the following.

Theorem 3.1. Consider F : D → P(Rn) and f : R × D → Rn that
satisfies Hypothesis 2.3. Then, for every (x0, y0) ∈ D there exist T > 0 and
x(.) : [0, T ] → Rn solution to problem (1.1).

Proof. Consider (x0, y0) ∈ D. Since D is open, there exists R > 0 such
that BR(x0, y0) ⊂ D. Moreover, by the upper semicontinuity of F and by
Proposition 1.1.3 in [2], the set F (BR(x0, y0)) is compact, hence there exists
M > 0 such that

sup{||v||; v ∈ F (x, y); (x, y) ∈ BR(x0, y0)} ≤ M < +∞.

Let φV the continuous function appearing in Definition 2.2.
Since V (.) is continuous on D(V ) (e.g. [9]), by possibly decreasing R one

can assume that for all y ∈ BR(y0) ∩D(V )

|V (y)− V (y0)| ≤ 1.

Put

S := sup{φv(y1, y2, z1, z2); yi ∈ Br(y0), zi ∈ [V (y0)− 1, V (y0) + 1], i = 1, 2},
By Hypothesis 2.3 iii) there exists T > 0 such that

max
{∫ T

0
(p(t) + M)dt, T

(
||y0||+ 2

∫ T

0
(p(t) + M)dt

)}
<

R

2
.

We shall prove the existence of solution of the problem (1.1) on the interval
[0, T ].

For each m ≥ 1 and 1 ≤ j ≤ m we define

tjm =
jT

m
, Ij

m = [tj−1
m , tjm], x0

m = x0, y0
m = y0,

and for t ∈ Ij
m we define

(3.1) xm(t) = xj
m + (t− tjm)yj

m +
∫ t

tjm

(t− s)[f(s, xj
m, yj

m) + uj
m]ds,
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where uj
m ∈ F (xj

m, yj
m), j = 0, 1, ...,m− 1,

(3.2) xj+1
m = xj

m +
T

m
yj

m +
∫ tj+1

m

tjm

(tj+1
m − s)[f(s, xj

m, yj
m) + uj

m]ds,

(3.3) yj+1
m = yj

m +
∫ tj+1

m

tjm

[f(s, xj
m, yj

m) + uj
m]ds.

Obviously, from (3.1), if t ∈ Ij
m, we have

(3.4) x′m(t) = yj
m +

∫ t

tjm

[f(s, xj
m, yj

m) + uj
m]ds,

(3.5) x′′m(t) = f(t, xj
m, yj

m) + uj
m.

For t ∈ Ij
m we set fm(t) = f(t, xj

m, yj
m).

From (3.3), for any j = 0, 1, ...,m− 1 one has

||yj
m − y0|| ≤

∫ T

0
(p(t) + M)dt < R

and hence ||yj
m|| ≤ ||y0||+

∫ T
0 (p(t) + M)dt.

Therefore, from (3.4) and the choice of T , if t ∈ Ij
m

||x′m(t)− y0|| ≤ ||yj
m − y0||+

∫ t

tjm

[f(s, xj
m, yj

m) + uj
m]ds

≤ 2
∫ T

0
(p(t) + M)dt < R.

On the other hand, since

xj
m = x0 +

T

m

j−1∑
k=0

yk
m +

j∑
k=0

∫ tk+1
m

tkm

(tk+1
m − s)[f(s, xk

m, yk
m) + uk

m]ds,

we get

||xj
m − x0|| ≤

T

m

j−1∑
k=0

||yk
m||+

j∑
k=0

∫ tk+1
m

tkm

|tk+1
m − s|(p(s) + M)ds

≤ T

m
j

(
||y0||+

∫ T

0
(p(t) + M)dt

)
+

∫ tj+1
m

0
T (p(s) + M)ds

≤ T ||y0||+ 2T

∫ T

0
(p(t) + M)dt < R.
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Therefore, from (3.1) and the choice of T , if t ∈ Ij
m

||xm(t)− x0|| ≤ ||xj
m − x0||+ (t− tjm)||yj

m||

+
∫ t

tjm

|t− s|(||f(s, xj
m, yj

m)||+ ||uj
m||)ds

≤ T ||y0||+ 2T

∫ T

0
(p(t) + M)dt + T (||y0||

+
∫ T

0
(p(t) + M)dt + T

∫ T

0
(p(t) + M)dt

= 2T ||y0||+ 4T

∫ T

0
(p(t) + M)dt < R.

So from (3.1), (3.4) and (3.5) it follows that

(3.6) ||x′′m(t)|| ≤ p(t) + M ∀t ∈ [0, T ],

(3.7) ||x′m(t)|| ≤ ||y0||+ R ∀t ∈ [0, T ],

(3.8) ||xm(t)|| ≤ ||x0||+ R ∀t ∈ [0, T ].

At the same time, since for all t ∈ Ij
m

||x′m(t)− yj
m|| ≤

∫ tj+1
m

tjm

(p(t) + M)dt,

||xm(t)− xj
m|| ≤

T

m

(
||y0||+

∫ T

0
(p(t) + M)dt

)
+

T

m

∫ tj+1
m

tjm

(p(t) + M)dt,

using the absolute continuity of the Lebesgue integral we infer that for all
t ∈ [0, T ]

(3.9) (xm(t), x′m(t), x′′m(t)− fm(t)) ∈ graphF + ε(m)(B ×B ×B),

where ε(m) → 0 as m →∞.
By (3.6)–(3.8) we obtain that x′′m(.) is bounded in L2([0, T ], Rn) and xm(.),

x′m(.) are bounded in C([0, T ], Rn). Moreover, for all t′, t′′ ∈ [0, T ]

||xm(t′)− xm(t′′)|| ≤

∣∣∣∣∣
∫ t′′

t′
||x′m(s)||ds

∣∣∣∣∣ ≤ (||y0||+ R)|t′ − t′′|,

||x′m(t′)− x′m(t′′)|| ≤

∣∣∣∣∣
∫ t′′

t′
||x′′m(s)||ds

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ t′′

t′
(p(s) + M)ds

∣∣∣∣∣ ,

i.e. the sequence xm(.) is equi lipschitzian and the sequence x′m(.) is equi
uniformly continuous.

Applying Theorem 0.3.4 in [2] we deduce the existence of a subsequence
(again denoted by) xm(.) and an absolutely continuous function x(.) : [0, T ] →
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Rn such that xm(.) converges uniformly to x(.), x′m(.) converges uniformly to
x′(.) and x′′m(.) converges weakly in L2([0, T ], Rn) to x′′(.).

From Hypothesis 2.1 and Theorem 1.4.1 in [2] we find that

x′′(t)− f(t, x(t), x′(t)) ∈ coF (x(t), x′(t)) ⊂ ∂F V (x′(t)) a.e. [0, T ].

Since the mappings x′(.) is absolutely continuous and x′′(t) ∈ ∂F V (x′(t))
a.e. ([0, T ]) we apply Theorem 2.2 in [5] and we deduce that there exists T1 > 0
such that the mapping t → V (x′(t)) is absolutely continuous on [0,min{T, T1}]
and

(V (x′(t)))′ =< x′′(t), x′′(t)− f(t, x(t), x′(t)) > a.e. [0,min{T, T1}].

Without loss of generality we may assume that T = min{T, T1}.
Therefore

V (x′(T ))− V (y0) =
∫ T

0
||x′′(t)||2dt

−
∫ T

0
< x′′(s), f(s, x(s), x′(s)) > ds.

(3.10)

Since

x′′m(t)− fm(t) = uj
m ∈ F (xj

m, yj
m) ⊂ ∂F V (yj

m), t ∈ Ij
m ,

using the properties of the mapping V (.) and the definition of S we have for
j = 1, 2, ...,m and m fixed

V (x′m(tj+1
m ))− V (x′m(tjm)) ≥< uj

m, x′m(tj+1
m )− x′m(tjm) >

− φV (x′m(tj+1
m ), x′m(tjm), V (x′m(tj+1

m )), V (x′m(tjm)))

(1 + ||uj
m||2)||x′m(tj+1

m )− x′m(tjm)||2

≥< uj
m, x′m(tj+1

m )− x′m(tjm) >

− S(1 + ||uj
m||2)

∣∣∣∣∣
∣∣∣∣∣
∫ tj+1

m

tjm

x′′m(s)ds

∣∣∣∣∣
∣∣∣∣∣
2

≥
∫ tj+1

m

tjm

||x′′m(s)||2ds−
∫ tj+1

m

tjm

< fm(s), x′′m(s) > ds

− S(1 + M2)

∣∣∣∣∣
∣∣∣∣∣
∫ tj+1

m

tjm

x′′m(s)ds

∣∣∣∣∣
∣∣∣∣∣
2

.
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By adding the last inequality for j = 1, 2, ...,m, we obtain

V (x′m(T ))− V (y0) ≥
∫ T

0
||x′′m(t)||2dt−

∫ T

0
< fm(t), x′′m(t) > dt

− S(1 + M2)
T

m
||x′m||2L2

≥
∫ T

0
||x′′m(t)||2dt−

∫ T

0
< fm(t), x′′m(t) > dt

− S(1 + M2)
T

m

∫ T

0
(p(t) + M)2dt.

(3.11)

The convergence of fm(.) in L2([0, T ], Rn) and the convergence of x′′m(.) in
the weak topology of L2([0, T ], Rn) implies that

lim
m→∞

∫ T

0
< fm(t), x′′m(t) > dt =

∫ T

0
< f(t, x(t), x′(t)), x′′(t) > dt.

Passing to the limit with m →∞ in (3.11) we get

V (x′(T ))− V (y0) ≥ lim sup
m→∞

∫ T

0
||x′′m(t)||2dt

−
∫ T

0
< f(t, x(t), x′(t)), x′′(t) > dt.

So, from (3.10) it follows that

lim sup
m→∞

∫ T

0
||x′m(t)||2dt ≤

∫ T

0
||x′′(t)||2dt

and, since {x′′m(.)}m converges weakly in L2([0, T ], Rn) to x′′(.), by the lower
semicontinuity of the norm in L2([0, T ], Rn) (e.g. Prop. III.30 in [3]) we obtain
that

lim
m→∞

∫ T

0
||x′′m(t)||2dt =

∫ T

0
||x′′(t)||2dt ,

i.e., {x′′m(.)} converges strongly in L2([0, T ], Rn). Hence, there exists a sub-
sequence (still denoted) x′′m(.) that converges pointwise to x′′(.). Since, by
Hypothesis 2.3, graph(F ) is closed (e.g. [2], p. 41) from (3.9) we infer that

d((x(t), x′(t), x′′(t)− f(t, x(t), x′(t))), graph(F )) = 0 a.e. [0, T ].

Thus
x′′(t) ∈ F (x(t), x′(t)) + f(t, x(t), x′(t)), a.e. [0, T ].

Obviously, x(.) satisfies the initial conditions and the proof is complete. �

Remark 3.2. If V (.) : Rn → R is a proper lower semicontinuous convex
function then (e.g. [9]) ∂F V (x) = ∂V (x), where ∂V (.) is the subdifferential in
the sense of convex analysis of V (.), and Theorem 3.1 yields the result in [7].
If f(t, x, y) ≡ 0 then Theorem 3.1 yields the result in [6], which contains as a
particular case (when V (.) is convex) the result in [11].
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