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ON A CONJECTURE OF LIVINGSTON

FARIT G. AVKHADIEV and KARL J. WIRTHS

Abstract. Let D denote the open unit disc and f : D → C be meromorphic
and injective in D. We further assume that f has a simple pole in the point
p ∈ (0, 1) and an expansion

f(z) = z +

∞∑
n=2

an(f)zn, |z| < p.

Especially, we consider f that map D onto a domain whose complement with
respect to C is convex. Concerning a (sharper) conjecture of Livingston ([5]) we
prove that for n ≥ 2 the inequality

Re (an(f)) ≥ 1 + p2n

pn−1(1 + p)2

is valid.
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In the last century, many beautiful results have been proved in Geometric
Function Theory for functions holomorphic in the open unit disc D that map
D conformally onto a convex domain.

The present paper is devoted to a pendant of the family of convex functions,
the family of concave univalent functions with pole p ∈ (0, 1) denoted by Co(p)
here. To be precise, we say that a function f : D → C belongs to the family
Co(p) if and only if:

(1) f is meromorphic in D and has a simple pole in the point p ∈ (0, 1).
(2) f has an expansion

f(z) = z +
∞∑

n=2

an(f)zn, |z| < p.

(3) f maps D conformally onto a set whose complement with respect to C
is convex.

There are results on Co(p) that resemble very much those on convex func-
tions, for example it has been proved in [3] that |an(f)| > 1 for f ∈ Co(p).
Other results look very different from the analogous results on convex func-
tions. Results of this type are the exact domains of variability of the Taylor
coefficients an(f), f ∈ Co(p). J. Miller proved in [6] in principle that the
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inequality

(1)
∣∣∣∣a2(f)− 1 + p2 + p4

p(1 + p2)

∣∣∣∣ ≤
p

1 + p2

describes the exact domain of variability of a2(f), f ∈ Co(p) (compare [5], [1],
[3], too).
Livingston proved in [5] that the lower bound in

(2) Re (a3(f)) ≥ 1− p2 + p4

p2
, f ∈ Co(p),

is sharp for any p ∈ (0, 1). The functions for which the bounds are attained
in (1) and (2) map D onto the whole extended plane minus a line segment.
The consideration of these extremal functions lead Livingston in [5] to the
conjecture

(3) Re (an(f)) ≥ 1 + p2n

pn−1(1 + p2)
, f ∈ Co(p), n ≥ 2, p ∈ (0, 1).

In the present article we prove the existence of a positive lower bound for
Re (an(f)), f ∈ Co(p), n ≥ 2, p ∈ (0, 1), which differs from the conjectured
bound in (3) by the factor

1 + p2

(1 + p)2
∈

(
1
2
, 1

)
.

This will be the content of Theorem 2. As a preparation for its proof we show

Theorem 1. Let p ∈ (0, 1), f ∈ Co(p) and c ∈ C \ f(D). Then the sharp
inequalities

(4) − p

(1− p)2
≤ Re(c) ≤ − p

(1 + p)2

are valid. Equality in (4) is attained if and only if

(5) fe(z) =
z(

1− z
p

)
(1− zp)

.

and c = fe(1) in the left inequality (4), resp. c = fe(−1) in the right inequality
(4).

Proof. Since C \ f(D) is starlike with respect to c and f is normalized as
defined above and has a simple pole in the point p, the function

F (z) :=
(1 − z

p)(1 − z p)f ′(z)

f(z) − c
,

resp. its holomorphic extension from D \ {p} onto D has the following prop-
erties
(1) Re(F (z)) > 0 for z ∈ D (compare [5], Theorem 6).
(2) F (0) = −1

c and F (p) = 1− p2

p .
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Let c = x + iy. From the properties of the function F we conclude that x < 0
and that there exists a function ϕ holomorphic in D such that ϕ(D) ⊂ D,
ϕ(0) = 0 and

− F (z)(x2 + y2) − iy
x

=
1− ϕ(z)
1 + ϕ(z)

, z ∈ D.

Hence, there exists a function Φ holomorphic in D such that Φ(D) ⊂ D,

− F (z)(x2 + y2) − iy
x

=
1− zΦ(z)
1 + zΦ(z)

, z ∈ D,

and

−
1− p2

p (x2 + y2) − iy

x
=

1− pΦ(p)
1 + pΦ(p)

.

This equation together with Φ(D) ⊂ D yields that for every c = x + iy ∈
C \ f(D) there exists a w ∈ D such that

(6) −
1− p2

p (x2 + y2) − iy

x
=

1− pw

1 + pw
=: u + iv,

where u + iv varies in the disc described by

(7)
(

u − 1 + p2

1− p2

)2

+ v2 ≤
(

2p

1− p2

)2

.

From (6) we get
y = x v

and therefore
x = − u p

(1− p2)(1 + v2)
.

According to (7), this implies (4), where equality in the left inequality is
attained only for

(8) u =
1 + p

1− p
, v = 0,

and in the right inequality only for

(9) u =
1− p

1 + p
, v = 0.

The formula (8) means that Φ(p) = −1. According to the maximum principle
this implies Φ ≡ −1. The initial value problem

p

(1− p)2
(1 − z

p)(1 − z p)f ′(z)

f(z) + p
(1−p)2

=
1 + z

1− z
, f(0) = 0,

has as its unique solution the extremal function fe defined in (6), which maps
D onto

C \
[
− p

(1− p)2
,− p

(1 + p)2

]
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(compare [5], [6] and[1]). The reasoning concerning the right inequality in (4)
is analogous with (9) and Φ(p) = 1. ¤

Theorem 2. Let p ∈ (0, 1), f ∈ Co(p) and n ≥ 2. Then the inequality

(10) Re(an(f)) ≥ 1 + p2n

pn−1(1 + p)2

is valid.

Proof. In principal, we proceed as in [1], where the inequality

|an(f)| ≥ 1 + p2n

pn−1(1 + p)2

was proved and we use some arguments from [2] where the Taylor coefficients
of meromorphic univalent functions have been considered. For n ≥ 2 the
function h defined by

h(z) :=

{ (
1 − zn

(
pn + 1

pn

)
+ z2n

)
f(z), z ∈ D \ {p},

lim0<|w−p|→0 h(w), z = p

is bounded and holomorphic in D. Therefore the angular limits h(eiθ), and,
in turn, the angular limits f(eiθ) exist almost everywhere in [0, 2π) by Fatou’s
theorem (see [4], chapter IX). Apparently,

an(h) = an(f).

As a consequence of a theorem of F. Riesz (see for instance [4], p. 404) we get

lim
R→1−0

∫ 2π

0

∣∣∣h(Reiθ) − h(eiθ)
∣∣∣ dθ = 0.

This together with the residue theorem and the above yields

an(f) = an(h) =
1
2π

∫ 2π

0
h(eiθ)e−inθdθ

= − 1
2π

∫ 2π

0
f(eiθ)

(
pn +

1
pn

− 2 cos(nθ)
)

dθ.

Now, we use the the right inequality in (4) for c = f(eiθ) to get immediately
the inequality (10). ¤
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