ON A CONJECTURE OF LIVINGSTON

FARIT G. AVKHADIEV and KARL J. WIRTHS

Abstract. Let *D* denote the open unit disc and $f: D \to \overline{\mathbf{C}}$ be meromorphic and injective in *D*. We further assume that *f* has a simple pole in the point $p \in (0, 1)$ and an expansion

$$f(z) = z + \sum_{n=2}^{\infty} a_n(f) z^n, \quad |z| < p.$$

Especially, we consider f that map D onto a domain whose complement with respect to $\overline{\mathbf{C}}$ is convex. Concerning a (sharper) conjecture of Livingston ([5]) we prove that for $n \geq 2$ the inequality

$$\operatorname{Re}(a_n(f)) \ge \frac{1+p^{2n}}{p^{n-1}(1+p)^2}$$

is valid.

MSC 2000. 30C45, 30C50.

Key words. Taylor coefficients, concave univalent functions, starlike meromorphic functions.

In the last century, many beautiful results have been proved in Geometric Function Theory for functions holomorphic in the open unit disc D that map D conformally onto a convex domain.

The present paper is devoted to a pendant of the family of convex functions, the family of concave univalent functions with pole $p \in (0, 1)$ denoted by Co(p)here. To be precise, we say that a function $f: D \to \overline{\mathbf{C}}$ belongs to the family Co(p) if and only if:

(1) f is meromorphic in D and has a simple pole in the point $p \in (0, 1)$.

(2) f has an expansion

$$f(z) = z + \sum_{n=2}^{\infty} a_n(f) z^n, \quad |z| < p.$$

(3) f maps D conformally onto a set whose complement with respect to $\overline{\mathbf{C}}$ is convex.

There are results on Co(p) that resemble very much those on convex functions, for example it has been proved in [3] that $|a_n(f)| > 1$ for $f \in Co(p)$. Other results look very different from the analogous results on convex functions. Results of this type are the exact domains of variability of the Taylor coefficients $a_n(f)$, $f \in Co(p)$. J. Miller proved in [6] in principle that the inequality

(1)
$$\left|a_2(f) - \frac{1+p^2+p^4}{p(1+p^2)}\right| \le \frac{p}{1+p^2}$$

describes the exact domain of variability of $a_2(f), f \in Co(p)$ (compare [5], [1], [3], too).

Livingston proved in [5] that the lower bound in

(2)
$$\operatorname{Re}(a_3(f)) \ge \frac{1-p^2+p^4}{p^2}, f \in Co(p),$$

is sharp for any $p \in (0, 1)$. The functions for which the bounds are attained in (1) and (2) map D onto the whole extended plane minus a line segment. The consideration of these extremal functions lead Livingston in [5] to the conjecture

(3)
$$\operatorname{Re}(a_n(f)) \ge \frac{1+p^{2n}}{p^{n-1}(1+p^2)}, \ f \in Co(p), n \ge 2, \ p \in (0,1).$$

In the present article we prove the existence of a positive lower bound for $\operatorname{Re}(a_n(f)), f \in Co(p), n \geq 2, p \in (0,1)$, which differs from the conjectured bound in (3) by the factor

$$\frac{1+p^2}{(1+p)^2} \in \left(\frac{1}{2}, 1\right).$$

This will be the content of Theorem 2. As a preparation for its proof we show

THEOREM 1. Let $p \in (0,1), f \in Co(p)$ and $c \in \overline{\mathbb{C}} \setminus f(D)$. Then the sharp inequalities

(4)
$$-\frac{p}{(1-p)^2} \le \operatorname{Re}(c) \le -\frac{p}{(1+p)^2}$$

are valid. Equality in (4) is attained if and only if

(5)
$$f_e(z) = \frac{z}{\left(1 - \frac{z}{p}\right)(1 - zp)}$$

and $c = f_e(1)$ in the left inequality (4), resp. $c = f_e(-1)$ in the right inequality (4).

Proof. Since $\overline{\mathbf{C}} \setminus f(D)$ is starlike with respect to c and f is normalized as defined above and has a simple pole in the point p, the function

$$F(z) := \frac{(1 - \frac{z}{p})(1 - z p)f'(z)}{f(z) - c},$$

resp. its holomorphic extension from $D \setminus \{p\}$ onto D has the following properties

(1)
$$\operatorname{Re}(F(z)) > 0$$
 for $z \in D$ (compare [5], Theorem 6).
(2) $F(0) = -\frac{1}{c}$ and $F(p) = \frac{1-p^2}{p}$.

Let c = x + iy. From the properties of the function F we conclude that x < 0and that there exists a function φ holomorphic in D such that $\varphi(D) \subset D$, $\varphi(0) = 0$ and

$$-\frac{F(z)(x^2 + y^2) - iy}{x} = \frac{1 - \varphi(z)}{1 + \varphi(z)}, \ z \in D.$$

Hence, there exists a function Φ holomorphic in D such that $\Phi(D) \subset \overline{D}$,

$$-\frac{F(z)(x^2+y^2) - iy}{x} = \frac{1-z\Phi(z)}{1+z\Phi(z)}, \ z \in D,$$

and

$$\frac{\frac{1-p^2}{p}(x^2+y^2) - iy}{x} = \frac{1-p\Phi(p)}{1+p\Phi(p)}.$$

This equation together with $\Phi(D) \subset \overline{D}$ yields that for every $c = x + iy \in \overline{\mathbb{C}} \setminus f(D)$ there exists a $w \in \overline{D}$ such that

(6)
$$-\frac{\frac{1-p^2}{p}(x^2+y^2)-iy}{x} = \frac{1-pw}{1+pw} =: u+iv,$$

where u + iv varies in the disc described by

(7)
$$\left(u - \frac{1+p^2}{1-p^2}\right)^2 + v^2 \le \left(\frac{2p}{1-p^2}\right)^2.$$

From (6) we get

$$y = x v$$

and therefore

$$x = -\frac{u p}{(1-p^2)(1+v^2)}.$$

According to (7), this implies (4), where equality in the left inequality is attained only for

(8)
$$u = \frac{1+p}{1-p}, v = 0,$$

and in the right inequality only for

(9)
$$u = \frac{1-p}{1+p}, v = 0.$$

The formula (8) means that $\Phi(p) = -1$. According to the maximum principle this implies $\Phi \equiv -1$. The initial value problem

$$\frac{p}{(1-p)^2} \frac{(1-\frac{z}{p})(1-z\,p)f'(z)}{f(z)+\frac{p}{(1-p)^2}} = \frac{1+z}{1-z}, \ f(0) = 0,$$

has as its unique solution the extremal function f_e defined in (6), which maps D onto

$$\overline{\mathbf{C}} \setminus \left[-\frac{p}{(1-p)^2}, -\frac{p}{(1+p)^2} \right]$$

(compare [5], [6] and [1]). The reasoning concerning the right inequality in (4) is analogous with (9) and $\Phi(p) = 1$.

THEOREM 2. Let $p \in (0,1)$, $f \in Co(p)$ and $n \ge 2$. Then the inequality

(10)
$$\operatorname{Re}(a_n(f)) \ge \frac{1+p^{2n}}{p^{n-1}(1+p)^2}$$

is valid.

Proof. In principal, we proceed as in [1], where the inequality

$$|a_n(f)| \ge \frac{1+p^{2n}}{p^{n-1}(1+p)^2}$$

was proved and we use some arguments from [2] where the Taylor coefficients of meromorphic univalent functions have been considered. For $n \ge 2$ the function h defined by

$$h(z) := \begin{cases} \left(1 - z^n \left(p^n + \frac{1}{p^n} \right) + z^{2n} \right) f(z), & z \in D \setminus \{p\}, \\ \lim_{0 < |w-p| \to 0} h(w), & z = p \end{cases}$$

is bounded and holomorphic in D. Therefore the angular limits $h(e^{i\theta})$, and, in turn, the angular limits $f(e^{i\theta})$ exist almost everywhere in $[0, 2\pi)$ by Fatou's theorem (see [4], chapter IX). Apparently,

$$a_n(h) = a_n(f).$$

As a consequence of a theorem of F. Riesz (see for instance [4], p. 404) we get

$$\lim_{R \to 1-0} \int_0^{2\pi} \left| h(R e^{i\theta}) - h(e^{i\theta}) \right| d\theta = 0.$$

This together with the residue theorem and the above yields

$$a_n(f) = a_n(h) = \frac{1}{2\pi} \int_0^{2\pi} h(e^{i\theta}) e^{-in\theta} d\theta$$
$$= -\frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) \left(p^n + \frac{1}{p^n} - 2\cos(n\theta) \right) d\theta.$$

Now, we use the right inequality in (4) for $c = f(e^{i\theta})$ to get immediately the inequality (10).

Acknowledgements

The authors thank Ch. Pommerenke for helpful discussions and the Deutsche Forschungsgemeinschaft for support during research on papers related to the present one.

REFERENCES

- AVKHADIEV, F.G. and WIRTHS, K.-J., Convex holes produce lower bounds for coefficients, Compl. Var., 47 (2002), 553–563.
- [2] AVKHADIEV, F.G. and WIRTHS, K.-J., Poles near the origin produce lower bounds for coefficients of meromorphic unvalent functions, Mich. Math. J., to appear.
- [3] AVKHADIEV, F.G., POMMERENKE, CH. and WIRTHS, K.-J., On the coefficients of concave univalent functions, Math. Nachr., to appear.
- [4] GOLUZIN, G.M., Geometric theory of functions of a complex variable, Translations of mathematical monographs, 26, AMS, Providence, 1969.
- [5] LIVINGSTON, A.E., Convex meromorphic mappings, Ann. Pol. Math., 59.3 (1994), 275–291.
- [6] MILLER, J., Convex and starlike meromorphic functions, Proc. Amer. Math. Soc., 80 (1980), 607–613.

Received May 9, 2003

Chebotarev Research Institute Kazan State University 420008 Kazan, Russia E-mail: nina@dionis.kfti.kcn.ru

Institut für Analysis TU Braunschweig 38106 Braunschweig, Germany E-mail: kjwirths@tu-bs.de