ON CERTAIN SUBCLASS OF PRESTARLIKE FUNCTIONS DEFINED BY SALAGEAN OPERATOR

M.K. AOUF and B.A. AL-AMRI

Abstract. The object of the present paper is to investigate several interesting properties of the class $T_n(\lambda, \alpha, \gamma)$ consisting of prestarlike functions with negative coefficients defined by Salagean operator. Coefficient estimates, distortion theorems, closure theorems and modified Hadamard products of several functions belonging to the class $T_n(\lambda, \alpha, \gamma)$ are determined. Also radii of close-to-convexity, starlikeness and convexity are determined. Also we obtain integral operators for this class.

MSC 2000. 30C45.

Key words. Analytic, univalent, prestarlike, modified Hadamard product.

1. INTRODUCTION

Let A denote the class of (normalized) functions of the form:

(1.1)
$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k$$

which are analytic in the open unit disc

$$U = \{ z : z \in C \text{ and } |z| < 1 \},\$$

and let S denote the subclass of A consisting of functions which are also univalent in U. Then a function f(z) in S is said to be starlike of order α if and only if

(1.2)
$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > \alpha \ (z \in U; \ 0 \le \alpha < 1).$$

We denote by $S^*(\alpha)$ the class of all functions in S which are starlike of order α in U. It is well-known that

$$S^*(\alpha) \subseteq S^*(0) = S^*.$$

The class $S^*(\alpha)$, introduced by Robertson [9], was studied subsequently by Schild [11], MacGregor [6] and Pinchuk [8]. Moreover, the function:

(1.3)
$$s_{\gamma}(z) = \frac{z}{(1-z)^{2(1-\gamma)}}$$

is the familiar extremal function for the class $S^*(\gamma)$. Setting

(1.4)
$$c(\gamma, k) = \frac{\prod_{i=2}^{k} (i-2\gamma)}{(k-1)!} \quad (k \ge 2),$$

 $s_{\gamma}(z)$ can be written in the form:

(1.5)
$$s_{\gamma}(z) = z + \sum_{k=2}^{\infty} c(\gamma, k) z^k.$$

We note that $c(\gamma, k)$ is a decreasing function in γ and that

(1.6)
$$\lim_{k \to \infty} c(\gamma, k) = \begin{cases} \infty & (\gamma < 1/2) \\ 1 & (\gamma = 1/2) \\ 0 & (\gamma > 1/2). \end{cases}$$

For a function f(z) in S, we define

(1.7)
$$D^0 f(z) = f(z),$$

(1.8) $D^1 f(z) = Df(z) = zf'(z),$

$$(1.8) D f(z) = Df(z) = z$$

and

(1.9)

$$D^n f(z) = D(D^{n-1}f(z)) \quad (n \in N = \{1, 2, \dots\}).$$

The differential operator D^n was introduced by Salagean [10].

For α ($0 \le \alpha < 1$) and λ ($0 \le \lambda < 1$), we say that a function $f(z) \in A$ is in the class $S(\lambda, \alpha)$ if and only if

(1.10)
$$\operatorname{Re}\left\{\frac{\frac{zf'(z)}{f(z)}}{\lambda\frac{zf'(z)}{f(z)} + (1-\lambda)}\right\} > \alpha \quad (z \in U)$$

Let (f * g)(z) denote the Hadamard product or convolution of two functions f(z) and g(z), that is, if f(z) is given by (1.1) and g(z) is given by

(1.11)
$$g(z) = z + \sum_{k=2}^{\infty} b_k z^k,$$

then

(1.12)
$$(f * g)(z) = z + \sum_{k=2}^{\infty} a_k b_k z^k.$$

Let $S_n(\lambda, \alpha, \gamma)$ be the subclass of A consisting of functions f(z) such that

(1.13)
$$\operatorname{Re}\left\{\frac{\frac{z\varphi_{n,\gamma}'(z)}{\varphi_{n,\gamma}(z)}}{\lambda\frac{z\varphi_{n,\gamma}'(z)}{\varphi_{n,\gamma}(z)} + (1-\lambda)}\right\} > \alpha \quad (z \in U).$$

where $0 \le \alpha < 1, 0 \le \lambda < 1, 0 \le \gamma < 1, n \in N_0 = N \cup \{0\}$ and $\varphi_{n,\gamma}(z) = (D^n f * s_\gamma)(z).$ (1.14)

Salagean	operator	
Salagean	operator	

We observe that $S_0(0, \alpha, \gamma) = R_{\gamma}(\alpha)$ is the class of γ -prestarlike functions of order α , which was introduced by Sheil-Small et al. [13].

Let T denote the subclass of A consisting of functions f(z) of the form

(1.15)
$$f(z) = z - \sum_{k=2}^{\infty} a_k z^k \quad (a_k \ge 0).$$

We denote by $T(\lambda, \alpha)$ and $T_n(\lambda, \alpha, \gamma)$ the classes obtained by taking intersections, respectively, of the classes $S(\lambda, \alpha)$ and $S_n(\lambda, \alpha, \gamma)$ with the class T. The class $T(\lambda, \alpha)$ was studied by Altintas and Owa [1].

We note that, by specializing the parameters λ , α , γ and n, we obtain the following subclasses studied by various authors:

- (i) $T_n(0, \alpha, \gamma) = R[\gamma, \alpha, n]$ (Aouf and Salagean [4]);
- (ii) $T_0(0,\gamma,\gamma) = R^*_{\gamma}$ (Silverman and Silvia [15]);
- (iii) $T_0(0, \alpha, \gamma) = R_{\gamma}[\alpha]$ (Silverman and Silvia [16], Uralegaddi and Sarangi [17] and Aouf and Salagean [3]);
- (iv) $T_1(0, \alpha, \gamma) = C_{\gamma}[\alpha]$ (Owa and Uralegaddi [7] and Aouf and Salagean [3]);
- (v) $T_n(\lambda, \alpha, 1/2) = T_n(\lambda, \alpha)$ (Aouf and Cho [2]);
- (vi) $T_n(0, \alpha, 1/2) = T(n, \alpha)$ (Hurand Oh [5]);
- (vii) $T_0(0, \alpha, 1/2) = T'(\alpha)$ and $T_1(0, \alpha, 1/2) = C(\alpha)$ (Silverman [14]);
- (viii) $T_0(\lambda, \alpha, 1/2) = T(\lambda, \alpha)$ and $T_1(\lambda, \alpha, 1/2) = C(\lambda, \alpha)$ (Altintas and Owa [1]).

In the present paper we purpose to investigate several important properties and characteristics of the class $T_n(\lambda, \alpha, \gamma)$ which we have defined here.

2. COEFFICIENT ESTIMATES

THEOREM 1. Let the function f(z) be defined by (1.15). Then $f(z) \in T_n(\lambda, \alpha, \gamma)$ if and only if

(2.1)
$$\sum_{k=2}^{\infty} k^n \{k - \alpha [1 + \lambda (k-1)]\} c(\gamma, k) a_k \le (1 - \alpha).$$

The result is sharp.

Proof. It is known from [1] that a necessary and sufficient condition for f(z) defined by (1.15) to be in the class $T_0(\lambda, \alpha) = T(\lambda, \alpha)$ is that

$$\sum_{k=2}^{\infty} \{k - \alpha [1 + \lambda (k-1)]\}a_k \le (1-\alpha)$$

Since

$$(D^n f * s_{\gamma})(z) = z - \sum_{k=2}^{\infty} k^n c(\gamma, k) a_k z^k, \quad (a_k \ge 0)$$

(2.2)
$$f(z) = z - \frac{(1-\alpha)}{k^n \{k - \alpha [1 + \lambda (k-1)]\} c(\gamma, k)} z^k \quad (k \ge 2)$$

is the extremal function of Theorem 1.

COROLLARY 1. Let the function f(z) defined by (1.15) be in the class $T_n(\lambda, \alpha, \gamma)$. Then we have

(2.3)
$$a_k \le \frac{(1-\alpha)}{k^n \{k - \alpha [1 + \lambda(k-1)]\} c(\gamma, k)} \quad (k \ge 2).$$

The equality in (2.3) is attained for the function f(z) given by (2.2).

3. Some properties of the class $\ T_n(\lambda, \alpha, \gamma)$

THEOREM 2. Let $0 \le \alpha < 1$, $0 \le \lambda_1 \le \lambda_2 < 1$, $0 \le \gamma < 1$ and $n \in N_0$. Then

$$T_n(\lambda_1, \alpha, \gamma) \subseteq T_n(\lambda_2, \alpha, \gamma)$$

Proof. It follows from Theorem 1 that

$$\sum_{k=2}^{\infty} k^n \{k - \alpha [1 + \lambda_2(k-1)]\} c(\gamma, k) a_k \le \sum_{k=2}^{\infty} k^n \{k - \alpha [1 + \lambda_1(k-1)]\} c(\gamma, k) a_k \le (1 - \alpha)$$

for $f(z) \in T_n(\lambda_1, \alpha, \gamma)$. Hence $f(z) \in T_n(\lambda_2, \alpha, \gamma)$.

THEOREM 3. Let $0 \leq \alpha < 1$, $0 \leq \lambda < 1$, $0 \leq \gamma < 1$ and $n \in N_0$. Then

$$T_{n+1}(\lambda_1, \alpha, \gamma) \subseteq T_n(\lambda, \alpha, \gamma).$$

The proof follows immediately from Theorem 1.

4. DISTORTION THEOREMS

THEOREM 4. Let the function f(z) defined by (1.15) be in the class $T_n(\lambda, \alpha, \gamma)$, with $0 \le \alpha < 1$, $0 \le \lambda < 1$, $0 \le \gamma \le 1/2$ and $n \in N_0$. Then

1-

(4.1)
$$|D^{i}f(z)| \ge |z| - \frac{(1-\alpha)}{2^{n+1-i}[2-\alpha(1+\lambda)](1-\gamma)}|z|^{2}$$

and

(4.2)
$$|D^{i}f(z)| \leq |z| + \frac{(1-\alpha)}{2^{n+1-i}[2-\alpha(1+\lambda)](1-\gamma)}|z|^{2},$$

for $z \in U$, where $0 \le i \le n$. The equalities in (4.1) and (4.2) are attained for the function f(z) given by

(4.3)
$$D^{i}f(z) = z - \frac{(1-\alpha)}{2^{n+1-i}[2-\alpha(1+\lambda)](1-\gamma)}z^{2}$$

Proof. Note that $f(z) \in T_n(\lambda, \alpha, \gamma)$ if and only if $D^i f(z) \in T_{n-i}(\lambda, \alpha, \gamma)$ and that

(4.4)
$$D^i f(z) = z - \sum_{k=2}^{\infty} k^i a_k z^k.$$

Since $k^n \{k - \alpha [1 + \lambda(k - 1)]\}$ and $c(\gamma, k)$, $0 \le \gamma \le 1/2$ are increasing functions of k $(k \ge 2)$ for a fixed n, since $f(z) \in T_n(\lambda, \alpha, \gamma)$, in view of Theorem 1, we have

(4.5)
$$2^{n-i}[2-\alpha(1+\lambda)]c(\gamma,2)\sum_{k=2}^{\infty}k^{i}a_{k} \leq$$

$$\sum_{k=2}^{\infty} k^n \{k - \alpha [1 + \lambda(k-1)]\} c(\gamma, k) a_k \le (1 - \alpha),$$

that is, that

(4.6)
$$\sum_{k=2}^{\infty} k^{i} a_{k} \leq \frac{(1-\alpha)}{2^{n+1-i}[2-\alpha(1+\lambda)](1-\gamma)}.$$

It follows from (4.4) and (4.6) that

(4.7)
$$|D^{i}f(z)| \ge |z| - |z|^{2} \sum_{k=2}^{\infty} k^{i} a_{k}$$

$$\geq |z| - \frac{(1-\alpha)}{2^{n+1-i}[2-\alpha(1+\lambda)](1-\gamma)} |z|^2$$

and

(4.8)
$$|D^{i}f(z)| \leq |z| + |z|^{2} \sum_{k=2}^{\infty} k^{i} a_{k}$$

$$\leq |z| + \frac{(1-\alpha)}{2}$$

$$\leq |z| + \frac{(1-\alpha)}{2^{n+1-i}[2-\alpha(1+\lambda)](1-\gamma)} |z|^2$$

Finally, we can see that the results in Theorem 4 are attained for the function f(z) given by (4.3).

COROLLARY 2. Let the function f(z) defined by (1.15) be in the class $T_n(\lambda, \alpha, \gamma)$. Then we have

(4.9)
$$|f(z)| \ge |z| - \frac{(1-\alpha)}{2^{n+1}[2-\alpha(1+\lambda)](1-\gamma)}|z|^2$$

and

(4.10)
$$|f(z)| \le |z| + \frac{(1-\alpha)}{2^{n+1}[2-\alpha(1+\lambda)](1-\gamma)}|z|^2,$$

for $z \in U$. The equalities in (4.9) and (4.10) are attained for the function f(z) given by

(4.11)
$$f(z) = z - \frac{(1-\alpha)}{2^{n+1}[2-\alpha(1+\lambda)](1-\gamma)}z^2.$$

Proof. Taking i = 0 in Theorem 4, we can easily show (4.9) and (4.10).

COROLLARY 3. Let the function f(z) defined by (1.15) be in the class $T_n(\lambda, \alpha, \gamma)$. Then we have

(4.12)
$$|f'(z)| \ge 1 - \frac{(1-\alpha)}{2^n [2-\alpha(1+\lambda)](1-\gamma)} |z|$$

and

(4.13)
$$|f'(z)| \le 1 + \frac{(1-\alpha)}{2^{n+1}[2-\alpha(1+\lambda)](1-\gamma)}|z|,$$

for $z \in U$. The equalities in (4.12) and (4.13) are attained for the function f(z) given by (4.11).

Proof. Note that Df(z) = zf'(z). Hence taking i = 1 in Theorem 4, we have the next corollary.

COROLLARY 4. Let the function f(z) defined by (1.15) be in the class $T_n(\lambda, \alpha, \gamma)$. Then the unit disc U is mapped onto a domain that contains the disc

(4.14)
$$|w| < \frac{2^{n+1}[2-\alpha(1+\lambda)](1-\gamma)-(1-\alpha)}{2^{n+1}[2-\alpha(1+\lambda)](1-\gamma)}.$$

The result is sharp with the extremal function f(z) given by (4.11).

5. CLOSURE THEOREMS

THEOREM 5. The class $T_n(\lambda, \alpha, \gamma)$ is closed under linear combination.

Proof. Let each of the functions $f_1(z)$ and $f_2(z)$ given by

(5.1)
$$f_j(z) = z - \sum_{k=2}^{\infty} a_{k,j} z^k \quad (a_{k,j} \ge 0; \ j = 1, \ 2)$$

be in the class $T_n(\lambda, \alpha, \gamma)$. Then it is sufficient to show that the function h(z) defined by

(5.2)
$$h(z) = tf_1(z) + (1-t)f_2(z) \quad (0 \le t \le 1)$$

is also in the class $T_n(\lambda, \alpha, \gamma)$. Since, for $0 \le t \le 1$,

(5.3)
$$h(z) = z - \sum_{k=2}^{\infty} \{t \, a_{k,1} + (1-t) \, a_{k,2}\} \, z^k,$$

with the aid of Theorem 1, we have

$$(5.4) \sum_{k=2}^{\infty} \{k - \alpha [1 + \lambda(k-1)]\} c(\gamma, k) \{ta_{k,1} + (1-t)a_{k,2}\} \le (1-\alpha) \quad (0 \le t \le 1)$$

which implies that $h(z) \in T_n(\lambda, \alpha, \gamma)$.

As a consequence of Theorem 5, there exist the extreme points of the class $T_n(\lambda, \alpha, \gamma)$.

THEOREM 6. Let

$$(5.5) f_1(z) = z$$

and

(5.6)
$$f_k(z) = z - \frac{(1-\alpha)}{k^n \{k - \alpha [1 + \lambda(k-1)]\} c(\gamma, k)} z^k \quad (k \ge 2).$$

Then f(z) is in the class $T_n(\lambda, \alpha, \gamma)$ if and only if it can be expressed in the form

(5.7)
$$f(z) = \sum_{k=1}^{\infty} t_k f_k(z) ,$$

where $t_k \ge 0 \ (k \ge 1)$ and $\sum_{k=1}^{\infty} = 1$.

Proof. Assume that

(5.8)
$$f(z) = \sum_{k=1}^{\infty} t_k f_k(z)$$
$$f(z) = z - \sum_{k=2}^{\infty} \frac{(1-\alpha)}{k^n \{k - \alpha [1+\lambda(k-1)]\} c(\gamma, k)} t_k z^k$$

Then it follows that (5.9)

$$\sum_{k=2}^{\infty} \frac{k^n \{k - \alpha [1 + \lambda (k - 1)]\} c(\gamma, k)}{(1 - \alpha)} \cdot \sum_{k=2}^{\infty} \frac{(1 - \alpha)}{k^n \{k - \alpha [1 + \lambda (k - 1)]\} c(\gamma, k)} t_k$$
$$= \sum_{k=2}^{\infty} t_k = 1 - t_1 \le 1.$$

Therefore, by Theorem 1, $f(z) \in T_n(\lambda, \alpha, \gamma)$.

8

Conversely, assume that the function f(z) defined by (1.15) belongs to the class $T_n(\lambda, \alpha, \gamma)$. Then we have

(5.10)
$$a_k \le \frac{(1-\alpha)}{k^n \{k - \alpha [1 + \lambda(k-1)]\} c(\gamma, k)} \quad (k \ge 2).$$

Setting

(5.11)
$$t_k = \frac{k^n \{k - \alpha [1 + \lambda (k - 1)]\} c(\gamma, k)}{(1 - \alpha)} a_k \quad (k \ge 2)$$

and

(5.12)
$$t_1 = 1 - \sum_{k=2}^{\infty} t_k,$$

we see that f(z) can be expressed in the form (5.7). This completes the proof of Theorem 6.

COROLLARY 5. The extreme points of the class $T_n(\lambda, \alpha, \gamma)$ are the functions $f_k(z)$ $(k \ge 1)$ given by Theorem 6.

6. RADII OF CLOSE-TO-CONVEXITY, STARLIKENESS AND CONVEXITY

THEOREM 7. Let the function f(z) defined by (1.15) be in the class $T_n(\lambda, \alpha, \gamma)$ ($0 \le \alpha < 1, 0 \le \lambda < 1, 0 \le \gamma \le 1/2$ and $n \in N_0$). Then f(z) is close-to-convex of order ρ ($0 \le \rho < 1$) in $|z| < r_1^*$, where

(6.1)
$$r_1^* = \inf_k \left[\frac{(1-\rho)k^{n-1}\{k-\alpha[1+\lambda(k-1)]\}c(\gamma,k)}{(1-\alpha)} \right]^{\frac{1}{k-1}} \quad (k \ge 2).$$

The result is sharp, with the extremal function f(z) being given by (2.2).

Proof. It is sufficient to show that

$$|f'(z) - 1| \le 1 - \rho$$
 for $|z| < r_1^*$.

Indeed, we have

$$|f'(z) - 1| \le \sum_{k=2}^{\infty} ka_k |z|^{k-1}.$$

Thus $|f'(z) - 1| \le 1 - \rho$ if

(6.2)
$$\sum_{k=2}^{\infty} \left(\frac{k}{1-\rho}\right) a_k |z|^{k-1} \le 1.$$

But Theorem 1 confirms that

(6.3)
$$\sum_{k=2}^{\infty} \frac{k^n \{k - \alpha [1 + \lambda (k - 1)]\} c(\gamma, k)}{(1 - \alpha)} a_k \le 1.$$

Hence (6.2) will be true if

(6.4)
$$\frac{k|z|^{k-1}}{(1-\rho)} \le \frac{k^n \{k - \alpha [1 + \lambda(k-1)]\} c(\gamma, k)}{(1-\alpha)}$$

or if

(6.5)
$$|z| \leq \left[\frac{(1-\rho)k^{n-1}\{k-\alpha[1+\lambda(k-1)]\}c(\gamma,k)}{(1-\alpha)}\right]^{\frac{1}{k-1}} \quad (k \geq 2)$$

The theorem follows easily from (6.5).

THEOREM 8. Let the function f(z) defined by (1.15) be in the class $T_n(\lambda, \alpha, \gamma)$ ($0 \le \alpha < 1, 0 \le \lambda < 1, 0 \le \gamma \le 1/2$ and $n \in N_0$). Then f(z) is starlike of order ρ ($0 \le \rho < 1$) in $|z| < r_2^*$, where

(6.6)
$$r_2^* = \inf_k \left[\frac{(1-\rho)k^n \{k - \alpha [1 + \lambda(k-1)]\} c(\gamma, k)}{(k-\rho)(1-\alpha)} \right]^{\frac{1}{k-1}} \quad (k \ge 2).$$

The result is sharp, the extremal function f(z) being given by (2.2).

Proof. We must show that

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| \le 1 - \rho \text{ for } |z| < r_2^*.$$

Indeed, we have

$$\left|\frac{zf'(z)}{f(z)} - 1\right| \le \frac{\sum_{k=2}^{\infty} (k-1)a_k |z|^{k-1}}{1 - \sum_{k=2}^{\infty} a_k |z|^{k-1}}.$$

Thus $\left|\frac{zf'(z)}{f(z)} - 1\right| \le 1 - \rho$ if

(6.7)
$$\sum_{k=2}^{\infty} \left(\frac{k-\rho}{1-\rho}\right) a_k |z|^{k-1} \le 1.$$

Hence, by using (6.3), (6.7) will be true if

(6.8)
$$\left(\frac{k-\rho}{1-\rho}\right)|z|^{k-1} \le \frac{k^n \{k-\alpha[1+\lambda(k-1)]\}c(\gamma,k)}{(1-\alpha)} \quad (k\ge 2),$$

that is, if

(6.9)
$$|z| \leq \left[\frac{(1-\rho)k^n \{k-\alpha[1+\lambda(k-1)]\}c(\gamma,k)}{(k-\rho)(1-\alpha)}\right]^{\frac{1}{k-1}} \quad (k \geq 2).$$

Theorem 8 follows easily from (6.9).

COROLLARY 6. Let the function f(z) defined by (1.15) be in the class $T_n(\lambda, \alpha, \gamma)$ ($0 \le \alpha < 1, 0 \le \lambda < 1, 0 \le \gamma \le 1/2$ and $n \in N_0$). Then f(z) is convex of order ρ ($0 \le \rho < 1$) in $|z| < r_3^*$, where

(6.10)
$$r_3^* = \inf_k \left[\frac{(1-\rho)k^{n-1}\{k-\alpha[1+\lambda(k-1)]\}c(\gamma,k)}{(k-\rho)(1-\alpha)} \right]^{\frac{1}{k-1}} \quad (k \ge 2).$$

The result is sharp, the extremal function f(z) being given by (2.2).

7. INTEGRAL OPERATORS

THEOREM 9. Let the function f(z) defined by (1.15) be in the class $T_n(\lambda, \alpha, \gamma)$, and let d be a real number such that d > -1. Then the function F(z) defined by

(7.1)
$$F(z) = \frac{d+1}{z^d} \int_0^z t^{d-1} f(t) \, \mathrm{d}t \quad (d > -1)$$

also belongs to the class $T_n(\lambda, \alpha, \gamma)$.

Proof. From the representation (7.1) of F(z) it follows that

$$F(z) = z - \sum_{k=2}^{\infty} b_k z^k,$$

where

$$b_k = \left(\frac{d+1}{d+k}\right)a_k.$$

Therefore, we have

$$\sum_{k=2}^{\infty} k^n \{k - \alpha [1 + \lambda (k - 1)]\} c(\gamma, k) b_k$$

$$= \sum_{k=2}^{\infty} k^n \{k - \alpha [1 + \lambda (k - 1)]\} c(\gamma, k) \left(\frac{d+1}{d+k}\right) a_k$$

$$\leq \sum_{k=2}^{\infty} k^n \{k - \alpha [1 + \lambda (k - 1)]\} c(\gamma, k) a_k$$

$$\leq (1 - \alpha),$$

since $f(z) \in T_n(\lambda, \alpha, \gamma)$. Hence, by Theorem 1, $F(z) \in T_n(\lambda, \alpha, \gamma)$.

THEOREM 10. Let the function $F(z) = z - \sum_{k=2}^{\infty} a_k z^k$ $(a_k \ge 0)$ be in the class $T_n(\lambda, \alpha, \gamma)$ and let d be a real number such that d > -1. Then the function f(z) defined by (7.1) is univalent in $|z| < R^*$, where

(7.2)
$$R^* = \inf_k \left[\frac{(d+1)k^{n-1}\{k - \alpha[1 + \lambda(k-1)]\}c(\gamma, k)}{(d+k)(1-\alpha)} \right]^{\frac{1}{k-1}} \quad (k \ge 2).$$

The result is sharp.

Proof. From (7.1), we have

(7.3)
$$f(z) = \frac{z^{1-d} \left[z^d F(z) \right]'}{(d+1)} \quad (d \ge -1)$$

(7.4)
$$= z - \sum_{k=2}^{\infty} \left(\frac{d+k}{d+1}\right) a_k z^k.$$

In order to obtain the required result it suffices to show that |f'(z) - 1| < 1in $|z| < R^*$. Now

$$|f'(z) - 1| \le \sum_{k=2}^{\infty} \frac{k(d+k)}{(d+1)} a_k |z|^{k-1}.$$

Thus |f'(z) - 1| < 1 if

(7.5)
$$\sum_{k=2}^{\infty} \frac{k(d+k)}{(d+1)} a_k |z|^{k-1} < 1.$$

Hence, by using (6.3), (7.5) will be satisfied if

$$\frac{k(d+k)|z|^{k-1}}{(d+1)} \le \frac{k^n \{k - \alpha [1 + \lambda(k-1)]\} c(\gamma, k)}{(1-\alpha)} \quad (k \ge 2)$$

or if

(7.6)
$$|z| \le \left[\frac{(d+1)k^{n-1}\{k - \alpha[1 + \lambda(k-1)]\}c(\gamma, k)}{(d+k)(1-\alpha)} \right]^{\frac{1}{k-1}} \quad (k \ge 2).$$

Therefore f(z) is univalent in $|z| < R^*$. Sharpness follows if we take

(7.7)
$$f(z) = z - \frac{(1-\alpha)(d+k)}{k^n \{k - \alpha [1+\lambda(k-1)]\} c(\gamma,k)(d+1)} z^k \quad (k \ge 2).$$

8. MODIFIED HADAMARD PRODUCTS

Let the functions $f_j(z)$ (j = 1, 2) be defined by (5.1). The modified Hadamard product of $f_1(z)$ and $f_2(z)$ is defined by

(8.1)
$$f_1 * f_2(z) = z - \sum_{k=2}^{\infty} a_{k,1} a_{k,2} z^k.$$

THEOREM 11. Let the functions $f_j(z)$ (j = 1, 2) defined by (5.1) be in the class $T_n(\lambda, \alpha, \gamma)$ $(0 \le \alpha < 1, 0 \le \lambda < 1, 0 \le \gamma \le 1/2 \text{ and } n \in N_0)$. Then $f_1 * f_2(z)$ belongs to the class $T_n(\lambda, \beta(n, \lambda, \alpha, \gamma), \gamma)$, where

(8.2)
$$\beta(n,\lambda,\alpha,\gamma) = 1 - \frac{(1-\lambda)(1-\alpha)^2}{2^{n+1}\{2-\alpha(1+\lambda)\}^2(1-\gamma) - (1+\lambda)(1-\alpha)^2}.$$

The result is sharp.

Proof. Employing the technique used earlier by Schild and Silverman [12], we need to find the largest $\beta = \beta(n, \lambda, \alpha, \gamma)$ such that

(8.3)
$$\sum_{k=2}^{\infty} \frac{k^n \{k - \beta [1 + \lambda (k-1)]\} c(\gamma, k)}{(1 - \beta)} a_{k,1} a_{k,2} \le 1.$$

Since

(8.4)
$$\sum_{k=2}^{\infty} \frac{k^n \{k - \alpha [1 + \lambda (k-1)]\} c(\gamma, k)}{(1 - \alpha)} a_{k,1} \le 1$$

and

(8.5)
$$\sum_{k=2}^{\infty} \frac{k^n \{k - \alpha [1 + \lambda (k-1)]\} c(\gamma, k)}{(1 - \alpha)} a_{k,2} \le 1$$

by the Cauchy-Schwarz inequality we have

(8.6)
$$\sum_{k=2}^{\infty} \frac{k^n \{k - \alpha [1 + \lambda (k - 1)]\} c(\gamma, k)}{(1 - \alpha)} \sqrt{a_{k,1} a_{k,2}} \le 1.$$

Thus it is sufficient to show that

(8.7)
$$\frac{k^{n}\{k-\beta[1+\lambda(k-1)]\}c(\gamma,k)}{(1-\beta)}a_{k,1}a_{k,2}}{\leq \frac{k^{n}\{k-\alpha[1+\lambda(k-1)]\}c(\gamma,k)}{(1-\alpha)}\sqrt{a_{k,1}a_{k,2}}}{(k\geq 2)},$$

that is that

(8.8)
$$\sqrt{a_{k,1}a_{k,2}} \le \frac{(1-\beta)\{k-\alpha[1+\lambda(k-1)]\}}{(1-\alpha)\{k-\beta[1+\lambda(k-1)]\}}.$$

Note that

(8.9)
$$\sqrt{a_{k,1}a_{k,2}} \le \frac{(1-\alpha)}{k^n \{k - \alpha [1 + \lambda(k-1)]\} c(\gamma, k)} \quad (k \ge 2).$$

Consequently, we need only to prove that

$$(8.10) \qquad \frac{(1-\alpha)}{k^n \{k - \alpha [1 + \lambda(k-1)]\} c(\gamma, k)} \le \frac{(1-\beta) \{k - \alpha [1 + \lambda(k-1)]\}}{(1-\alpha) \{k - \beta [1 + \lambda(k-1)]\}},$$
or activalently that

or equivalently, that

(8.11)
$$\beta \leq 1 - \frac{(k-1)(1-\lambda)(1-\alpha)^2}{k^n \{k - \alpha [1+\lambda(k-1)]\}^2 c(\gamma,k) - [1+\lambda(k-1)](1-\alpha)^2}$$

Since

$$(8.12) \quad A(k) = 1 - \frac{(k-1)(1-\lambda)(1-\alpha)^2}{k^n \{k - \alpha [1+\lambda(k-1)]\}^2 c(\gamma,k) - [1+\lambda(k-1)](1-\alpha)^2}$$

is an increasing function of $k~(k\geq 2),$ letting k=2 in (8.12) we obtain

(8.13)
$$\beta \le A(2) = 1 - \frac{(1-\lambda)(1-\alpha)^2}{2^{n+1}\{2-\alpha[1+\lambda]\}^2(1-\gamma) - (1+\lambda)(1-\alpha)^2},$$

which completes the proof of Theorem 11.

Finally, by taking the functions $f_j(z)$ given by

(8.14)
$$f_j(z) = z - \frac{(1-\alpha)}{2^{n+1} \{2-\alpha[1+\lambda]\}(1-\gamma)} z^2 \quad (j=1,\ 2)$$

we can see that the result is sharp.

COROLLARY 7. For $f_1(z)$ and $f_2(z)$ as in Theorem 11, we have

(8.15)
$$h(z) = z - \sum_{k=2}^{\infty} \sqrt{a_{k,1} a_{k,2}} z^k$$

belongs to the class $T_n(\lambda, \alpha, \gamma)$ $(0 \leq \alpha < 1, 0 \leq \lambda < 1, 0 \leq \gamma \leq 1/2 \text{ and}$ $n \in N_0$).

The result follows from the Cauchy-Schwarz inequality (8.6). It is sharp for the same functions as in Theorem 11.

THEOREM 12. Let the function $f_1(z)$ defined by (5.1) be in the class $T_n(\lambda, \alpha, \gamma) \ (0 \le \alpha < 1, \ 0 \le \lambda < 1, \ 0 \le \gamma \le 1/2 \ and \ n \in N_0)$ and the function $f_2(z)$ defined by (5.1) be in the class $T_n(\lambda, \tau, \gamma)$ ($0 \leq \tau < 1, 0 \leq \lambda < 1$, $0 \leq \gamma \leq 1/2$ and $n \in N_0$). Then $f_1 * f_2(z) \in T_n(\lambda, \eta(n, \lambda, \alpha, \tau, \gamma), \gamma)$, where

(8.16)
$$\eta(n,\lambda,\alpha,\tau,\gamma) =$$

$$1 - \frac{(1-\lambda)(1-\alpha)(1-\tau)}{2^{n+1}\{2-\alpha(1+\lambda)\}\{2-\tau(1+\lambda)\}(1-\gamma) - (1+\lambda)(1-\alpha)(1-\tau)}.$$

The result is the best possible for the functions:

(8.17)
$$f_1(z) = z - \frac{(1-\alpha)}{2^{n+1} \{2 - \alpha(1+\lambda)\}(1-\gamma)} z^2$$

11

and

(8.18)
$$f_2(z) = z - \frac{(1-\tau)}{2^{n+1} \{2 - \tau(1+\lambda)\}(1-\gamma)} z^2$$

Proof. Proceeding as in the proof of Theorem 11, we get

(8.19)
$$\eta \le B(k) =$$

$$\begin{split} &1-(k-1)(1-\lambda)(1-\alpha)(1-\tau)/\{k^n c(\gamma,k)\{k-\alpha[1+\lambda(k-1)]\}\{k-\tau[1+\lambda(k-1)]\} \\ &- [1+\lambda(k-1)](1-\alpha)(1-\tau)\} \ (k\geq 2). \end{split}$$

Since the function B(k) is an increasing function of k $(k \ge 2)$, setting k = 2in (8.19), we get

(8.20)
$$\eta \le B(2) = 1 - \frac{(1-\lambda)(1-\alpha)(1-\tau)}{2^{n+1}(1-\gamma)\{2-\alpha(1+\lambda)\}\{2-\tau(1+\lambda)\} - (1+\lambda)(1-\alpha)(1-\tau)\}}$$

This completes the proof of Theorem 12.

COROLLARY 8. Let the functions $f_j(z)$ (j = 1, 2, 3) defined by (5.1) be in the class $T_n(\lambda, \alpha, \gamma)$ ($0 \le \alpha < 1, 0 \le \lambda < 1, 0 \le \gamma \le 1/2$ and $n \in N_0$). Then $f_1 * f_2 * f_3(z) \in T_n(\lambda, \xi(n, \lambda, \alpha, \gamma), \gamma),$ where

(8.21)
$$\xi(n,\lambda,\alpha,\gamma) =$$

$$1 - \frac{(1-\lambda)(1-\alpha)^3}{4^{n+1}\{2-\alpha(1+\lambda)\}^3(1-\gamma)^2 - (1+\lambda)(1-\alpha)^3}.$$

The result is best possible for the functions

(8.22)
$$f_j(z) = z - \frac{(1-\alpha)}{2^{n+1} \{2 - \alpha(1+\lambda)\}(1-\gamma)} z^2 \quad (j = 1, 2, 3).$$

Proof. From Theorem 11, we have $f_1 * f_2(z) \in T_n(\lambda, \beta(n, \lambda, \alpha, \gamma), \gamma))$, where $\beta(n, \lambda, \alpha, \gamma)$ is given by (8.2). We now use Theorem 12, we get $f_1 * f_2 * f_3(z) \in T_n(\lambda, \xi(n, \lambda, \alpha, \gamma), \gamma)$, where

$$\begin{split} \xi(n,\lambda,\alpha,\gamma) &= \\ 1 - \frac{(1-\lambda)(1-\alpha)(1-\beta)}{2^n c(\gamma,2)\{2-\alpha(1+\lambda)\}\{2-\beta(1+\lambda)\} - (1+\lambda)(1-\alpha)(1-\beta)}, \\ \xi(n,\lambda,\alpha,\gamma) &= 1 - \frac{(1-\lambda)(1-\alpha)^3}{4^{n+1}\{2-\alpha(1+\lambda)\}^3 - (1+\lambda)(1-\alpha)^3}. \end{split}$$

This completes the proof of Corollary 8.

THEOREM 13. Let the functions $f_j(z)$ (j = 1, 2) defined by (5.1) be in the class $T_n(\lambda, \alpha, \gamma)$ $(0 \le \alpha < 1, 0 \le \lambda < 1, 0 \le \gamma \le 1/2 \text{ and } n \in N_0)$. Then the function

(8.23)
$$h(z) = z - \sum_{k=2}^{\infty} \left(a_{k,1}^2 + a_{k,2}^2 \right) z^k$$

belongs to the class $T_n(\lambda, \psi(n, \lambda, \alpha, \gamma), \gamma)$ where

(8.24)
$$\psi(n,\lambda,\alpha,\gamma) = 1 - \frac{(1-\lambda)(1-\alpha)^2}{2^n \{2-\alpha(1+\lambda)\}^2 (1-\gamma) - (1+\lambda)(1-\alpha)^2}.$$

1

The result is sharp for the functions $f_j(z)$ (j = 1, 2) defined by (8.14).

Proof. By virtue of Theorem 1, we obtain

(8.25)
$$\sum_{k=2}^{\infty} \left[\frac{k^n \{k - \alpha [1 + \lambda (k - 1)]\}}{(1 - \alpha)} \right]^2 [c(\gamma, k)]^2 a_{k,1}^2$$
$$\leq \left[\sum_{k=2}^{\infty} \frac{k^n \{k - \alpha [1 + \lambda (k - 1)]\}}{(1 - \alpha)} c(\gamma, k) a_{k,1} \right]^2 \leq$$

and

(8.26)
$$\sum_{k=2}^{\infty} \left[\frac{k^n \{k - \alpha [1 + \lambda (k - 1)]\}}{(1 - \alpha)} \right]^2 [c(\gamma, k)]^2 a_{k,2}^2$$
$$\leq \left[\sum_{k=2}^{\infty} \frac{k^n \{k - \alpha [1 + \lambda (k - 1)]\}}{(1 - \alpha)} c(\gamma, k) a_{k,2} \right]^2 \leq 1.$$

It follows from (8.25) and (8.26) that

(8.27)
$$\sum_{k=2}^{\infty} \frac{1}{2} \left[\frac{k^n \{k - \alpha [1 + \lambda (k - 1)]\}}{(1 - \alpha)} \right]^2 [c(\gamma, k)]^2 \left(a_{k,1}^2 + a_{k,2}^2 \right) \le 1.$$

Therefore we need to find the largest $\psi = \psi(n, \lambda, \alpha, \gamma)$ such that

(8.28)
$$\frac{k^n \{k - \psi[1 + \lambda(k-1)]\}}{(1 - \psi)}$$

$$\leq \frac{1}{2} \left[\frac{k^n \{k - \alpha [1 + \lambda (k - 1)]\}}{(1 - \alpha)} \right]^2 c(\gamma, k) \quad (k \geq 2).$$

that is, that

(8.29)
$$\psi \leq 1 - \frac{2(1-\lambda)(k-1)(1-\alpha)^2}{k^n \{k - \alpha [1+\lambda(k-1)]\}^2 c(\gamma,k) - 2[1+\lambda(k-1)](1-\alpha)^2}$$

 $(k \geq 2).$

Since

(8.30)
$$D(k) = 1 - \frac{2(1-\lambda)(k-1)(1-\alpha)^2}{k^n \{k - \alpha [1+\lambda(k-1)]\}^2 c(\gamma,k) - 2[1+\lambda(k-1)](1-\alpha)^2}$$

$$(k \ge 2)$$

is an increasing function of k $(k \ge 2)$ for $0 \le \alpha < 1$, $0 \le \lambda < 1$, $0 \le \gamma \le 1/2$ and $n \in N_0$, we readily have

(8.31)
$$\psi \le 1 - \frac{(1-\lambda)(1-\alpha)^2}{2^n \{2 - \alpha[1+\lambda)\}^2 (1-\gamma) - (1+\lambda)(1-\alpha)^2}$$

which completes the proof of Theorem 13.

REFERENCES

- ALTINTAS, O. and OWA, S., On subclasses of univalent functions with negative coefficients, Pusan Kyongnam Math. J., 4 (1988), no. 4, 41–46.
- [2] AOUF, M.K. and CHO, N. K., On a certain subclass of analytic functions with negative coefficients, Tr. J. Math., 22 (1988), no. 1, 15–32.
- [3] AOUF, M.K. and SALAGEAN, G.S., Certain subclasses of prestarlike functions with negative coefficients, Studia Univ. Babeş-Bolyai, Mathematica, 39 (1994), no. 1, 19–30.
- [4] AOUF, M. K. and SALAGEAN, G.S., Prestarlike functions with negative coefficients, Rev. Roum. Math. Pures Appl., 44 (1999), no. 4, 493–502.
- [5] HUR, M.D. and OH, G.M., On a certain class of analytic functions with negative coefficients, Pusan Kyongnam Math. J., 5 (1989), 69–80.
- [6] MACGREGOR, T.H., The radius of convexity for starlike functions of order 1/2, Proc. Amer. Math. Soc., 14 (1963), 71–76.
- [7] OWA, S. and URALEGADDI, B.A., A class of functions α-prestarlike of order β, Bull. Korean Math. Soc., 21 (1984), 77–85.
- [8] PINCHUK, B., On starlike and convex functions of order α, Duke Math. J., 35 (1968), 721–734.
- [9] ROBERTSON, M. S., On the theory of univalent functions, Ann. Math., 37 (1936), 374– 408.

- [10] SALAGEAN, G.S., Subclasses of univalent functions, Lect. Notes in Math. (Springer-Verlag), 1013 (1983), pp. 362–372.
- [11] SCHILD, A., On starlike functions of order α , Amer. J. Math., 87 (1965), 65–70.
- [12] SCHILD, A. and SILVERMAN, H., Convolutions of univalent functions with negative coefficients, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 29 (1975), 99–107.
- [13] SHEIL-SMALL, T., SILVERMAN, H. and SILVIA, E., Convolution multipliers and starlike functions, J. Analyse Math., 41 (1983), 182–192.
- [14] SILVERMAN, H., Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51 (1975), 109–116.
- [15] SILVERMAN, H. and SILVIA, E., Prestarlike functions with negative coefficients, J. Math. Math. Sci., 2 (1979), 427–439.
- [16] SILVERMAN, H. and SILVIA, E., Subclasses of prestarlike functions, Math. Japon., 29 (1984), no. 6, 929–935.
- [17] URALEGADDI, B.A. and SARANGI S.M., Certain generalization of prestarlike functions with negative coefficients, Ganita, 34 (1983), 99–105.

Received September 30, 2001

Kingdom of Saudi Arabia Box. 41661 Jeddah. 21531