ON CERTAIN SUBCLASS OF PRESTARLIKE FUNCTIONS DEFINED BY SALAGEAN OPERATOR

M.K. AOUF and B.A. AL-AMRI

Abstract

The object of the present paper is to investigate several interesting properties of the class $T_{n}(\lambda, \alpha, \gamma)$ consisting of prestarlike functions with negative coefficients defined by Salagean operator. Coefficient estimates, distortion theorems, closure theorems and modified Hadamard products of several functions belonging to the class $T_{n}(\lambda, \alpha, \gamma)$ are determined. Also radii of close-to-convexity, starlikeness and convexity are determined. Also we obtain integral operators for this class.

MSC 2000. 30C45.
Key words. Analytic, univalent, prestarlike, modified Hadamard product.

1. INTRODUCTION

Let A denote the class of (normalized) functions of the form:

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disc

$$
U=\{z: z \in C \text { and }|z|<1\},
$$

and let S denote the subclass of A consisting of functions which are also univalent in U. Then a function $f(z)$ in S is said to be starlike of order α if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha \quad(z \in U ; 0 \leq \alpha<1) \tag{1.2}
\end{equation*}
$$

We denote by $S^{*}(\alpha)$ the class of all functions in S which are starlike of order α in U. It is well-known that

$$
S^{*}(\alpha) \subseteq S^{*}(0)=S^{*} .
$$

The class $S^{*}(\alpha)$, introduced by Robertson [9], was studied subsequently by Schild [11], MacGregor [6] and Pinchuk [8]. Moreover, the function:

$$
\begin{equation*}
s_{\gamma}(z)=\frac{z}{(1-z)^{2(1-\gamma)}} \tag{1.3}
\end{equation*}
$$

is the familiar extremal function for the class $S^{*}(\gamma)$. Setting

$$
\begin{equation*}
c(\gamma, k)=\frac{\prod_{i=2}^{k}(i-2 \gamma)}{(k-1)!} \quad(k \geq 2), \tag{1.4}
\end{equation*}
$$

$s_{\gamma}(z)$ can be written in the form:

$$
\begin{equation*}
s_{\gamma}(z)=z+\sum_{k=2}^{\infty} c(\gamma, k) z^{k} . \tag{1.5}
\end{equation*}
$$

We note that $c(\gamma, k)$ is a decreasing function in γ and that

$$
\lim _{k \rightarrow \infty} c(\gamma, k)= \begin{cases}\infty & (\gamma<1 / 2) \tag{1.6}\\ 1 & (\gamma=1 / 2) \\ 0 & (\gamma>1 / 2)\end{cases}
$$

For a function $f(z)$ in S, we define

$$
\begin{align*}
& D^{0} f(z)=f(z) \tag{1.7}\\
& D^{1} f(z)=D f(z)=z f^{\prime}(z)
\end{align*}
$$

and

$$
\begin{equation*}
D^{n} f(z)=D\left(D^{n-1} f(z)\right) \quad(n \in N=\{1,2, \cdots\}) . \tag{1.9}
\end{equation*}
$$

The differential operator D^{n} was introduced by Salagean [10].
For $\alpha(0 \leq \alpha<1)$ and $\lambda(0 \leq \lambda<1)$, we say that a function $f(z) \in A$ is in the class $S(\lambda, \alpha)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\frac{z f^{\prime}(z)}{f(z)}}{\lambda \frac{z f^{\prime}(z)}{f(z)}+(1-\lambda)}\right\}>\alpha \quad(z \in U) . \tag{1.10}
\end{equation*}
$$

Let $(f * g)(z)$ denote the Hadamard product or convolution of two functions $f(z)$ and $g(z)$, that is, if $f(z)$ is given by (1.1) and $g(z)$ is given by

$$
\begin{equation*}
g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k} \tag{1.11}
\end{equation*}
$$

then

$$
\begin{equation*}
(f * g)(z)=z+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k} . \tag{1.12}
\end{equation*}
$$

Let $S_{n}(\lambda, \alpha, \gamma)$ be the subclass of A consisting of functions $f(z)$ such that

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\frac{z \varphi_{n, \gamma}^{\prime}(z)}{\varphi_{n, \gamma}(z)}}{\lambda \frac{z \varphi_{n, \gamma}^{\prime}(z)}{\varphi_{n, \gamma}(z)}+(1-\lambda)}\right\}>\alpha \quad(z \in U) \tag{1.13}
\end{equation*}
$$

where $\left.0 \leq \alpha<1,0 \leq \lambda<1,0 \leq \gamma<1, n \in N_{0}=N \cup\{0)\right\}$ and

$$
\begin{equation*}
\varphi_{n, \gamma}(z)=\left(D^{n} f * s_{\gamma}\right)(z) . \tag{1.14}
\end{equation*}
$$

We observe that $S_{0}(0, \alpha, \gamma)=R_{\gamma}(\alpha)$ is the class of γ-prestarlike functions of order α, which was introduced by Sheil-Small et al. [13].

Let T denote the subclass of A consisting of functions $f(z)$ of the form

$$
\begin{equation*}
f(z)=z-\sum_{k=2}^{\infty} a_{k} z^{k} \quad\left(a_{k} \geq 0\right) . \tag{1.15}
\end{equation*}
$$

We denote by $T(\lambda, \alpha)$ and $T_{n}(\lambda, \alpha, \gamma)$ the classes obtained by taking intersections, respectively, of the classes $S(\lambda, \alpha)$ and $S_{n}(\lambda, \alpha, \gamma)$ with the class T. The class $T(\lambda, \alpha)$ was studied by Altintas and Owa [1].

We note that, by specializing the parameters λ, α, γ and n, we obtain the following subclasses studied by various authors:
(i) $\quad T_{n}(0, \alpha, \gamma)=R[\gamma, \alpha, n] \quad$ (Aouf and Salagean [4]);
(ii) $\quad T_{0}(0, \gamma, \gamma)=R_{\gamma}^{*} \quad$ (Silverman and Silvia [15]);
(iii) $\quad T_{0}(0, \alpha, \gamma)=R_{\gamma}[\alpha]$ (Silverman and Silvia [16], Uralegaddi and Sarangi [17] and Aouf and Salagean [3]);
(iv) $T_{1}(0, \alpha, \gamma)=C_{\gamma}[\alpha]$ (Owa and Uralegaddi [7] and Aouf and Salagean [3]);
(v) $\quad T_{n}(\lambda, \alpha, 1 / 2)=T_{n}(\lambda, \alpha) \quad$ (Aouf and Cho [2]);
(vi) $\quad T_{n}(0, \alpha, 1 / 2)=T(n, \alpha) \quad$ (Hurand Oh [5]);
(vii) $\quad T_{0}(0, \alpha, 1 / 2)=T^{\prime}(\alpha)$ and $T_{1}(0, \alpha, 1 / 2)=C(\alpha) \quad$ (Silverman [14]);
(viii) $\quad T_{0}(\lambda, \alpha, 1 / 2)=T(\lambda, \alpha)$ and $T_{1}(\lambda, \alpha, 1 / 2)=C(\lambda, \alpha) \quad$ (Altintas and Owa [1]).
In the present paper we purpose to investigate several important properties and characteristics of the class $T_{n}(\lambda, \alpha, \gamma)$ which we have defined here.

2. COEFFICIENT ESTIMATES

Theorem 1. Let the function $f(z)$ be defined by (1.15). Then $f(z) \in$ $T_{n}(\lambda, \alpha, \gamma)$ if and only if

$$
\begin{equation*}
\sum_{k=2}^{\infty} k^{n}\{k-\alpha[1+\lambda(k-1)]\} c(\gamma, k) a_{k} \leq(1-\alpha) . \tag{2.1}
\end{equation*}
$$

The result is sharp.
Proof. It is known from [1] that a necessary and sufficient condition for $f(z)$ defined by (1.15) to be in the class $T_{0}(\lambda, \alpha)=T(\lambda, \alpha)$ is that

$$
\sum_{k=2}^{\infty}\{k-\alpha[1+\lambda(k-1)]\} a_{k} \leq(1-\alpha) .
$$

Since

$$
\left(D^{n} f * s_{\gamma}\right)(z)=z-\sum_{k=2}^{\infty} k^{n} c(\gamma, k) a_{k} z^{k}, \quad\left(a_{k} \geq 0\right)
$$

where $s_{\gamma}(z)$ is given by (1.5), the result (2.1) follows. Further, we can see that the function $f(z)$ given by

$$
\begin{equation*}
f(z)=z-\frac{(1-\alpha)}{k^{n}\{k-\alpha[1+\lambda(k-1)]\} c(\gamma, k)} z^{k} \quad(k \geq 2) \tag{2.2}
\end{equation*}
$$

is the extremal function of Theorem 1.
Corollary 1. Let the function $f(z)$ defined by (1.15) be in the class $T_{n}(\lambda, \alpha, \gamma)$. Then we have

$$
\begin{equation*}
a_{k} \leq \frac{(1-\alpha)}{k^{n}\{k-\alpha[1+\lambda(k-1)]\} c(\gamma, k)} \quad(k \geq 2) . \tag{2.3}
\end{equation*}
$$

The equality in (2.3) is attained for the function $f(z)$ given by (2.2).

3. SOME PROPERTIES OF THE CLASS $T_{n}(\lambda, \alpha, \gamma)$

Theorem 2. Let $0 \leq \alpha<1,0 \leq \lambda_{1} \leq \lambda_{2}<1,0 \leq \gamma<1$ and $n \in N_{0}$. Then

$$
T_{n}\left(\lambda_{1}, \alpha, \gamma\right) \subseteq T_{n}\left(\lambda_{2}, \alpha, \gamma\right)
$$

Proof. It follows from Theorem 1 that

$$
\begin{gathered}
\sum_{k=2}^{\infty} k^{n}\left\{k-\alpha\left[1+\lambda_{2}(k-1)\right]\right\} c(\gamma, k) a_{k} \leq \\
\sum_{k=2}^{\infty} k^{n}\left\{k-\alpha\left[1+\lambda_{1}(k-1)\right]\right\} c(\gamma, k) a_{k} \leq(1-\alpha)
\end{gathered}
$$

for $f(z) \in T_{n}\left(\lambda_{1}, \alpha, \gamma\right)$. Hence $f(z) \in T_{n}\left(\lambda_{2}, \alpha, \gamma\right)$.
Theorem 3. Let $0 \leq \alpha<1,0 \leq \lambda<1,0 \leq \gamma<1$ and $n \in N_{0}$. Then

$$
T_{n+1}\left(\lambda_{1}, \alpha, \gamma\right) \subseteq T_{n}(\lambda, \alpha, \gamma)
$$

The proof follows immediately from Theorem 1.

4. DISTORTION THEOREMS

Theorem 4. Let the function $f(z)$ defined by (1.15) be in the class $T_{n}(\lambda, \alpha, \gamma)$, with $0 \leq \alpha<1,0 \leq \lambda<1,0 \leq \gamma \leq 1 / 2$ and $n \in N_{0}$. Then

$$
\begin{equation*}
\left|D^{i} f(z)\right| \geq|z|-\frac{(1-\alpha)}{2^{n+1-i}[2-\alpha(1+\lambda)](1-\gamma)}|z|^{2} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|D^{i} f(z)\right| \leq|z|+\frac{(1-\alpha)}{2^{n+1-i}[2-\alpha(1+\lambda)](1-\gamma)}|z|^{2} \tag{4.2}
\end{equation*}
$$

for $z \in U$, where $0 \leq i \leq n$. The equalities in (4.1) and (4.2) are attained for the function $f(z)$ given by

$$
\begin{equation*}
D^{i} f(z)=z-\frac{(1-\alpha)}{2^{n+1-i}[2-\alpha(1+\lambda)](1-\gamma)} z^{2} . \tag{4.3}
\end{equation*}
$$

Proof. Note that $f(z) \in T_{n}(\lambda, \alpha, \gamma)$ if and only if $D^{i} f(z) \in T_{n-i}(\lambda, \alpha, \gamma)$ and that

$$
\begin{equation*}
D^{i} f(z)=z-\sum_{k=2}^{\infty} k^{i} a_{k} z^{k} . \tag{4.4}
\end{equation*}
$$

Since $k^{n}\{k-\alpha[1+\lambda(k-1)]\}$ and $c(\gamma, k), 0 \leq \gamma \leq 1 / 2$ are increasing functions of $k(k \geq 2)$ for a fixed n, since $f(z) \in T_{n}(\lambda, \alpha, \gamma)$, in view of Theorem 1 , we have

$$
\begin{align*}
& 2^{n-i}[2-\alpha(1+\lambda)] c(\gamma, 2) \sum_{k=2}^{\infty} k^{i} a_{k} \leq \tag{4.5}\\
& \sum_{k=2}^{\infty} k^{n}\{k-\alpha[1+\lambda(k-1)]\} c(\gamma, k) a_{k} \leq(1-\alpha),
\end{align*}
$$

that is, that

$$
\begin{equation*}
\sum_{k=2}^{\infty} k^{i} a_{k} \leq \frac{(1-\alpha)}{2^{n+1-i}[2-\alpha(1+\lambda)](1-\gamma)} \tag{4.6}
\end{equation*}
$$

It follows from (4.4) and (4.6) that

$$
\begin{gather*}
\left|D^{i} f(z)\right| \geq|z|-|z|^{2} \sum_{k=2}^{\infty} k^{i} a_{k} \tag{4.7}\\
\geq|z|-\frac{(1-\alpha)}{2^{n+1-i}[2-\alpha(1+\lambda)](1-\gamma)}|z|^{2}
\end{gather*}
$$

and

$$
\begin{gather*}
\left|D^{i} f(z)\right| \leq|z|+|z|^{2} \sum_{k=2}^{\infty} k^{i} a_{k} \tag{4.8}\\
\leq|z|+\frac{(1-\alpha)}{2^{n+1-i}[2-\alpha(1+\lambda)](1-\gamma)}|z|^{2}
\end{gather*}
$$

Finally, we can see that the results in Theorem 4 are attained for the function $f(z)$ given by (4.3).

Corollary 2. Let the function $f(z)$ defined by (1.15) be in the class $T_{n}(\lambda, \alpha, \gamma)$. Then we have

$$
\begin{equation*}
|f(z)| \geq|z|-\frac{(1-\alpha)}{2^{n+1}[2-\alpha(1+\lambda)](1-\gamma)}|z|^{2} \tag{4.9}
\end{equation*}
$$

and

$$
\begin{equation*}
|f(z)| \leq|z|+\frac{(1-\alpha)}{2^{n+1}[2-\alpha(1+\lambda)](1-\gamma)}|z|^{2}, \tag{4.10}
\end{equation*}
$$

for $z \in U$. The equalities in (4.9) and (4.10) are attained for the function $f(z)$ given by

$$
\begin{equation*}
f(z)=z-\frac{(1-\alpha)}{2^{n+1}[2-\alpha(1+\lambda)](1-\gamma)} z^{2} . \tag{4.11}
\end{equation*}
$$

Proof. Taking $i=0$ in Theorem 4, we can easily show (4.9) and (4.10).
Corollary 3. Let the function $f(z)$ defined by (1.15) be in the class $T_{n}(\lambda, \alpha, \gamma)$. Then we have

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \geq 1-\frac{(1-\alpha)}{2^{n}[2-\alpha(1+\lambda)](1-\gamma)}|z| \tag{4.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leq 1+\frac{(1-\alpha)}{2^{n+1}[2-\alpha(1+\lambda)](1-\gamma)}|z| \tag{4.13}
\end{equation*}
$$

for $z \in U$. The equalities in (4.12) and (4.13) are attained for the function $f(z)$ given by (4.11).

Proof. Note that $D f(z)=z f^{\prime}(z)$. Hence taking $i=1$ in Theorem 4, we have the next corollary.

Corollary 4. Let the function $f(z)$ defined by (1.15) be in the class $T_{n}(\lambda, \alpha, \gamma)$. Then the unit disc U is mapped onto a domain that contains the disc

$$
\begin{equation*}
|w|<\frac{2^{n+1}[2-\alpha(1+\lambda)](1-\gamma)-(1-\alpha)}{2^{n+1}[2-\alpha(1+\lambda)](1-\gamma)} . \tag{4.14}
\end{equation*}
$$

The result is sharp with the extremal function $f(z)$ given by (4.11).

5. CLOSURE THEOREMS

Theorem 5. The class $T_{n}(\lambda, \alpha, \gamma)$ is closed under linear combination.
Proof. Let each of the functions $f_{1}(z)$ and $f_{2}(z)$ given by

$$
\begin{equation*}
f_{j}(z)=z-\sum_{k=2}^{\infty} a_{k, j} z^{k} \quad\left(a_{k, j} \geq 0 ; \quad j=1,2\right) \tag{5.1}
\end{equation*}
$$

be in the class $T_{n}(\lambda, \alpha, \gamma)$. Then it is sufficient to show that the function $h(z)$ defined by

$$
\begin{equation*}
h(z)=t f_{1}(z)+(1-t) f_{2}(z) \quad(0 \leq t \leq 1) \tag{5.2}
\end{equation*}
$$

is also in the class $T_{n}(\lambda, \alpha, \gamma)$. Since, for $0 \leq t \leq 1$,

$$
\begin{equation*}
h(z)=z-\sum_{k=2}^{\infty}\left\{t a_{k, 1}+(1-t) a_{k, 2}\right\} z^{k}, \tag{5.3}
\end{equation*}
$$

with the aid of Theorem 1, we have
(5.4) $\sum_{k=2}^{\infty}\{k-\alpha[1+\lambda(k-1)]\} c(\gamma, k)\left\{t a_{k, 1}+(1-t) a_{k, 2}\right\} \leq(1-\alpha) \quad(0 \leq t \leq 1)$
which implies that $h(z) \in T_{n}(\lambda, \alpha, \gamma)$.
As a consequence of Theorem 5, there exist the extreme points of the class $T_{n}(\lambda, \alpha, \gamma)$.

Theorem 6. Let

$$
\begin{equation*}
f_{1}(z)=z \tag{5.5}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{k}(z)=z-\frac{(1-\alpha)}{k^{n}\{k-\alpha[1+\lambda(k-1)]\} c(\gamma, k)} z^{k} \quad(k \geq 2) . \tag{5.6}
\end{equation*}
$$

Then $f(z)$ is in the class $T_{n}(\lambda, \alpha, \gamma)$ if and only if it can be expressed in the form

$$
\begin{equation*}
f(z)=\sum_{k=1}^{\infty} t_{k} f_{k}(z), \tag{5.7}
\end{equation*}
$$

where $t_{k} \geq 0(k \geq 1)$ and $\sum_{k=1}^{\infty}=1$.
Proof. Assume that

$$
\begin{align*}
& f(z)=\sum_{k=1}^{\infty} t_{k} f_{k}(z) \\
& f(z)=z-\sum_{k=2}^{\infty} \frac{(1-\alpha)}{k^{n}\{k-\alpha[1+\lambda(k-1)]\} c(\gamma, k)} t_{k} z^{k} \tag{5.8}
\end{align*}
$$

Then it follows that

$$
\begin{gather*}
\sum_{k=2}^{\infty} \frac{k^{n}\{k-\alpha[1+\lambda(k-1)]\} c(\gamma, k)}{(1-\alpha)} \cdot \sum_{k=2}^{\infty} \frac{(1-\alpha)}{k^{n}\{k-\alpha[1+\lambda(k-1)]\} c(\gamma, k)} t_{k} \tag{5.9}\\
=\sum_{k=2}^{\infty} t_{k}=1-t_{1} \leq 1
\end{gather*}
$$

Therefore, by Theorem $1, f(z) \in T_{n}(\lambda, \alpha, \gamma)$.

Conversely, assume that the function $f(z)$ defined by (1.15) belongs to the class $T_{n}(\lambda, \alpha, \gamma)$. Then we have

$$
\begin{equation*}
a_{k} \leq \frac{(1-\alpha)}{k^{n}\{k-\alpha[1+\lambda(k-1)]\} c(\gamma, k)} \quad(k \geq 2) . \tag{5.10}
\end{equation*}
$$

Setting

$$
\begin{equation*}
t_{k}=\frac{k^{n}\{k-\alpha[1+\lambda(k-1)]\} c(\gamma, k)}{(1-\alpha)} a_{k} \quad(k \geq 2) \tag{5.11}
\end{equation*}
$$

and

$$
\begin{equation*}
t_{1}=1-\sum_{k=2}^{\infty} t_{k}, \tag{5.12}
\end{equation*}
$$

we see that $f(z)$ can be expressed in the form (5.7). This completes the proof of Theorem 6 .

Corollary 5. The extreme points of the class $T_{n}(\lambda, \alpha, \gamma)$ are the functions $f_{k}(z)(k \geq 1)$ given by Theorem 6.

6. RADII OF CLOSE-TO-CONVEXITY, STARLIKENESS AND CONVEXITY

Theorem 7. Let the function $f(z)$ defined by (1.15) be in the class $T_{n}(\lambda$, $\alpha, \gamma)\left(0 \leq \alpha<1,0 \leq \lambda<1,0 \leq \gamma \leq 1 / 2\right.$ and $\left.n \in N_{0}\right)$. Then $f(z)$ is close-to-convex of order $\rho(0 \leq \rho<1)$ in $|z|<r_{1}^{*}$, where

$$
\begin{equation*}
r_{1}^{*}=\inf _{k}\left[\frac{(1-\rho) k^{n-1}\{k-\alpha[1+\lambda(k-1)]\} c(\gamma, k)}{(1-\alpha)}\right]^{\frac{1}{k-1}} \quad(k \geq 2) . \tag{6.1}
\end{equation*}
$$

The result is sharp, with the extremal function $f(z)$ being given by (2.2).
Proof. It is sufficient to show that

$$
\left|f^{\prime}(z)-1\right| \leq 1-\rho \text { for }|z|<r_{1}^{*}
$$

Indeed, we have

$$
\left|f^{\prime}(z)-1\right| \leq \sum_{k=2}^{\infty} k a_{k}|z|^{k-1} .
$$

Thus $\quad\left|f^{\prime}(z)-1\right| \leq 1-\rho$ if

$$
\begin{equation*}
\sum_{k=2}^{\infty}\left(\frac{k}{1-\rho}\right) a_{k}|z|^{k-1} \leq 1 \tag{6.2}
\end{equation*}
$$

But Theorem 1 confirms that

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{k^{n}\{k-\alpha[1+\lambda(k-1)]\} c(\gamma, k)}{(1-\alpha)} a_{k} \leq 1 . \tag{6.3}
\end{equation*}
$$

Hence (6.2) will be true if

$$
\begin{equation*}
\frac{k|z|^{k-1}}{(1-\rho)} \leq \frac{k^{n}\{k-\alpha[1+\lambda(k-1)]\} c(\gamma, k)}{(1-\alpha)} \tag{6.4}
\end{equation*}
$$

or if

$$
\begin{equation*}
|z| \leq\left[\frac{(1-\rho) k^{n-1}\{k-\alpha[1+\lambda(k-1)]\} c(\gamma, k)}{(1-\alpha)}\right]^{\frac{1}{k-1}} \quad(k \geq 2) . \tag{6.5}
\end{equation*}
$$

The theorem follows easily from (6.5).
Theorem 8. Let the function $f(z)$ defined by (1.15) be in the class $T_{n}(\lambda, \alpha, \gamma)\left(0 \leq \alpha<1,0 \leq \lambda<1,0 \leq \gamma \leq 1 / 2\right.$ and $\left.n \in N_{0}\right)$. Then $f(z)$ is starlike of order $\rho(0 \leq \rho<1)$ in $|z|<r_{2}^{*}$, where

$$
\begin{equation*}
r_{2}^{*}=\inf _{k}\left[\frac{(1-\rho) k^{n}\{k-\alpha[1+\lambda(k-1)]\} c(\gamma, k)}{(k-\rho)(1-\alpha)}\right]^{\frac{1}{k-1}} \quad(k \geq 2) . \tag{6.6}
\end{equation*}
$$

The result is sharp, the extremal function $f(z)$ being given by (2.2).
Proof. We must show that

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq 1-\rho \text { for } \quad|z|<r_{2}^{*}
$$

Indeed, we have

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq \frac{\sum_{k=2}^{\infty}(k-1) a_{k}|z|^{k-1}}{1-\sum_{k=2}^{\infty} a_{k}|z|^{k-1}}
$$

Thus $\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq 1-\rho$ if

$$
\begin{equation*}
\sum_{k=2}^{\infty}\left(\frac{k-\rho}{1-\rho}\right) a_{k}|z|^{k-1} \leq 1 . \tag{6.7}
\end{equation*}
$$

Hence, by using (6.3), (6.7) will be true if

$$
\begin{equation*}
\left(\frac{k-\rho}{1-\rho}\right)|z|^{k-1} \leq \frac{k^{n}\{k-\alpha[1+\lambda(k-1)]\} c(\gamma, k)}{(1-\alpha)} \quad(k \geq 2) \tag{6.8}
\end{equation*}
$$

that is, if

$$
\begin{equation*}
|z| \leq\left[\frac{(1-\rho) k^{n}\{k-\alpha[1+\lambda(k-1)]\} c(\gamma, k)}{(k-\rho)(1-\alpha)}\right]^{\frac{1}{k-1}} \quad(k \geq 2) . \tag{6.9}
\end{equation*}
$$

Theorem 8 follows easily from (6.9).
Corollary 6. Let the function $f(z)$ defined by (1.15) be in the class $T_{n}(\lambda, \alpha, \gamma)\left(0 \leq \alpha<1,0 \leq \lambda<1,0 \leq \gamma \leq 1 / 2\right.$ and $\left.n \in N_{0}\right)$. Then $f(z)$ is convex of order $\rho(0 \leq \rho<1)$ in $|z|<r_{3}^{*}$, where

$$
\begin{equation*}
r_{3}^{*}=\inf _{k}\left[\frac{(1-\rho) k^{n-1}\{k-\alpha[1+\lambda(k-1)]\} c(\gamma, k)}{(k-\rho)(1-\alpha)}\right]^{\frac{1}{k-1}} \quad(k \geq 2) . \tag{6.10}
\end{equation*}
$$

The result is sharp, the extremal function $f(z)$ being given by (2.2).

7. INTEGRAL OPERATORS

Theorem 9. Let the function $f(z)$ defined by (1.15) be in the class $T_{n}(\lambda, \alpha, \gamma)$, and let d be a real number such that $d>-1$. Then the function $F(z)$ defined by

$$
\begin{equation*}
F(z)=\frac{d+1}{z^{d}} \int_{0}^{z} t^{d-1} f(t) \mathrm{d} t \quad(d>-1) \tag{7.1}
\end{equation*}
$$

also belongs to the class $T_{n}(\lambda, \alpha, \gamma)$.
Proof. From the representation (7.1) of $F(z)$ it follows that

$$
F(z)=z-\sum_{k=2}^{\infty} b_{k} z^{k}
$$

where

$$
b_{k}=\left(\frac{d+1}{d+k}\right) a_{k}
$$

Therefore, we have

$$
\begin{aligned}
& \sum_{k=2}^{\infty} k^{n}\{k-\alpha[1+\lambda(k-1)]\} c(\gamma, k) b_{k} \\
= & \sum_{k=2}^{\infty} k^{n}\{k-\alpha[1+\lambda(k-1)]\} c(\gamma, k)\left(\frac{d+1}{d+k}\right) a_{k} \\
\leq & \sum_{k=2}^{\infty} k^{n}\{k-\alpha[1+\lambda(k-1)]\} c(\gamma, k) a_{k} \\
\leq & (1-\alpha)
\end{aligned}
$$

since $f(z) \in T_{n}(\lambda, \alpha, \gamma)$. Hence, by Theorem $1, F(z) \in T_{n}(\lambda, \alpha, \gamma)$.
Theorem 10. Let the function $F(z)=z-\sum_{k=2}^{\infty} a_{k} z^{k}\left(a_{k} \geq 0\right)$ be in the class $T_{n}(\lambda, \alpha, \gamma)$ and let d be a real number such that $d>-1$. Then the function $f(z)$ defined by (7.1) is univalent in $|z|<R^{*}$, where

$$
\begin{equation*}
R^{*}=\inf _{k}\left[\frac{(d+1) k^{n-1}\{k-\alpha[1+\lambda(k-1)]\} c(\gamma, k)}{(d+k)(1-\alpha)}\right]^{\frac{1}{k-1}} \quad(k \geq 2) \tag{7.2}
\end{equation*}
$$

The result is sharp.
Proof. From (7.1), we have

$$
\begin{align*}
f(z) & =\frac{z^{1-d}\left[z^{d} F(z)\right]^{\prime}}{(d+1)} \quad(d \geq-1) \tag{7.3}\\
& =z-\sum_{k=2}^{\infty}\left(\frac{d+k}{d+1}\right) a_{k} z^{k} . \tag{7.4}
\end{align*}
$$

In order to obtain the required result it suffices to show that $\left|f^{\prime}(z)-1\right|<1$ in $|z|<R^{*}$. Now

$$
\left|f^{\prime}(z)-1\right| \leq \sum_{k=2}^{\infty} \frac{k(d+k)}{(d+1)} a_{k}|z|^{k-1}
$$

Thus $\left|f^{\prime}(z)-1\right|<1$ if

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{k(d+k)}{(d+1)} a_{k}|z|^{k-1}<1 . \tag{7.5}
\end{equation*}
$$

Hence, by using (6.3), (7.5) will be satisfied if

$$
\frac{k(d+k)|z|^{k-1}}{(d+1)} \leq \frac{k^{n}\{k-\alpha[1+\lambda(k-1)]\} c(\gamma, k)}{(1-\alpha)} \quad(k \geq 2)
$$

or if

$$
\begin{equation*}
|z| \leq\left[\frac{(d+1) k^{n-1}\{k-\alpha[1+\lambda(k-1)]\} c(\gamma, k)}{(d+k)(1-\alpha)}\right]^{\frac{1}{k-1}} \quad(k \geq 2) . \tag{7.6}
\end{equation*}
$$

Therefore $f(z)$ is univalent in $|z|<R^{*}$. Sharpness follows if we take

$$
\begin{equation*}
f(z)=z-\frac{(1-\alpha)(d+k)}{k^{n}\{k-\alpha[1+\lambda(k-1)]\} c(\gamma, k)(d+1)} z^{k} \quad(k \geq 2) . \tag{7.7}
\end{equation*}
$$

8. MODIFIED HADAMARD PRODUCTS

Let the functions $f_{j}(z)(j=1,2)$ be defined by (5.1). The modified Hadamard product of $f_{1}(z)$ and $f_{2}(z)$ is defined by

$$
\begin{equation*}
f_{1} * f_{2}(z)=z-\sum_{k=2}^{\infty} a_{k, 1} a_{k, 2} z^{k} \tag{8.1}
\end{equation*}
$$

Theorem 11. Let the functions $f_{j}(z)(j=1,2)$ defined by (5.1) be in the class $T_{n}(\lambda, \alpha, \gamma)\left(0 \leq \alpha<1,0 \leq \lambda<1,0 \leq \gamma \leq 1 / 2\right.$ and $\left.n \in N_{0}\right)$. Then $f_{1} * f_{2}(z)$ belongs to the class $T_{n}(\lambda, \beta(n, \lambda, \alpha, \gamma), \gamma)$, where

$$
\begin{equation*}
\beta(n, \lambda, \alpha, \gamma)=1-\frac{(1-\lambda)(1-\alpha)^{2}}{2^{n+1}\{2-\alpha(1+\lambda)\}^{2}(1-\gamma)-(1+\lambda)(1-\alpha)^{2}} \tag{8.2}
\end{equation*}
$$

The result is sharp.
Proof. Employing the technique used earlier by Schild and Silverman [12], we need to find the largest $\beta=\beta(n, \lambda, \alpha, \gamma)$ such that

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{k^{n}\{k-\beta[1+\lambda(k-1)]\} c(\gamma, k)}{(1-\beta)} a_{k, 1} a_{k, 2} \leq 1 \tag{8.3}
\end{equation*}
$$

Since

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{k^{n}\{k-\alpha[1+\lambda(k-1)]\} c(\gamma, k)}{(1-\alpha)} a_{k, 1} \leq 1 \tag{8.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{k^{n}\{k-\alpha[1+\lambda(k-1)]\} c(\gamma, k)}{(1-\alpha)} a_{k, 2} \leq 1 \tag{8.5}
\end{equation*}
$$

by the Cauchy-Schwarz inequality we have

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{k^{n}\{k-\alpha[1+\lambda(k-1)]\} c(\gamma, k)}{(1-\alpha)} \sqrt{a_{k, 1} a_{k, 2}} \leq 1 \tag{8.6}
\end{equation*}
$$

Thus it is sufficient to show that

$$
\begin{gather*}
\frac{k^{n}\{k-\beta[1+\lambda(k-1)]\} c(\gamma, k)}{(1-\beta)} a_{k, 1} a_{k, 2} \tag{8.7}\\
\leq \frac{k^{n}\{k-\alpha[1+\lambda(k-1)]\} c(\gamma, k)}{(1-\alpha)} \sqrt{a_{k, 1} a_{k, 2}} \quad(k \geq 2),
\end{gather*}
$$

that is that

$$
\begin{equation*}
\sqrt{a_{k, 1} a_{k, 2}} \leq \frac{(1-\beta)\{k-\alpha[1+\lambda(k-1)]\}}{(1-\alpha)\{k-\beta[1+\lambda(k-1)]\}} \tag{8.8}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\sqrt{a_{k, 1} a_{k, 2}} \leq \frac{(1-\alpha)}{k^{n}\{k-\alpha[1+\lambda(k-1)]\} c(\gamma, k)} \quad(k \geq 2) . \tag{8.9}
\end{equation*}
$$

Consequently, we need only to prove that

$$
\begin{equation*}
\frac{(1-\alpha)}{k^{n}\{k-\alpha[1+\lambda(k-1)]\} c(\gamma, k)} \leq \frac{(1-\beta)\{k-\alpha[1+\lambda(k-1)]\}}{(1-\alpha)\{k-\beta[1+\lambda(k-1)]\}}, \tag{8.10}
\end{equation*}
$$

or equivalently, that

$$
\begin{equation*}
\beta \leq 1-\frac{(k-1)(1-\lambda)(1-\alpha)^{2}}{k^{n}\{k-\alpha[1+\lambda(k-1)]\}^{2} c(\gamma, k)-[1+\lambda(k-1)](1-\alpha)^{2}} . \tag{8.11}
\end{equation*}
$$

Since
(8.12) $A(k)=1-\frac{(k-1)(1-\lambda)(1-\alpha)^{2}}{\left.k^{n}\{k-\alpha[1+\lambda(k-1)])\right\}^{2} c(\gamma, k)-[1+\lambda(k-1)](1-\alpha)^{2}}$
is an increasing function of $k(k \geq 2)$, letting $k=2$ in (8.12) we obtain

$$
\begin{equation*}
\beta \leq A(2)=1-\frac{(1-\lambda)(1-\alpha)^{2}}{2^{n+1}\{2-\alpha[1+\lambda]\}^{2}(1-\gamma)-(1+\lambda)(1-\alpha)^{2}}, \tag{8.13}
\end{equation*}
$$

which completes the proof of Theorem 11.
Finally, by taking the functions $f_{j}(z)$ given by

$$
\begin{equation*}
f_{j}(z)=z-\frac{(1-\alpha)}{2^{n+1}\{2-\alpha[1+\lambda]\}(1-\gamma)} z^{2} \quad(j=1,2) \tag{8.14}
\end{equation*}
$$

we can see that the result is sharp.
Corollary 7. For $f_{1}(z)$ and $f_{2}(z)$ as in Theorem 11, we have

$$
\begin{equation*}
h(z)=z-\sum_{k=2}^{\infty} \sqrt{a_{k, 1} a_{k, 2}} z^{k} \tag{8.15}
\end{equation*}
$$

belongs to the class $T_{n}(\lambda, \alpha, \gamma)(0 \leq \alpha<1,0 \leq \lambda<1,0 \leq \gamma \leq 1 / 2$ and $n \in N_{0}$).

The result follows from the Cauchy-Schwarz inequality (8.6). It is sharp for the same functions as in Theorem 11.

Theorem 12. Let the function $f_{1}(z)$ defined by (5.1) be in the class $T_{n}(\lambda, \alpha, \gamma)\left(0 \leq \alpha<1,0 \leq \lambda<1,0 \leq \gamma \leq 1 / 2\right.$ and $\left.n \in N_{0}\right)$ and the function $f_{2}(z)$ defined by (5.1) be in the class $T_{n}(\lambda, \tau, \gamma) \quad(0 \leq \tau<1,0 \leq \lambda<1$, $0 \leq \gamma \leq 1 / 2$ and $\left.n \in N_{0}\right)$. Then $f_{1} * f_{2}(z) \in T_{n}(\lambda, \eta(n, \lambda, \alpha, \tau, \gamma), \gamma)$, where

$$
\begin{equation*}
\eta(n, \lambda, \alpha, \tau, \gamma)= \tag{8.16}
\end{equation*}
$$

$$
1-\frac{(1-\lambda)(1-\alpha)(1-\tau)}{2^{n+1}\{2-\alpha(1+\lambda)\}\{2-\tau(1+\lambda)\}(1-\gamma)-(1+\lambda)(1-\alpha)(1-\tau)} .
$$

The result is the best possible for the functions:

$$
\begin{equation*}
f_{1}(z)=z-\frac{(1-\alpha)}{2^{n+1}\{2-\alpha(1+\lambda)\}(1-\gamma)} z^{2} \tag{8.17}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{2}(z)=z-\frac{(1-\tau)}{2^{n+1}\{2-\tau(1+\lambda)\}(1-\gamma)} z^{2} . \tag{8.18}
\end{equation*}
$$

Proof. Proceeding as in the proof of Theorem 11, we get

$$
\begin{equation*}
\eta \leq B(k)= \tag{8.19}
\end{equation*}
$$

$1-(k-1)(1-\lambda)(1-\alpha)(1-\tau) /\left\{k^{n} c(\gamma, k)\{k-\alpha[1+\lambda(k-1)]\}\{k-\tau[1+\lambda(k-\right.$ $1)]\}-[1+\lambda(k-1)](1-\alpha)(1-\tau)\}(k \geq 2)$.

Since the function $B(k)$ is an increasing function of $k(k \geq 2)$, setting $k=2$ in (8.19), we get

$$
\begin{gather*}
\eta \leq B(2)=1- \tag{8.20}\\
\frac{(1-\lambda)(1-\alpha)(1-\tau)}{2^{n+1}(1-\gamma)\{2-\alpha(1+\lambda)\}\{2-\tau(1+\lambda)\}-(1+\lambda)(1-\alpha)(1-\tau)} .
\end{gather*}
$$

This completes the proof of Theorem 12.
Corollary 8. Let the functions $f_{j}(z)(j=1,2,3)$ defined by (5.1) be in the class $T_{n}(\lambda, \alpha, \gamma)\left(0 \leq \alpha<1,0 \leq \lambda<1,0 \leq \gamma \leq 1 / 2\right.$ and $\left.n \in N_{0}\right)$. Then $f_{1} * f_{2} * f_{3}(z) \in T_{n}(\lambda, \xi(n, \lambda, \alpha, \gamma), \gamma)$, where

$$
\begin{equation*}
\xi(n, \lambda, \alpha, \gamma)= \tag{8.21}
\end{equation*}
$$

$$
1-\frac{(1-\lambda)(1-\alpha)^{3}}{4^{n+1}\{2-\alpha(1+\lambda)\}^{3}(1-\gamma)^{2}-(1+\lambda)(1-\alpha)^{3}}
$$

The result is best possible for the functions

$$
\begin{equation*}
f_{j}(z)=z-\frac{(1-\alpha)}{2^{n+1}\{2-\alpha(1+\lambda)\}(1-\gamma)} z^{2} \quad(j=1,2,3) \tag{8.22}
\end{equation*}
$$

Proof. From Theorem 11, we have $f_{1} * f_{2}(z) \in T_{n}(\lambda, \beta(n, \lambda, \alpha, \gamma), \gamma)$), where $\beta(n, \lambda, \alpha, \gamma)$ is given by (8.2). We now use Theorem 12 , we get $f_{1} * f_{2} * f_{3}(z)$ $\in T_{n}(\lambda, \xi(n, \lambda, \alpha, \gamma), \gamma)$, where

$$
\begin{gathered}
\xi(n, \lambda, \alpha, \gamma)= \\
1-\frac{(1-\lambda)(1-\alpha)(1-\beta)}{2^{n} c(\gamma, 2)\{2-\alpha(1+\lambda)\}\{2-\beta(1+\lambda)\}-(1+\lambda)(1-\alpha)(1-\beta)} \\
\\
\xi(n, \lambda, \alpha, \gamma)=1-\frac{(1-\lambda)(1-\alpha)^{3}}{4^{n+1}\{2-\alpha(1+\lambda)\}^{3}-(1+\lambda)(1-\alpha)^{3}}
\end{gathered}
$$

This completes the proof of Corollary 8.
THEOREM 13. Let the functions $f_{j}(z)(j=1,2)$ defined by (5.1) be in the class $T_{n}(\lambda, \alpha, \gamma)\left(0 \leq \alpha<1,0 \leq \lambda<1,0 \leq \gamma \leq 1 / 2\right.$ and $\left.n \in N_{0}\right)$. Then the function

$$
\begin{equation*}
h(z)=z-\sum_{k=2}^{\infty}\left(a_{k, 1}^{2}+a_{k, 2}^{2}\right) z^{k} \tag{8.23}
\end{equation*}
$$

belongs to the class $T_{n}(\lambda, \psi(n, \lambda, \alpha, \gamma), \gamma)$ where

$$
\begin{equation*}
\psi(n, \lambda, \alpha, \gamma)=1-\frac{(1-\lambda)(1-\alpha)^{2}}{2^{n}\{2-\alpha(1+\lambda)\}^{2}(1-\gamma)-(1+\lambda)(1-\alpha)^{2}} \tag{8.24}
\end{equation*}
$$

The result is sharp for the functions $f_{j}(z)(j=1,2)$ defined by (8.14).
Proof. By virtue of Theorem 1, we obtain

$$
\begin{align*}
& \sum_{k=2}^{\infty}\left[\frac{k^{n}\{k-\alpha[1+\lambda(k-1)]\}}{(1-\alpha)}\right]^{2}[c(\gamma, k)]^{2} a_{k, 1}^{2} \tag{8.25}\\
& \leq\left[\sum_{k=2}^{\infty} \frac{k^{n}\{k-\alpha[1+\lambda(k-1)]\}}{(1-\alpha)} c(\gamma, k) a_{k, 1}\right]^{2} \leq 1
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{k=2}^{\infty}\left[\frac{k^{n}\{k-\alpha[1+\lambda(k-1)]\}}{(1-\alpha)}\right]^{2}[c(\gamma, k)]^{2} a_{k, 2}^{2} \tag{8.26}\\
& \leq\left[\sum_{k=2}^{\infty} \frac{k^{n}\{k-\alpha[1+\lambda(k-1)]\}}{(1-\alpha)} c(\gamma, k) a_{k, 2}\right]^{2} \leq 1
\end{align*}
$$

It follows from (8.25) and (8.26) that

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{1}{2}\left[\frac{k^{n}\{k-\alpha[1+\lambda(k-1)]\}}{(1-\alpha)}\right]^{2}[c(\gamma, k)]^{2}\left(a_{k, 1}^{2}+a_{k, 2}^{2}\right) \leq 1 \tag{8.27}
\end{equation*}
$$

Therefore we need to find the largest $\psi=\psi(n, \lambda, \alpha, \gamma)$ such that

$$
\begin{align*}
& \frac{k^{n}\{k-\psi[1+\lambda(k-1)]\}}{(1-\psi)} \tag{8.28}\\
\leq & \frac{1}{2}\left[\frac{k^{n}\{k-\alpha[1+\lambda(k-1)]\}}{(1-\alpha)}\right]^{2} c(\gamma, k) \quad(k \geq 2) .
\end{align*}
$$

that is, that

$$
\begin{equation*}
\psi \leq 1-\frac{2(1-\lambda)(k-1)(1-\alpha)^{2}}{k^{n}\{k-\alpha[1+\lambda(k-1)]\}^{2} c(\gamma, k)-2[1+\lambda(k-1)](1-\alpha)^{2}} \tag{8.29}
\end{equation*}
$$

$$
(k \geq 2)
$$

Since

$$
\begin{equation*}
D(k)=1-\frac{2(1-\lambda)(k-1)(1-\alpha)^{2}}{k^{n}\{k-\alpha[1+\lambda(k-1)]\}^{2} c(\gamma, k)-2[1+\lambda(k-1)](1-\alpha)^{2}} \tag{8.30}
\end{equation*}
$$

is an increasing function of $k(k \geq 2)$ for $0 \leq \alpha<1,0 \leq \lambda<1,0 \leq \gamma \leq 1 / 2$ and $n \in N_{0}$, we readily have

$$
\begin{equation*}
\psi \leq 1-\frac{(1-\lambda)(1-\alpha)^{2}}{\left.2^{n}\{2-\alpha[1+\lambda)]\right\}^{2}(1-\gamma)-(1+\lambda)(1-\alpha)^{2}} \tag{8.31}
\end{equation*}
$$

which completes the proof of Theorem 13.

REFERENCES

[1] Altintas, O. and Owa, S., On subclasses of univalent functions with negative coefficients, Pusan Kyongnam Math. J., 4 (1988), no. 4, 41-46.
[2] Aouf, M.K. and Cho, N. K., On a certain subclass of analytic functions with negative coefficients, Tr. J. Math., 22 (1988), no. 1, 15-32.
[3] Aouf, M.K. and Salagean, G.S., Certain subclasses of prestarlike functions with negative coefficients, Studia Univ. Babeş-Bolyai, Mathematica, 39 (1994), no. 1, 19-30.
[4] Aouf, M. K. and Salagean, G.S., Prestarlike functions with negative coefficients, Rev. Roum. Math. Pures Appl., 44 (1999), no. 4, 493-502.
[5] Hur, M.D. and Oh, G.M., On a certain class of analytic functions with negative coefficients, Pusan Kyongnam Math. J., 5 (1989), 69-80.
[6] MacGregor, T.H., The radius of convexity for starlike functions of order 1/2, Proc. Amer. Math. Soc., 14 (1963), 71-76.
[7] Owa, S. and Uralegaddi, B.A., A class of functions α-prestarlike of order β, Bull. Korean Math. Soc., 21 (1984), 77-85.
[8] Pinchuk, B., On starlike and convex functions of order α, Duke Math. J., 35 (1968), 721-734.
[9] Robertson, M. S., On the theory of univalent functions, Ann. Math., 37 (1936), 374408.
[10] Salagean, G.S., Subclasses of univalent functions, Lect. Notes in Math. (SpringerVerlag), 1013 (1983), pp. 362-372.
[11] Schild, A., On starlike functions of order α, Amer. J. Math., 87 (1965), 65-70.
[12] Schild, A. and Silverman, H., Convolutions of univalent functions with negative coefficients, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 29 (1975), 99-107.
[13] Sheil-Small, T., Silverman, H. and Silvia, E., Convolution multipliers and starlike functions, J. Analyse Math., 41 (1983), 182-192.
[14] Silverman, H., Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51 (1975), 109-116.
[15] Silverman, H. and Silvia, E., Prestarlike functions with negative coefficients, J. Math. Math. Sci., 2 (1979), 427-439.
[16] Silverman, H. and Silvia, E., Subclasses of prestarlike functions, Math. Japon., 29 (1984), no. 6, 929-935.
[17] Uralegaddi, B.A. and Sarangi S.M., Certain generalization of prestarlike functions with negative coefficients, Ganita, 34 (1983), 99-105.

Received September 30, 2001
Kingdom of Saudi Arabia
Box. 41661
Jeddah. 21531

