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TRANSPORT OF STRUCTURE VIA MÖBIUS FUNCTIONS

Alexandru-David Abrudan şi Andrei Mărcus,

Abstract. We show that certain group or field structures appearing in high
school Algebra textbooks arise by transport of known structures via Möbius
functions.
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1. INTRODUCTION

A widely encountered problem in the Algebra section of late high school
can be identified as:

Given operations on a set, show that the structure is isomorphic to a known
structure, knowing that the isomorphism has a certain form.

We will consider here the following two types of problems:

Type 1. On the set R of real numbers consider the commutative operations:

x ⊥ y = a1x+ a1y + b1

x ∗ y = a2xy + b2x+ b2y + c2

Find the real parameters ai, bi, ci such that the structure (R,⊥, ∗) is a field.
Find also the parameters α and β such that a function of the form

f : (R,⊥, ∗)→ (R,+, ·), f(x) = αx+ β

is a field isomorphism. Here we assume that a1, a2 6= 0.

Type 2. On the interval G ⊂ R consider the commutative operation:

x ∗ y =
α1xy + β1x+ β1y + γ1

α2xy + β2x+ β2y + γ2

Find the parameters such that the structure (G, ∗) is an abelian group. Find
also the parameters a, b, c, d such that a function of the form

f : (G, ∗)→ (R∗+, ·), f(x) =
ax+ b

cx+ d

is a group isomorphism. Here we assume that c 6= 0.

A read through a set of twelfth grade textbooks yielded the following exer-
cises, among many similar ones.
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Example 1.1. Let a, b, c ∈ R. On R we define the following operations

x ⊥ y = ax+ by − 2,

x ∗ y = xy − 2x− 2y + c.

(1) Find a, b, c such that (R,⊥, ∗) is a field.
(2) Find α, β ∈ R such that the function f : R → R, f(x) = αx + β is a

field isomorphism between (R,+, ·) and (R,⊥, ∗).
[2, Exercise 7, p. 67]

Example 1.2. On the set Z of integers consider the operations

x ⊥ y = x+ y − 2

x ∗ y = xy − 2(x+ y) + 6

Prove that a function of the form f : Z → Z, f(x) = ax + b is a ring isomor-
phism between (Z,⊥, ∗) and (Z,+, ·).

[2, Test 1, Exercise 1, p. 68]

Example 1.3. Prove that the set G = (−1, 1) together with the operation
x∗y = x+y

1+xy forms a group . Show also that (G, ∗) and (R∗+, ·) are isomorphic.

[3, Exercise 2, p. 42]

Example 1.4. On the interval G = (0, 2) define the operation x ◦ y =
xy

xy−x−y+2 .

(1) Show that (G, ◦) is an abelian group.
(2) Show that f : (0, 2)→ (0,∞), f(x) = 2−x

x is a group isomorphism.

[3, Exercise 8, p. 44]

There are definitely many other examples and variants, but these are already
enough as a motivation for the present article. We are going to discuss these
problems by systematically using transport of structure. Note that this notion
is presented in some of the textbooks, see for instance [1, Section 3.3] and [4, p.
48-49]. We show here that the above examples and similar ones are obtained
by transport of structure via Möbius functions.

2. TYPE 1: FIELDS ISOMORPHIC TO THE FIELD OF REAL NUMBERS

As in the Introduction, on R we consider the operations:

x ⊥ y = a1x+ a1y + b1

x ∗ y = a2xy + b2x+ b2y + c2

and the bijective function

f : (R,⊥, ∗)→ (R,+, ·), f(x) = αx+ β,
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so α 6= 0. The parameters a1, b1, a2, b2, c2 ∈ R will be determined from the
assumption that f is a field isomorphism, that is, for all x, y ∈ R we have:

f(x ⊥ y) = f(x) + f(y)

f(x ∗ y) = f(x) · f(y).

We have f−1(x) = 1
αx−

β
α , hence

x ⊥ y = f−1(f(x) + f(y))

x ∗ y = f−1(f(x) · f(y)).

Easy computations will yield

x ⊥ y = f−1(α(x+ y) + 2β) =
1

α
(α(x+ y) + 2β)− β

α
= x+ y +

β

α
and

x ∗ y = f−1((αx+ β)(αy + β))

= f−1(α2xy + αβ(x+ y) + β2)

=
1

α
(α2xy + αβx+ αβy + β2)− β

α

= αxy + βx+ βy +
β2 − β
α

.

Therefore, it follows that if

x ⊥ y = x+ y +
β

α
(1)

x ∗ y = αxy + βx+ βy +
β2 − β
α

,(2)

then the function

f : (R,⊥, ∗)→ (R,+, ·), f(x) = αx+ β

is a field isomorphism.

Remark 1. The zero element of the field (R,⊥, ∗) is f−1(0) = −β
α and its

unit element is f−1(1) = 1−β
α .

Actually, we have the following converse result, which is a kind of uniqueness
property.

Theorem 1. Assume that (R,⊥, ∗) is a field. Then (R,⊥, ∗) is isomorphic
to (R,+, ·).

Proof. We start by considering d to be the neutral element of (R,⊥), that
is, x ⊥ d = x for all x ∈ R, which explicitly translates to

a1x+ a1d+ b1 = x⇔ x(a1 − 1) + a1d+ b1 = 0

⇔ a1 = 1 and d = −b1.
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Therefore, ⊥ has the form x ⊥ y = x+ y + b1, with d = −b1 being its neutral
element. Considering x′ to be the symmetric of x with regard to ⊥, short
computations will yield that x′ = −2b1 − x.

At this point, we already have that (R,⊥) ∼= (R,+), the isomorphism being
f : R→ R, f(x) = x− b1.

Next, consider e being the neutral element with respect to ∗. It follows that
for all x ∈ R

a2xe+ b2x+ b2e+ c2 = x⇔ x(a2e+ b2 − 1) + b2e+ c2 = 0

⇔ e =
1− b2
a2

= −c2

b2

Note that a2 6= 0. Computing this will yield that

e =
b22 − b2
a2

.

It follows that

x ∗ y = a2xy + b2(x+ y) +
b22 − b2
a2

.

For the sake of ease, rewrite the expression of ⊥ as

x ⊥ y = x+ y + d,

having −d as a neutral (zero) element. Keeping in mind that (R,⊥, ∗) is a
field, it is known that x ∗ (−d) = (−d) for all x ∈ R. This directly translates
to

−a2dx+ b2x− b2d+
b22 − b2
a2

+ d = 0,

that is,

x(b2 − a2d) +
b22 − b2 − a2b2d+ a2d

a2
= 0.

Since this happens for all x ∈ R, it follows that

b2 = a2d and a2
2d

2 − a2d− a2
2d

2 + ad = 0.

Finally, dropping the indices for ease of writing, this yields the final forms of
the given operations:

x ⊥ y = x+ y + d(3)

x ∗ y = axy + ad(x+ y) +
a2d2 − ad

a
.(4)

with the zero element being −d, and the unit element being 1−ad
a .

Comparing (3) and (4) with (1) and (2), we obtain that the map

f : (R,⊥, ∗)→ (R,+, ·), f(x) = αx+ β,

is a field isomorphism for α = a and β = ad, that is, f(x) = ax+ ad. �
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Remark 2. It is clear from the above calculations that instead of the field
(R,+, ·) of real numbers, we could have started with any field (F,+, ·) and
obtain the same results.

Actually, we may even start with an integral domain (A,+, ·), but in that
case we must have that α is an invertible element of A.

3. TYPE 2: GROUPS ISOMORPHIC TO (R∗+, ·)

Ias in the Introduction, consider an interval G ⊂ R and the operation

x ∗ y =
α1xy + β1x+ β1y + γ1

α2xy + β2x+ β2y + γ2
.

As above, the parameters will be determined from hypothesis that the map

f : (G, ∗)→ (R∗+, ·), f(x) =
ax+ b

cx+ d

is a continuous group isomorphism, where we assume that c 6= 0.

We first recall some well-known facts on the group of Möbius transforma-
tions. Consider the set of functions

M = {f : R→ R | f(x) =
ax+ b

cx+ d
, ad− bc 6= 0},

with forms a group together with composition of functions. Consider also the
group morphism

φ : (GL2(R), ·)→ (M, ◦), φ(A) =
ax+ b

cx+ d
.

where A =

(
a b
c d

)
. The kernel of this morphism is, by definition,

Ker(φ) = {A | φ(A) = 1R̄}.
This above condition translates to

ax+ b = cx2 + dx, for all x ∈ R,
from which we get c = b = 0, and a = d ∈ R∗. It follows that

Ker(φ) = Z(GL2(R)) = {aI2 | a ∈ R∗}.
Therefore, by the First Isomorphism Theorem, φ induces the isomorphism

(PGL2(R), ·) ' (M, ◦).

We have that A−1 = 1
detA

(
d −b
−c a

)
. It follows that if φ(A) = f , then

f−1(x) =
dx− b
−cx+ a

.

Remark 3. Given the above isomorphism between the Möbius group and
the projective linear group of degree 2, we see that it is no loss if we assume
that c = 1.
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Returning to our problem, the following step is to explicitly determine the
operation ∗ from the group morphism condition f(x ∗ y) = f(x)f(y). On one
hand, directly computing the previous expression will yield

(5)
ax ∗ y + b

cx ∗ y + d
=
ax+ b

cx+ d
· ay + b

cy + d
=
a2xy + abx+ aby + b2

c2xy + cdx+ cdy + d2

On the other hand, we have

x ∗ y = f−1(f(x)f(y)).

Applying this to the equation (5), it follows that

x ∗ y =
d · a

2xy+abx+aby+b2

c2xy+cdx+cdy+d2
− b

−c · a2xy+abx+aby+b2

c2xy+cdx+cdy+d2
+ a

=
(da2 − bc2)xy + (abd− bcd)x+ (abd− bcd)y + db2 − bd2

(ac2 − ca2)xy + (acd− abc)x+ (acd− abc)y + da2 − cb2
,

where recall that we may assume that c = 1.
Now that the operation has been determined, the next step is determining

the interval G. The condition of f being continuous yields

f(x) = 0⇔ x = − b
a

and

f(x) =∞⇔ x = −d
c
.

Therefore, depending on whichever is the greatest value, G can either be of
form (− b

a ,−
c
d) or of the form (− c

d ,−
b
a). Since c 6= 0, it follows that G is an

interval bounded at least at one end.
Finally, the equation f(x) = y ∈ (0,∞) will yield that x = dy−b

−cy+a . This

solution does not exist for y = a
c . Therefore, a

c /∈ (0,∞). But since we may
assume that c = 1, it follows that we must take a ≤ 0.

As a conclusion to the current section, if

x ∗ y =
(da2 − b)xy + (abd− bd)x+ (abd− bd)y + db2 − bd2

(a− a2)xy + (ad− ab)x+ (ad− ab)y + da2 − b2

is an operation defined on the interval G = (− b
a ,−

d
c ) or G = (−d

c ,−
b
a), then

the map

f : (G, ∗)→ (0,∞), f(x) =
ax+ b

x+ d

is a group isomorphism, where a ≤ 0.

Remark 4. The neutral element of (G, ∗) is f−1(1) = d−b
a−c .
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4. APPLICATIONS

As applications, we will show that each of the examples presented in the
introduction fits into one on the two types.

Example 1.1 clearly fits the first pattern with a1 = a = b, b1 = −2, a2 = 1,
b2 = −2, c2 = c. Applying the reasoning in the first section will yield the
isomorphism f(x) = x− 2.

Same goes for Example 1.2, having a1 = 1, b1 = −2, a2 = 1, b2 = −2,
c2 = 6. Analogously, the isomorphism in this case is f(x) = x− 2.

As far as Example 1.3 goes, it fits the second pattern, having α1 = 0, β1 = 1,
γ1 = 0, α2 = 1, β2 = 0, γ2 = 1.

Similarly for Example 1.4, we have α1 = 1, β1 = γ1 = 0, α2 = 1, β2 = −1,
γ2 = 2. Their respective isomorphisms can also be determined using the above
algorithms.

Finally, we leave to the reader the following question inspired by Theorem
1. With the notations used in the previous section, assume that (G, ∗) is an
abelian group. Does it follow that (G, ∗) is isomorphic to (R∗+, ·)?
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