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PROPERTIES OF RANDOM WALKS IN DIMENSION ONE

MIHAI IANCU and HANNELORE LISEI

Abstract. In this paper we present some properties of random walks in dimen-
sion one. First, we consider properties of the random walk on the integer axis,
regarding the computation of various probabilities. We present the method of
counting paths, the reflection principle and some techniques to prove combina-
torial formulas. Second, we consider a few properties of the random walk on the
circle. Some illustrative examples are also given.
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1. INTRODUCTION

A random walk is a stochastic model, describing a succession of random
steps on some mathematical space, such as the integer axis of numbers, equidis-
tant points placed on the circle, the points having integer coordinates in the
2 or 3-dimensional Euclidean space, the vertices of a graph, etc. The path
traced by a molecule as it travels in a liquid or a gas, the price of a fluctuating
stock, the financial status of a gambler and many other similar models can
be approximated by random walk models. Random walks have, for example,
applications in computer science, physics, chemistry, biology, economics etc.
For a detailed account of the theory and its applications we refer to the works
[3, 5, 6, 9].

This paper aims to present:
• a few properties of the random walk on the integer axis and on the circle,
• the reflection principle,
• methods of computing probabilities by counting paths of the random walk
represented in the Cartesian coordinate system,
• techniques to prove combinatorial formulas by using the number of paths of
a random walk,
• examples such that the theory can be followed more easier.

The paper also contains an elementary proof for the result of Pólya [8],
which states that a symmetric random walk along the integer axis, which starts
at the origin, returns almost surely to the origin (see Theorem 1). The proof
avoids the classic method of using power series expansions of certain functions,
but uses the method of equating the coefficients of polynomial functions and
convergence properties of sequences.
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The results of this paper can be understood by scholars or students, teachers
or researchers, who have basic notions of probability theory. The probabilis-
tic notions and notations used within this paper are briefly presented in the
Appendix section.

The following notation is very often used throughout this paper:

Ck
n =

n!

k!(n− k)!
, for each n ∈ N and k ∈ {0, 1, . . . , n}, where 0! = 1.

2. RANDOM WALK ON A LINE

Let p ∈ (0, 1). A random walk, which starts at some k ∈ Z, takes place
along the axis of numbers, from one integer to another one, in the following
way: For each step, we go with probability p to the first larger integer and
with probability 1 − p to the first smaller integer (see Figure 1). Each step
is independent of the previous one. If p = 1

2 , then the random walk is called
symmetric.

Fig. 1 – Random walk on the integer axis starting at 0.

Denote by Sn the position of the random walk on the integer line after
n ∈ N steps, which starts at some k ∈ Z. Note, that Sn is a discrete random
variable taking values in the set {k−n, . . . , k−1, k, k+1, . . . , k+n}. Obviously,
S0 = k, P (Sn+1 = j + 1|Sn = j) = p and P (Sn+1 = j − 1|Sn = j) = 1− p, for
j ∈ {k − n, . . . , k − 1, k, k + 1, . . . , k + n}.

Let (Xn)n≥1 be a sequence of independent discrete random variables having
the distribution

P (Xn = 1) = p and P (Xn = −1) = 1− p, for each n ≥ 1.

We have

Sn − S0 = X1 +X2 + · · ·+Xn, for each n ≥ 1.

Proposition 1. For p ∈ (0, 1), n ∈ N and j ∈ Z with |j| ≤ n given, the
probability to end up in the integer number j after a random walk of n steps,
which starts at 0, is

P (Sn = j) = C
n+j
2

n p
n+j
2 (1− p)

n−j
2 ,

if j and n have the same parity, and the probability to end up in the integer
number j is P (Sn = j) = 0, if j and n have opposite parity.
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j -4 -3 -2 -1 0 1 2 3 4
P (S0 = j) 1

P (S1 = j)
1

2

1

2

P (S2 = j)
1

22
2

22
1

22

P (S3 = j)
1

23
3

23
3

23
1

23

P (S4 = j)
1

24
4

24
6

24
4

24
1

24

Table 1 – Probabilities for a symmetric random walk on the integer line.

Proof. Denote by nR the number of steps taken by the random walk right-
ward and by nL the number of steps taken leftward. Obviously, nR, nL ∈
{0, 1, . . . , n} and we have

(1) nR + nL = n and nR − nL = j.

If j and n have the same parity, we have

nR =
n+ j

2
and nL =

n− j
2

.

If j and n do not have the same parity, there are no integer numbers nR and
nL satisfying (1), in fact there exists no random walk of n steps that ends up
in j.

Every random walk of n steps can be identified with n Bernoulli trials
(see Proposition 6). Hence, the probability to make nR steps rightward and
nL = n− nR steps leftward is CnR

n pnR(1− p)nL .
Therefore, if j and n have the same parity, then the probability to end up

in j is C
n+j
2

n p
n+j
2 (1 − p)

n−j
2 , and, if j and n have opposite parity, then the

probability to end up in j is 0. �

Example 1. For a random walk on the integer axis, which starts at 0, we
compute:
(1) P (S6 = S10) = P (X7 +X8 +X9 +X10 = 0) = 6p2(1− p)2;
(2) P (S5 = −1, S11 = 3) = P (S5 = −1, S11 − S5 = 4)

= P (X1 +X2 +X3 +X4 +X5 = −1, X6 +X7 +X8 +X9 +X10 +X11 = 4)

= C2
5p

2(1− p)3 ·C5
6p

5(1− p) = 60p7(1− p)4;
(3) P (S6 = S11) = P (X7 +X8 +X9 +X10 +X11 = 0) = 0.

Representation of a random walk on the integer line: We represent
a random walk as a continuous path, or polygonal line, in the Cartesian coor-
dinate system, where the horizontal axis represents the discrete (time) steps
and the vertical axis represents the position of the random walk, i.e., the point
(j, Sj) indicates that after j steps the random walk is at the position Sj on
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the integer line. Let n ∈ N∗. We plot the points (0, S0), (1, S1), . . . , (n, Sn),
and then for each j ∈ {0, . . . , n− 1}, we connect (j, Sj) and (j + 1, Sj+1) with
a straight line segment (see [3], [6]). We shall identify each random walk of
n steps along the integer axis, which starts at S0 = k, with the path that
starts at (0, k) and in each step connects the points (j, Sj) and (j + 1, Sj+1),
j ∈ {0, . . . , n − 1} (see Figure 2 for k = 2 and n = 7). For n = 0 the path is
just the point (0, k).

We observe that Sn − S0 denotes the difference between the number of
rightward steps and the number of leftward steps after n steps.

Fig. 2 – A path of a random walk.

Fig. 3 – For a 6 steps symmetric random walk on the integer line, starting at 0: 8 paths
connecting the points with coordinates (1, 1) and (3, 1).

Example 2. The probability that after 6 steps a symmetric random walk on

the integer line, which starts at 0, passed the number 1 exactly 2 times is
16

26
.

To compute this we use the representation with paths and count the number
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of all possible paths: there are 8 paths connecting the points with coordinates
(1, 1) and (3, 1) (see Figure 3), 4 paths connecting the points with coordinates
(1, 1) and (5, 1) and 4 paths connecting the points with coordinates (3, 1) and
(5, 1).

2.1. The reflection principle. In the following, we consider paths that rep-
resent random walks on the integer line.

Proposition 2. Let k,m ∈ Z and l ∈ N.
(i) A necessary and sufficient condition for the existence of a path that starts
at (0, k) and ends at (l,m) is: |m− k| ≤ l and l +m− k is an even number.
(ii) Suppose that |m − k| ≤ l and l + m − k is an even number. Then, the

number of paths that start at (0, k) and end up at (l,m) is C
l+m−k

2
l .

Proof. (i) Assume that there exists a path that starts at (0, k) and ends at
(l,m), i.e. the random walk starts at position k, makes l steps and ends up
at the position m: Denote by nR the number of steps taken by the random
walk rightward and by nL the number of steps taken leftward. Obviously,
nR, nL ∈ {0, 1, . . . , l} and we have

(2) nR + nL = l and nR − nL = m− k.
Hence,

2nR = l +m− k and 2nL = l −m+ k,

which implies that |m− k| ≤ l and l +m− k is an even number.
Assume now that |m − k| ≤ l and l + m − k is an even number. Consider

the random walk that starts at position k and makes nR = l+m−k
2 steps to the

right and nL = l−m+k
2 to the left. Obviously the corresponding path of this

random walk will start at (0, k) and end up at (l,m).
(ii) Using the results of (i) we have that the number of paths of length l with

nR steps rightward and nL = l − nR steps leftward is CnR
l = C

l+m−k
2

l (see
Proposition 6). �

The following result, called the reflection principle, is a useful tool in the
study of random walks along the axis (see [1], [6, Section 10.3], [3, Section
III.1]).

Proposition 3. Let k, l,m ∈ N. There is a one to one correspondence
between:
• the paths that start at (0, k), end at (l,m), and cross or touch the x-axis;
• the paths that start at (0,−k) and end at (l,m).

Proof. The case k = 0 is trivial. Suppose that k ≥ 1. Let Γ be a path
that starts at (0, k), ends at (l,m), and crosses or touches the x-axis. Let
n ∈ {1, . . . , l} be the smallest integer such that (n, 0) ∈ Γ. We observe that Γ
is the union of a path Γ′ that starts at (0, k) and ends at (n, 0) and a path Γ′′

that starts at (n, 0) and ends at (l,m). Let Γ̃′ be the reflection of Γ′ across
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the x-axis (see Figure 4). We associate to Γ the path Γ̃ that is the union of

Γ̃′ and Γ′′. It is easy to verify that this correspondence is one to one.

Fig. 4 – The reflection principle applied for a path.

�

In the following we present some applications of the reflection principle (see
[3], [6]).

Remark 1. Let k, l,m ∈ N. In view of the reflection principle, we deduce
that for a symmetric random walk

P (Sl = m and ∃ n ∈ {0, 1, . . . , l} : Sn = 0|S0 = k) = P (Sl = m|S0 = −k).

Corollary 1. Let n ∈ N∗. The number of paths that start at (0, 0), end
at (2n, 0) and don’t cross or touch the x-axis, apart from the starting point
and the ending point, is 2

nC
n−1
2(n−1).

Proof. We note that the number of paths that start at (0, 0), end at (2n, 0)
and don’t cross or touch the x-axis, apart from the starting point and the
ending point, is twice the number of paths that start at (1, 1), end at (2n−1, 1)
and don’t cross or touch the x-axis, which is the same as the number of paths
that start at (0, 1), end at (2n − 2, 1) and don’t cross or touch the x-axis.
By the reflection principle, we deduce that the number of paths that start
at (0, 1), end at (2n − 2, 1) and cross or touch the x-axis is equal to the
number of paths that start at (0,−1) and end at (2n − 2, 1), which is Cn

2n−2
(by Proposition 2). Since the number of paths that start at (0, 1) and end
at (2n− 2, 1) is Cn−1

2n−2 (by Proposition 2), we have that the number of paths
that start at (1, 1), end at (2n − 1, 1) and don’t cross or touch the x-axis is
Cn−1
2n−2 − Cn

2n−2 = 1
nC

n−1
2(n−1). �

Corollary 2. Let n ∈ N∗. Then
n∑

k=1

2

k
Ck−1
2(k−1)C

n−k
2(n−k) = Cn

2n.
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Proof. The number of paths that start at (0, 0) and end at (2n, 0) is Cn
2n

(by Proposition 2). In the following, we shall count the number of these paths
in a different way. Let k ∈ {1, . . . , n}. By Corollary 1, we have that the
number of paths that start at (0, 0), end at (2k, 0) and don’t cross or touch

the x-axis, apart from the starting point and the ending point, is 2
kC

k−1
2(k−1).

The number of paths that start at (2k, 0) and end at (2n, 0) is the same as the
number of paths that start at (0,0) and end at (2n − 2k, 0). This number is

Cn−k
2(n−k) (by Proposition 2). We deduce that the number of paths that start at

(0, 0), end at (2n, 0) and cross or touch the x-axis for the first time at (2k, 0)

is 2
kC

k−1
2(k−1)C

n−k
2(n−k). Hence the number of paths that start at (0, 0) and end at

(2n, 0) is
∑n

k=1
2
kC

k−1
2(k−1)C

n−k
2(n−k). �

2.2. Return to the origin. Let n ∈ N∗. The number of all possible symmetric
random walks of 2n steps that start at 0 is 22n. Taking into account the
identification between the symmetric random walks and the paths, we have,
by Corollary 1, that the probability that a symmetric random walk of 2n steps,
which starts at 0, visits 0 again only at the last step is 1

n22n−1C
n−1
2(n−1).

Let N ∈ N∗. We denote

pN =
N∑

n=1

1

n22n−1
Cn−1
2(n−1).

For n ∈ {0, . . . , N} consider A2n to be the event that a symmetric random
walk starting at the origin returns for the first time to the origin at the step
2n. Obviously, these events are pairwise disjoint and

P (A2n) =
1

n22n−1
Cn−1
2(n−1).

By the properties of the probability function (see Definition 2)

pN =
2N∑
n=1

1

n22n−1
Cn−1
2(n−1) =

2N∑
n=1

P (A2n) = P (
2N⋃
n=1

A2n)

= P (”a symmetric random walk of 2N steps, starting at 0, visits 0 again”).

Hence, (pN )N≥1 is an increasing sequence of numbers in the interval (0, 1).
Moreover, by the convergence properties of the probability function (see
Proposition 5) we have

lim
N→∞

pN = lim
N→∞

P (
2N⋃
n=1

A2n) = P (
∞⋃
n=1

A2n)

= P (”a symmetric random walk, starting at 0, visits 0 again”).

We denote

lim
N→∞

pN = p̂.
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In the following, we present an elementary proof for the result of Pólya [8],
which states that a symmetric random walk along the integer axis, which
starts at the origin, returns almost surely to the origin (cf. [2], [4]). Instead of
the classic method of power series expansions of certain functions, we use the
method of equating the coefficients of polynomial functions and convergence
properties of sequences.

Theorem 1. The probability that a symmetric random walk along the
integer axis, which starts at the origin, returns to the origin is 1, i.e.

lim
N→∞

pN = lim
N→∞

N∑
n=1

1

n22n−1
Cn−1
2(n−1) = 1.

Proof. For every N ∈ N∗, we define

(3) FN (x) =
N∑
k=1

Ck−1
2(k−1)

xk

k
, x ∈ R.

Let n,N ∈ N∗ be such that N ≥ n. We note that the coefficient of xn

in 2FN (x)F ′N (x) is 2
∑n

k=1C
k−1
2(k−1)

1
kC

n−k
2(n−k), which is equal to Cn

2n, by Corol-

lary 2. By integrating, we deduce that the coefficient of xn+1 in F 2
N (x) is

Cn
2n

1
n+1 . On the other hand, we have that the coefficient of xn+1 in F 2

N (x) is∑n
k=1C

k−1
2(k−1)

1
kC

n−k
2(n−k)

1
n−k+1 .

In view of the above, we deduce that

(4)
n∑

k=1

Ck−1
2(k−1)

1

k
Cn−k
2(n−k)

1

n− k + 1
= Cn

2n

1

n+ 1
, for all n ∈ N∗.

Let N ∈ N be such that N ≥ 2. Using again the above discussion, we have
that

F 2
N (x) = FN+1(x)− x+ xN+2RN (x), x ∈ R,

where RN is a polynomial function. In the following, we shall take a closer
look at the coefficients in xN+2RN (x). For every m ∈ N with 2 ≤ m ≤ N , the
coefficient of xN+m in F 2

N (x) is

N∑
k=m

Ck−1
2(k−1)

1

k
CN+m−k−1
2(N+m−k−1)

1

N +m− k

which is positive and bounded above by

N+m−1∑
k=1

Ck−1
2(k−1)

1

k
CN+m−k−1
2(N+m−k−1)

1

N +m− k
= CN+m−1

2(N+m−1)
1

N +m
,

where the above equality follows from (4). Taking into account (3), we deduce
that

(5) 0 ≤ F 2
N (x)− FN+1(x) + x ≤ F2N (x)− FN+1(x), for all x ≥ 0.
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Recall that

pN =
N∑

n=1

1

n22n−1
Cn−1
2(n−1),

and thus pN = 2FN (14). Since (pN )N≥1 converges to p̂, we deduce, by taking

x = 1
4 and N →∞ in (5), that

(
p̂

2

)2

− p̂

2
+

1

4
= 0. Thus p̂ = 1. �

Remark 2. For every N ∈ N∗, let FN be given by (3). Let x ≥ 0. We
observe that (FN (x))N≥1 is an increasing sequence of non-negative numbers.
Let F (x) = lim

N→∞
FN (x) ∈ [0,∞]. If F (x) < ∞, then, by taking N → ∞ in

(5), we deduce that F (x) is a solution of the following equation

t2 − t+ x = 0.

Since ∆ = 1−4x, this equation has a solution only if x ≤ 1
4 . Hence, for x > 1

4 ,

we have F (x) = ∞. For x ∈ [0, 14 ], we note that F (x) ≤ F (14) = 1
2 (see the

proof of Theorem 1), hence F (x) = 1−
√
1−4x
2 . Thus, we have

lim
N→∞

N∑
k=1

Ck−1
2(k−1)

xk

k
=

{
1−
√
1−4x
2 , for x ∈ [0, 14 ],

∞, for x ∈ (14 ,∞).

Remark 3. Let p ∈ (0, 1). In the following, we consider the random walks
that start at 0 and, for each step, move rightward with probability p and
leftward with probability 1−p. Let n ∈ N∗. By Corollary 1, there are 2

nC
n−1
2(n−1)

possible random walks of 2n steps that end at 0 and don’t visit 0 except the
starting point and the ending point. Each one of these random walks takes
place with probability pn(1 − p)n, because n rightward steps and n leftward
steps are needed in order to end the walk of 2n steps at 0. Therefore, the
probability that a random walk of 2n steps visits 0 only at the last step is
2
nC

n−1
2(n−1)p

n(1− p)n.

For every N ∈ N∗, let

qN = 2FN (p(1− p)) =

N∑
k=1

2

k
Ck−1
2(k−1)p

k(1− p)k,

where FN is given by (3). Taking into account the above and adapting the
discussion at the beginning of Section 2.2, we deduce that, for every N ∈ N∗,
the probability that a random walk of 2N steps, which starts at 0, visits 0
again is qN . Since p(1 − p) ∈ (0, 14 ], it follows (by similar arguments as in
Remark 2) that

lim
N→∞

qN = 2F (p(1− p)) = 1−
√

1− 4p(1− p).
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In view of the above, we have

lim
N→∞

qN = 1− |2p− 1| =

{
2p, for p ∈ (0, 12 ]

2(1− p), for p ∈ (12 , 1).

The same result can be obtained by using power series expansions (see e.g.
[2], [4]).

In particular, a random walk along the integer axis, which starts at the
origin, returns to the origin with probability 1 if and only if p = 1

2 (i.e. the
random walk is symmetric).

3. RANDOM WALK ON A CIRCLE

Fig. 5 – Random walk on the circle.

In the following we study a random walk that takes place along a circle:
Let p ∈ (0, 1), m ∈ N∗ be given and let the integers 0, 1, . . . ,m− 1 be placed
equidistantly on a circle (anticlockwise). A random walk takes place along this
circle, from one integer to another one, in the following way: The walk starts
at 0. For each step, the random walk moves anticlockwise with probability
p to the closest integer and clockwise with probability 1 − p to the closest
integer, see Figure 5.

Denote by Zn the position of the random walk on the circle after n ∈ N
steps. Note, that Zn is a discrete random variable taking values in the set
{0, 1, . . . ,m− 1} and obviously, Z0 = 0.

Proposition 4. For p ∈ (0, 1), n ∈ N, m ∈ N∗ and j ∈ {0, 1, . . . ,m − 1}
given, the probability to end up in the position j after a random walk of n
steps is given by

P (Zn = j) =
∑
l∈Ij

C l
np

l(1− p)n−l,

where
Ij = {l ∈ {0, 1, . . . , n} : 2l − n (mod m) = j}

and P (Zn = j) = 0, if Ij = ∅.
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j 0 1 2 3
P (S0 = j) 1

P (S1 = j)
1

2

1

2

P (S2 = j)
2

22
2

22

P (S3 = j)
4

23
4

23

P (S4 = j)
8

24
8

24

Table 2 – Probabilities for a symmetric random walk on the circle with m = 4.

Proof. The random walk along the circle can be identified with the the
random walk along the axis, described in Proposition 1, by replacing each
integer of the axis with the corresponding remainder of the division by m.
Hence, the random walk can end up only at one of the following integers:
{2l − n (mod m) : l ∈ {0, 1, . . . , n}}. Therefore, the probability to end up in
j ∈ {0, 1, . . . ,m− 1} is

∑
l∈Ij C

l
np

l(1− p)n−l, where

Ij = {l ∈ {0, 1, . . . , n} : 2l − n (mod m) = j}

and the above sum is zero, if Ij = ∅. �

Example 3. The probability that after 6 steps a symmetric random walk on

the circle with m = 4, passed the number 1 exactly 2 times is
24

26
. The picture

of all such paths starting from 0 and moving in the first step anticlockwise is
given in Figure 6. There are 16 such paths. For example, such a random walk
passes successively the points: 0, 1, 2, 3, 2, 1, 2. Similarly, one can count that
the number of paths starting from 0, moving in the first step clockwise and
passing the number 1 exactly 2 times is 8.

4. APPENDIX

In this section we briefly present the probabilistic notions used within this
paper (for more details see, e.g. [3, 7]):

Definition 1. A collection K of events from the sample space Ω (i.e.,
K ⊂ P(Ω)) is said to be a σ-field, if it satisfies the following conditions:
(1) K 6= ∅;
(2) if A ∈ K, then for its complement Ā = Ω \A we have Ā ∈ K;

(3) if An ∈ K, for all n ∈ N, then
∞⋃
n=1

An ∈ K.
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Fig. 6 – For a symmetric random walk on the circle (m = 4): 16 paths starting at 0 and
moving anticlockwise for the first step, such that the number 1 is passed exactly 2 times.

We consider an experiment whose outcomes are finite and equally likely.
Then, the probability that an event A ∈ K will occur is the number

P (A) =
number of outcomes favorable for the occurrence of A

number of all possible outcomes during the experiment
.

This is the classic interpretation of the probability of an event. The axiomatic
definition of the probability is the following:

Definition 2. Let K be a σ-field in Ω. A mapping P : K → R is called
probability if it satisfies the following axioms:
(1) P (Ω) = 1;
(2) P (A) ≥ 0 for every A ∈ K;
(3) for any sequence (An)n≥1 of pairwise disjoint events fromK (i.e. Ai∩Aj = ∅
for i 6= j) it holds

P
( ∞⋃

n=1

An

)
=

∞∑
n=1

P (An).

The triplet (Ω,K, P ) consisting of a sample space Ω, a σ-field K and a proba-
bility P is called probability space.

Let (Ω,K, P ) be a probability space.
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Proposition 5. If (An)n≥1 is an increasing sequence of events from K, i.e.,
An ⊆ An+1 for each n ≥ 1, then

lim
n→∞

P (An) = P (
∞⋃
n=1

An).

Definition 3. Let A,B ∈ K. The conditional probability of A given
B is P (·|B) : K → R, defined by

P (A|B) =
P (A ∩B)

P (B)
,

provided P (B) > 0.

Definition 4. The events A1, . . . , An ∈ K are said to be independent
events if

P (A1 ∩ · · · ∩An) = P (A1) · · · · · P (An).

A sequence (An)n≥1 of events from K is called sequence of independent
events if

P (Ai1 ∩ · · · ∩Aim) = P (Ai1) . . . P (Aim)

for each finite subset {i1, . . . , im} ⊂ N∗.

Discrete random variables X : Ω → {xi : i ∈ I} are described by their
values and probabilities

X∼
(
xi
pi

)
i∈I

, where pi = P (X = xi), pi ∈ (0, 1] for each i ∈ I and
∑
i∈I

pi=1.

Definition 5. Let X1, . . . , Xn be discrete random variables. They are
independent if and only if for all x1, . . . , xn ∈ R it holds

P (X = x1, . . . , Xn = xn) = P (X1 = x1) · . . . · P (Xn = xn).

(Xn)n≥1 is a sequence of independent random variables if for each finite
subset {i1, . . . , im} ⊂ N∗ the random variables Xi1 , . . . , Xim are independent.

Repeated independent trials of an experiment, such that there are only
two possible outcomes for each trial and their probabilities remain the same
throughout the trials are called Bernoulli trials. We denote the two possible
outcomes by A,”success”, having the probability p ∈ [0, 1], and respective its
complement Ā, ”failure”, with probability 1− p.

We are interested in the total number of successes produced in n Bernoulli
trials, but not in their order.

Proposition 6. Given n Bernoulli trials with the probability p of success
and probability 1−p of failure, then the probability to occur exactly k successes
is Ck

np
k(1− p)n−k .
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