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REVISITING A FLAME PROBLEM. REMARKS ON SOME

NON-STANDARD FINITE DIFFERENCE SCHEMES

Mihai Nechita

Abstract. We consider the flame problem, a standard example of a stiff or-
dinary differential equation, and several non-standard finite difference methods
(NSFDMs) recently developed for solving it. We highlight the large errors around
the middle of the integration interval between the numerical solutions given by
these schemes and the exact solution showing that considering relatively large
step-sizes, which was thought to be one of the main advantages of NSFDMs,
leads to poor accuracy. Emphasizing mild instability and the rapid transition
on a short interval as the sources of these errors we indicate ways of obtaining
accurate numerical results and we provide examples of highly accurate numer-
ical solutions obtained with several standard routines for solving initial value
problems.
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1. INTRODUCTION

One standard example of a stiff ordinary differential equation, which has
been considered e.g., in [8], [9], [5], [4] or [6] is the following simple model of
flame propagation

(1) y′(t) = y2(t)− y3(t), y(0) = δ, 0 ≤ t ≤ 2

δ
.

The analytical solution for the initial value problem (1) involves the Lambert
W function and is given by

(2) y(t) =
1

W (aea−t) + 1
, a =

1

δ
− 1.

The initial condition δ > 0 is a small perturbation of zero and the solution
is sought on an interval inversely proportional to δ. The problem (1) is known
to be non-stiff on the interval [0, 1/δ] and stiff on the region where the solution
approaches steady state, i.e., on the subinterval of [1/δ, 2/δ] on which y(t) ≈ 1
(e.g., [8], [9]). The smaller the value of δ, the more exacerbated the stiffness
behaviour is. An asymptotic analysis in [7] shows that the exact solution has
a rapid transition towards the steady state on an interval of length O(− ln δ)
around 1/δ. Thus, as δ decreases the transition region becomes narrower,
relative to the length of the integration interval.
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The error between a numerical solution and the exact solution (2) provides
an important criteria for comparing different numerical methods applied to
the flame problem (1). Using MATLAB’s implementation of the Lambert W
function we study the accuracy of several numerical methods. In Section 2 we
reconsider the numerical simulations in [1], analyzing two non-standard finite
difference schemes (NSFDMs) designed to solve this combustion equation. The
numerical solutions obtained with these schemes haven’t been compared in [1]
with the exact solution. Although they behave very similar to the analytical
solution, a comparison of the two reveals large errors around 1/δ. We underline
the poor accuracy on this region of these schemes for relatively large step-sizes,
which was considered in [1] to be one of their main advantages. In Section 3
we discuss the sources of these large errors, emphasizing the mild instability
of the problem on the interval [0, 1/δ] and the rapid transition in the middle
that imposes a drastic decrease of the step size. We also prove that the exact
solution increases from a value α to a value β (0 < α < β < 1) in a time
that doesn’t depend on δ and, hence, the transition region is constant for all
integration intervals. We end this section with numerical results showing that
standard routines can solve the flame problem with very high accuracy if the
step size is properly controlled by taking suitable values for the relative and
absolute error tolerances.

2. ACCURACY OF NON-STANDARD FINITE DIFFERENCE SCHEMES

Several non-standard finite difference schemes have been recently devised for
solving the flame problem (1), based on discretizations of the first derivative
and on different approximations of the nonlinear terms. In [1] the authors
consider the following two one-step schemes

(3) yk+1 =
(1 + 2φ(h)yk) yk

1 + yk(1 + yk)φ(h)

and

(4) yk+1 = yk + φ(h)
(
ay2k + (1− a)ykyk+1 − by3k − (1− b)y2kyk+1

)
,

where φ(h) = 1− e−h or φ(h) = h, a ≥ 1 and b ≤ −1/2.
The numerical simulations in [1] presenting the solutions in Figs. 2.1a and

2.2a suggest that the NSFDMs (3) and (4) provide satisfactory results for a
step size h = 2, but a comparison with the exact solution shows large errors
around 1/δ, as it can be seen in Figs. 2.1b and 2.2b. Semilog plots of the
absolute errors to the exact solution (Figs. 2.1c and 2.2c) give more insight:
the errors accumulate on [0, 1/δ], then grow fast nearby 1/δ, the methods
succeeding to solve the problem with high accuracy on the region of stiffness
in [1/δ, 2/δ]. These aspects will be clarified in Section 3.
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(b) Around 1/δ.
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(c) Absolute error.

Fig. 2.1 – Solving (1) with NSFDM (3) for δ = 10−4, φ(h) = h, h = 2.
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(b) Absolute error.
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(c)
Semilog of absolute error.

Fig. 2.2 – Solving (1) with NSFDM (4) for δ = 10−4, a = 1,
b = −3, φ(h) = h, h = 2.

3. REVISITING THE FLAME PROBLEM

A linear stability analysis in [8] and [9] explains the source of errors obtained

in numerical simulations. The scalar Jacobian J = ∂F (t,y)
∂y = 2y − 3y2 on

is positive on [0, y−1(1/3)) ⊃ [0, 1/δ] and the problem is unstable. At the
same time J = O(δ) on most of the interval [0, 1/δ] so the problem is only
mildly unstable on an interval of length O(1/δ). Standard methods for non-
stiff problems, like explicit Runge-Kutta, can be employed successfully. On
the transition region where the solution rapidly increases to the steady state
value 1 any method will need a relatively small step size to handle the sharp
change. With control over the step-size, standard non-stiff methods are again
feasible. On the interval in [1/δ, 2/δ] where y(t) ≈ 1 we have J ≈ −1. Stability
combined with the long integration interval and a slowly varying solution make
the problem stiff. On this interval non-stiff methods have many failed steps
and stability concerns regarding the computed solution impose a small step-
size. Methods for stiff problems provide satisfactory results.

We exemplify these remarks in Tables 1 and 2 with more numerical simula-
tions using MATLAB’s ode solvers, the explicit Runge-Kutta method of order



54 M. Nechita 4

solver RelTol AbsTol Max. Err. Err. Norm Steps
radau 1.00e-03 1.00e-06 2.34e-02 4.41e-02 4.70e+01

dop853 1.00e-03 1.00e-06 1.36e-03 3.19e-02 1.58e+03
ode45 1.00e-03 1.00e-06 3.37e-02 9.97e-02 1.21e+04
ode113 1.00e-03 1.00e-06 9.84e-01 3.16e+00 6.11e+03
ode15s 1.00e-03 1.00e-06 9.97e-01 4.79e+00 1.08e+02
radau 1.00e-08 1.00e-12 1.37e-07 5.16e-07 1.43e+02

dop853 1.00e-08 1.00e-12 2.75e-06 5.71e-06 1.62e+03
ode45 1.00e-08 1.00e-12 3.22e-07 2.18e-06 1.28e+04
ode113 1.00e-08 1.00e-12 4.30e-05 1.86e-04 6.63e+03
ode15s 1.00e-08 1.00e-12 4.95e-04 3.22e-03 5.63e+02
radau 1.00e-13 1.00e-20 2.24e-11 3.39e-11 1.44e+02

dop853 1.00e-13 1.00e-20 1.29e-11 5.32e-11 7.54e+02
ode45 1.00e-13 1.00e-20 2.59e-11 5.61e-10 2.04e+04
ode113 1.00e-13 1.00e-20 1.08e-09 7.19e-09 6.80e+03
ode15s 1.00e-13 1.00e-20 3.25e-08 5.56e-07 3.72e+03

Table 1 – δ = 10−4

solver RelTol AbsTol Max. Err. Err. Norm Steps
radau 1.00e-03 1.00e-06 9.97e-01 4.12e+00 6.40e+01
ode45 1.00e-03 1.00e-06 – – 1.20e+06
ode113 1.00e-03 1.00e-06 – – 5.82e+05
ode15s 1.00e-03 1.00e-06 1.00e+00 6.31e+00 1.17e+02
radau 1.00e-08 1.00e-12 2.47e-03 5.02e-03 1.97e+02
ode45 1.00e-08 1.00e-12 – – 1.21e+06
ode113 1.00e-08 1.00e-12 – – 6.21e+05
ode15s 1.00e-08 1.00e-12 8.57e-01 7.88e+00 7.47e+02
radau 1.00e-13 1.00e-20 1.36e-09 4.14e-09 2.03e+02
ode45 1.00e-13 1.00e-20 – – 1.22e+06
ode113 1.00e-13 1.00e-20 – – 5.18e+05
ode15s 1.00e-13 1.00e-20 3.26e-06 5.56e-05 5.34e+03

Table 2 – δ = 10−6

8 DOP853 from [2] and the implicit Runge-Kutta method of variable order (5,
9, 13) RADAU from [3]. The columns represent the used solver, relative error
tolerance, absolute error tolerance, maximum error, error norm and the total
number of steps.

From (2) one can find the inverse y−1 of the exact solution and obtain

(5) y−1(z) = ln a+ a− ln

(
1

z
− 1

)
− 1

z
+ 1, ∀z ∈ (0, 1).
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Using the inverse function we determine the length of the transition interval
between two values α and β of the exact solution, with 0 < α < β < 1.

(6) |y−1(α)− y−1(β)| =
∣∣∣∣ln α(1− β)

β(1− α)
+
α− β
αβ

∣∣∣∣ .
Hence the length of the transition interval between two fixed values of the

exact solution doesn’t depend on δ. As δ decreases, the increase of errors is
caused only by the more accentuated instability on the first half of the inte-
gration interval (due to its increasing length) that leads to error accumulation
and not by the transition region, which is constant, as we have proved above.
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(a) Absolute error semilog.
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(b) Step sizes semilog.

Fig. 3.3 – ode15s (BDF) for δ = 10−4, RelTol= 10−8, AbsTol= 10−12.

(a) Absolute error semilog. (b) Step sizes semilog.

Fig. 3.4 – dop853 for δ = 10−4, RelTol= 10−8, AbsTol= 10−12.
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