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NATURAL CONVECTION FLOW IN A VERTICAL CHANNEL IN
THE PRESENCE OF RADIATION AND VISCOUS DISSIPATION

Septimiu Nicolae Murar

Abstract. This paper investigates the effects of radiation and viscous dissipa-
tion on the steady free convection flow in a vertical channel for laminar and fully
developed flow regime. The Rosseland approximation is considered in the mod-
eling of the convection-radiation heat transfer and the temperature of the walls
are assumed constant. The governing equations are expressed in non-dimensional
form and are solved numerically using the central finite difference method and
the Matlab solver bvp4c.
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1. INTRODUCTION

Heat transfer in free and mixed convection in vertical channels has been the
subject of many detailed, mostly numerical, studies for different flow config-
uration. The interest in this subject is due to its applications, for example,
in the design of cooling systems for electronic devices, chemical processing
equipment, microelectronic cooling and in the field of solar energy collection.
Some of the published papers, such as by Aung(see [1]), Aung and Worku(see
[2] and [3]), Barlleta(see [4]) and Boulama and Galanis(see [5]), deal with the
evaluation of the temperature and velocity profiles for the vertical parallel-
flow fully developed regime. In the above quoted papers the thermal radiation
effect within the fluid is neglected.

Heat transfer by simultaneous radiation and convection is very important
in the processes involving high temperatures, in the context of space technol-
ogy and in numerous technological problems, including combustion, furnace
design, the design of high-temperature gas-cooled nuclear reactors, nuclear-
reactor safety, solar collectors, and many others. The inclusion of convection-
radiation effects in the energy equation leads to a highly nonlinear partial or
ordinary differential equations. The analysis of thermal radiation is compli-
cated due to the behavior of the radiative properties of materials. Properties
relevant to conduction and convection, including, thermal conductivity, kine-
matic viscosity, density are fairly easily measured and generally well behaved.
For more information about the radiative heat transfer, its practical appli-
cations and its interactions with conduction and convection the reader can
consult the book [6].
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In the following lines we investigate the effects of thermal radiation and vis-
cous dissipation on the steady fully developed free convection flow in a vertical
channel whose walls are subjected to uniform but different temperatures. We
will use the Rosseland approximation model which leads to an ordinary differ-
ential equations for an optically dense viscous incompressible fluid that flows
through the channel. The ordinary differential equations are solved analyti-
cally for a particular case when we consider the dimensionless numbers Rd and
Ec to be zero and numerically while Rd varies. Effects of parameters such as
the radiation parameter, Rd, the temperature parameter, fr, the convection
parameter, Ra, on velocity and temperature profiles, are shown graphically.

2. MATHEMATICAL MODEL

Consider a viscous and incompressible fluid, which steadily flows between
two infinite vertical and parallel plane walls. The channel width is L. A
coordinate system is chosen such that the z-axis is parallel to the gravitational
acceleration vector g, but with the opposite direction. The y-axis is orthogonal
to the channel walls, and the origin of the axis is such that the positions of
the channel walls are in y = 0 and y = L, respectively see Figure 2.1. The
wall at ¥y = 0 has the given temperature 7}, and the wall at y = L has the
given temperature T, where Ty, > T.. Since the fluid velocity vector v(u,v) is
assumed to be parallel to the z-axis v vanish. The Boussinesq and Rosseland
approximation are employed. The fluid flow is due to difference in temperature
(buoyancy force) and initial velocity U.
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Fic. 2.1 — Geometry of the problem
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From the assumption of free convection and fully developed flow the follow-
ing relations are true (see [7, p. 37-47]):

orT 0qy

(1) v=0, Vp=0, — =0, =0

or
where p is the fluid pressure, T is the temperature of the fluid and ¢" is the
radiation heat flux. Replacing (1) in the Navier-Stokes equation and in the
energy equation we obtain the governing equations for our problem:
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where « is the thermal diffusivity coefficient, £ is the thermal expansion coef-

ficient, p is the dynamic viscosity, pg is the characteristic density of the fluid
Th + Tc

and T = 5
In (3) we have assumed that ¢" under the Rosseland approximation has the
following form (see [6, Section 14.2]):
40 OT*  160T% OT
_3KROSS Jy B _3KR05587y
where o is the Stefan-Boltzman constant and Kgosg is the mean absorption

coefficient. Equations (2) and (3) have to be solved subject to the boundary
conditions.

r

q:

(4) u(0) =0, w(L)=0, T(0)=1Ty T(L)=T,
Further we will introduce the following non-dimensional variables
Yy u T—-ThH
Y == Y)=—, 0(Y)=
T, + 1. ) s . .
where Ty = ht and we consider Uy = %. Substituting (5) into equations

(2) and (3) we will obtain the following non-dimensional ordinary differential
equations:
0*U

(7) £/ [(1 + ngu +2(0p — 1)0)3> gﬁ,] + EcPr <2}U,>2 =0

The boundary conditions (4) will become in dimensionless form:
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Here Ra is the Rayleigh number, Rd is the radiation parameter, g is the tem-
perature parameter, Fc is the Eckert number and Pr is the Prandtl number
defined as:
ATL3
_ 9pATL”  Rd= 270
av k Kross

4o Tg Th U, g cplu
R TO ’ ¢ CPAT’ " «
where k is the thermal conductivity of the fluid
We notice that in the case when the radiation and viscous dissipation effects
are absent (Rd = 0, Ec = 0) our problem has an analytical solution which can
be expressed as:

(99 Ra

1 1 1 1
1 Y) = Y- -Yi4 Y], 0Y)=-Y+
10) U= Ra(grt- ey ) o) =y 4 ]
The physical quantities of interest in this problem are the Nusselt numbers

which are defined as:

hywL
11 Nu = 2=
(1) u="
where the convective heat flux coefficient at the walls, h,, are given by:
oT
(12) —kai + qT’y:() = hw[Th — Tc]
Y ly=0

Using (5), (11) and (12) we obtain

Similarly if we consider in (12) y = L we obtain another Nusselt number

N'LLQ.
A 2\ [ 99

3. RESULTS AND DISCUSSION

Y=0

Y=L

Equations (6) and (7) with the boundary conditions (8) were solved numeri-
cally for different values of parameters Ra, Rd, Or and Ec (Ra = 10,15, 20, 25,
250,500, 750,1000, Rd = 0,0.1,1,5,10, 0 = 1.1,1.5,2, Ec = 0,0.01 and
Pr = 0.71) using two methods, namely, a central finite-difference method
and the Matlab solver bvp4c. It was found that in the case of Fc = 0 both
Nusselt numbers Nu; and Nug are equal and our results for Nuy is very close
to the results obtain by T. Grosan and I. Pop (see [7]) . Therefore we are
confident that the present results are accurate. It can be seen in the following
table that the value of Nuyp, in the case when Ec¢ = 0, increases with the
increases of the radiation parameter Rd and the temperature parameter 0p.
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Rd | g | T. Grosan and I. Pop [7] | Present result
1.1 2.346 2.3467
1 1.5 2.666 2.6667
2 3.667 3.6667
1.1 7.733 7.7334
5 | 1.5 9.318 9.3333
2 14.334 14.3334
1.1 14.465 14.4667
10 | 1.5 17.613 17.6667
2 27.668 27.6668

In the following table we present the values for both Nusselt numbers Nuq
and Nusg for the same values of parameters Rd and 0p as in the above table,
and for Fc = 0.01. It can be seen that the differences between Nu; and Nus in-
crease with the increasing of the parameters Rd and 6pg.

Rd | O Nuq Nug
1.1 | 2.2807 | 2.3865
1 | 1.5 2.4997 | 2.7320
2 | 3.3769 | 3.8244
1.1 | 7.6588 | 7.7711
5 | 1.5 | 9.1050 | 9.4417
2 | 13.9778 | 14.5660
1.1 14.3904 | 14.5041
10 | 1.5 | 17.4272 | 17.7847
2 | 27.3018 | 27.9222

Dimensionless temperature profiles are presented in Figure 3.2 and 3.3.
We notice that the thickness of the temperature profiles increase with the
increasing of the parameters Rd and 0r. The velocity profiles are presented
in Figure 3.4, 3.5, 3.6 and 3.7. The analytical solution given by (10) is also
included in Figure 3.4 and the agreement with the numerical solutions is very
good. It can be seen that the agreement between the numerical solutions
obtained by the central finite difference method and bvp4c is also very good.
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FiG. 3.2 — Dimensionless temperature profiles for different values of pa-
rameter Rd.
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Fic. 3.3 — Dimensionless temperature profiles for different values of pa-
rameter 0g.
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FiG. 3.4 — Dimensionless velocity profiles for different values of parameter Rd.
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F1G. 3.6 — Dimensionless velocity profiles for small values of parameter Ra.
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F1c. 3.7 — Dimensionless velocity profiles for large values of parameter Ra.
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