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LOTKA, VOLTERRA AND THEIR MODEL

Mira-Cristiana Anisiu

Abstract. The chemist and statistician Lotka, as well as the mathematician
Volterra, studied the ecological problem of a predator population interacting
with the prey one. They independently produced the equations that give the
model of this problem and discovered that, under simple hypotheses, periodic
fluctuations of the populations occur. We present their lives and the derivation
of the equations which bear their names.
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1. SHORT BIOGRAPHIES OF LOTKA AND VOLTERRA

The equations which model the struggle for existence of two species (prey
and predators) bear the name of two scientists: Lotka and Volterra. They lived
in different countries, had distinct professional and life trajectories, but they
are linked together by their interest and results in mathematical modeling.

Alfred James Lotka (March 2, 1880 – December 5, 1949) was born in Lwów,
Austria-Hungary, formerly part of Poland, and died in New York. His parents,
Jacques and Marie (Doebely) Lotka, were US nationals and he was educated
internationally. He received a B. Sc. in 1901 at the University of Birmingham,
England and he did graduate work in physical chemistry (1901-1902) at Leipzig
University. He received an M. A. in Physics in 1909 at Cornell University, then
a D. Sc. at Birmingham University after his work there from 1909 to 1912.
He worked as an assistant chemist, assistant physicist, editor of the Scientific
American Supplement and staff member at Johns Hopkins University. Since
1924 until his retirement in 1947 he was statistician for the Metropolitan Life
Insurance Company, New York. He married Romola Beattie in 1935 and they
had no children.

Lotka’s work in mathematical demography began in 1907 and continued
until 1939. In 1920 he published the paper [5], where he proved by his model
that undamped, permanent oscillations arise in biological systems.

In 1926 he published a paper in the field of bibliometrics, studying the num-
ber of scientific publications in specific fields. His ideas eventually contributed
to scientometrics – the scientific study of scientific publications.
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Fig. 1.1 – Alfred Lotka

Lotka published almost a hundred articles on various themes in chemistry,
physics, epidemiology or biology, about half of them being devoted to popu-
lation issues. He also wrote six books.

Vito Volterra (May 3, 1860 – October 11, 1940) was born in Ancona, then
part of the Papal States, into a very poor Jewish family. He attended the
University of Pisa, where he became professor of rational mechanics in 1883.
His most famous work was done on integral equations. He began this study in
1884 and in 1896 he published papers on what is now called integral equations
of Volterra type. The theory of functionals as a generalization of the idea of a
function of several independent variables was developed by Volterra in a series
of papers published since 1887 and was inspired by the problems of the calculus
of variations. These papers initiated the modern theory of functional analysis,
the name functional being introduced later by Hadamard. In 1892, he became
professor of mechanics at the University of Turin and then, in 1900, professor
of mathematical physics at the University of Rome La Sapienza. He married
Virginia Almagià (1875-1968) in 1900 and they had six children, but only four
lived to become adults. Their daughter Luisa married Umberto D’Ancona, a
marine biologist who sparked Volterra’s interest in the mathematical study of
population dynamics in the Adriatic Sea.

Fig. 1.2 – Vito Volterra

Volterra had grown up during the final stages of the Risorgimento when the
Papal States were finally annexed by Italy and, like his mentor Betti, he was
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an enthusiastic patriot, being named by the king Victor Emmanuel III as a
senator of the Kingdom of Italy in 1905. On the outbreak of World War I
he joined the Italian Army and worked on the development of airships. He
originated the idea of using inert helium rather than flammable hydrogen and
made use of his leadership abilities in organizing its manufacture.

After World War I, Volterra turned his attention to the application of his
mathematical ideas to biology, principally reiterating and developing the work
of Pierre François Verhulst. In the paper [7], he studied the ecological problem
of a predator population interacting with the prey one. In the following years
he published more results, intended to arrive at a mathematical theory of the
struggle for existence.

Volterra was a plenary speaker in the International Congress of Mathemati-
cians four times (1900, 1908, 1920, 1928).

In 1922, he joined the opposition to the Fascist regime of Benito Mussolini
and in 1931 he was one of only 12 out of 1,250 professors who refused to take
a mandatory oath of loyalty. As a result of his refusal to sign the oath of
allegiance to the fascist government he was compelled to resign his university
post and his membership of scientific academies, and, during the following
years, he lived abroad, returning to Rome just before his death.

Vito Volterra was a friend of Romanian mathematicians. At the First Con-
gress of Romanian Mathematicians (Cluj, May 9-12, 1929) he was a plenary
speaker presenting On the mathematical theory of the struggle for existence. It
is worth mentioning that one of the four sections of the congress was The His-
tory and Didactics of Mathematics, chaired by G. Bratu (1881-1941), G. Iuga
(1871-1958) and O. Onicescu (1892-1983). He was one of the eleven members
of the dissertation committee, lead by Tulio Levi-Civita, who participated at
the thesis defence of Gh. Pic (1907-1984), in 1932 at Rome. Volterra was the
head of the examining board of Gh. Vrânceanu (1900-1979), who defended his
thesis in 1924 at Rome, with Levi-Civita as supervisor. He also expressed his
consideration for the Ph. D. Thesis of Gr. C. Moisil (1906-1973), defended at
Bucharest and published in the same year 1929 at Gauthier-Villars, Paris.

The Accademia Nazionale dei Lincei edited five volumes of about 3000 pages
([6]), containing most of Volterra’s mathematical papers, notes and memoirs
(but not his books). The first paper was published in 1881, before the author
was twenty-one, and the last one in 1939-1940 when Volterra was nearly eighty.

The work of Lotka and Volterra overlapped in the discussion of predator-
prey interaction ([4], [1]). The problem was discussed by Lotka in 1920 and
by Volterra in 1926, their conclusion being the same, that the interaction of
the two species would give rise to periodic oscillation in their populations.
Volterra acknowledged Lotka’s priority, but he mentioned the differences in
their papers. They even exchanged some respectful letters. In the case of the
predator-prey interaction, the priority of Lotka was firmly established, and the
equations with periodic solutions are called Lotka-Volterra equations. Volterra
produced more general equations, for more than two species and considering
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also their interactions in the past. For worked examples of such equations see,
for example, [3].

2. SIMPLE POPULATION MODELS

The simplest mathematical model of population growth assumes that the
rate of increase of population is proportional to the size of population at any
time. Let us denote by P (t) the population at the time t and by k a positive
constant. Then

(1)
dP

dt
= kP,

which gives by integration

P (t) = P0 exp(kt),

where P0 denotes the population at the time t = 0. This law is called the
Malthusian growth model and predicts an exponential growth in the popula-
tion with time. It describes pretty well what happens for certain bacteria or
cultures of cells for a short time.

A more realistic model is

(2)
dP

dt
= (B −D)P,

where B(t) and D(t) denote the birth rate and death rate per individual,
respectively. The exponential law corresponds to the case B(t) = k and D(t) =
0. Let us assume that the birth rate per individual remain constant, while the
death rate per individual is directly proportional to the existing population.
We obtain

dP

dt
= (B0 −D0P )P,

where B0 and D0 are positive constant. We can write the equation in a simpler
way

(3)
dP

dt
= r

(
1− P

C

)
P,

where r = B0 and C = B0/D0. Its solution is

P (t) =
CP0

P0 + (C − P0) exp(−rt)
,

where P0 = P (0).

3. LOTKA-VOLTERRA EQUATIONS

The first and the simplest Lotka–Volterra model (or predator-prey) involves
two species. One of them (the predators) feeds on the other species (the prey),
which in turn feeds on some third food available around. A standard example
is a population of foxes and rabbits in a woodland. The assumptions about
the environment and evolution of the predator and prey populations are:
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- The prey population have an unlimited food supply at all times.
- In the absence of predators, the prey population x would grow propor-

tionally to its size, dx/d t = αx, α > 0. The coefficient α was named by
Volterra the coefficient of auto-increase. (This Malthus-type equation gives
by integration the geometrical law of increase x(t) = x0 exp(αt).)

- In the absence of prey, the predator population y would decline propor-
tionally to its size, d y/d t = −γy, γ > 0. (By integration we get in this case
y(t) = y0 exp(−γt), meaning the final extinction of this population.)

- When both predator and prey are present, a decline in the prey population
and a growth in the predator population will occur, each at a rate proportional
to the frequency of encounters between individuals of the two species (−βxy
for prey, δxy for predators, β, δ > 0).

When the interaction rate is adjoined to the natural rate, the prey equation
becomes

dx

dt
= αx− βxy

and may be interpreted as: the change in the prey’s numbers is given by its
own growth minus the rate at which it is preyed upon. Similarly, the predator
equation becomes

dy

dt
= −γy + δxy,

where δxy represents the growth of the predator population. Hence the equa-
tion expresses the change in the predator population as growth determined by
the food supply, minus natural death.

The predator-prey equations ([5], [7]) are

(4)

dx

dt
= αx− βxy

dy

dt
= −γy + δxy,

with α, β, γ, δ > 0. Equations (4) allow for the equilibrium point with nonzero
components P (γ/δ, α/β).

Equations (4) cannot be solved analytically, but we can plot the solutions
using Maple. For α = 2, β = 1.1, γ = 1 and δ = 0.9 we get the equations

(5)

dx

dt
= 2x− 1.1xy

dy

dt
= −y + 0.9xy,

and we choose the initial conditions x(0) = 1, y(0) = 0.5 (the predator
population is half of the prey one). In this case the equilibrium point is
P (10/9, 20/11). In Fig. 3.3 we use blue for the prey population and red for
the predator one.
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Fig. 3.3 – Prey (blue) and predators (red) for (5)

In Fig. 3.4 we plot the trajectory and note again the periodicity of the
phenomenon.

Fig. 3.4 – The trajectory prey-predators for (5)

Equations (4) were validated by Gause ([2]) whose experiments (for example
on Paramecium bursaria - predator and the yeast Schizosaccharomyses pombe
- prey) established that periodic fluctuations of the Lotka-Volterra type actu-
ally occur under controlled experimental conditions. Volterra has proved that
the periodicity is not a consequence of external circumstances, as seasons or
human interference, but a consequence of the species interaction itself.

In [8], Volterra developed a general theory of n species. For n = 2, equations
(4) are modified to

(6)

dx

dt
= αx− λx2 − βxy

dy

dt
= −γy − κy2 + δxy,

where α, β, γ, δ, λ, κ > 0. In equations (6) the fluctuations of x and y are
damped, which means that their amplitude diminish and in time they tend to
the equilibrium state.

As an example, we consider, beside the parameters in (5), λ = 0.1 and
κ = 0.1 and the same initial conditions x(0) = 1, y(0) = 0.5. The equations
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Fig. 3.5 – Prey (blue) and predators (red) for (7)

become

(7)

dx

dt
= 2x− 0.1x2 − 1.1xy

dy

dt
= −y − 0.1y2 + 0.9xy.

In this case the variation of prey and predators is no more periodic, as it can
be seen in Fig. 3.5.

The equilibrium point (1.3, 1.7) is approached when the time increases, as
it is shown in Fig. 3.6.

Fig. 3.6 – The trajectory prey-predators for (7)

Volterra continued the study considering more realistic hypotheses. For ex-
ample, for a single population (as the prey one), the simple equation dx/d t =
αx, α > 0 was improved as

(8)
dx

dt
=

(
α− λx+ µ sin νt−

∫ t

0
f(t− τ)x(τ) dτ

)
x+ ι,
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where the coefficient of auto-increase α is corrected with the effect of competi-
tion within the species −λx, with a periodic term µ sin νt due to the seasonal
variations of the environment and an integral representing some delayed effects
as the intoxication of the environment with waste products; at last ι is added
to indicate immigration at a constant rate.

Volterra improved also the model in equations (6), and obtained one which
consists in two integro-differential equations. In [9], he considered the rea-
soning that leads to the first equation in (6) not satisfactory, because the
nourishment received by individuals of the second species in a time interval
is not what produces the increase in species in the same time interval; in fact
the nourishment received in the preceding time affects the increasing of the
species. The same change is made in the second equation in (6), and the better
version has the form

(9)

dx

dt
=

(
α− λx−

∫ t

−∞
F1(t− τ)y(τ) dτ

)
x

dy

dt
=

(
−γ − κy +

∫ t

−∞
F2(t− τ)x(τ) dτ

)
y.

The functions F1 and F2 are nonnegative continuous delay kernels defined and
integrable on [0,∞), representing the contribution of the predation occurred
in the past to changing the rate of the prey and predators, respectively.

The extension of the study of delayed effects to n species was done in the
last paper [10] dedicated by Volterra to this subject. There he considers n
given populations of the various species N1, N2, ..., Nn, with ε1, ε2, ..., εn the
coefficients of auto-increase. The coefficient Asr measures that unitary action
(per individual) which the species s exercises upon the species r, while Ars

denotes the inverse action that species r exercises upon the species s; and as
it is supposed that these actions are such that, while one species injures the
other, the latter profits from the first (for example, one species devours the
other) the coefficients Asr, Ars may be assumed to have opposite signs. They
will not however be of equal absolute value. The equations in this case are

(10)
dNr

dt
=

(
εr +

n∑
s=1

AsrNs

)
Nr, r = 1, ..., n.

We end by presenting the case in [10] where historical interaction is consid-
ered too. Volterra denotes a (unitary) action by Fsr(t−τ) when it is exercised
by the species s in the infinitesimal interval of time (τ, τ + dτ) and is mani-
fested on the species r at time t. If the historical actions may be prolonged
indefinitely in the past, the equations read

dNr

dt
=

(
εr +

n∑
s=1

(
AsrNs(t) +

∫ t

−∞
Fsr(t− τ)Ns(τ) dτ

))
Nr(t), r = 1, ..., n,

otherwise the limit below in the integral can be chosen to be finite.
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