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A NOTE ON GENERALIZED INTERIORS OF SETS

Anca Grad

Abstract. This article familiarizes the reader with generalized interiors of sets,
as they are extremely useful when formulating optimality conditions for problems
defined on topological vector spaces. Two original results connecting the quasi-
relative interior and the quasi interior are included.
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1. INTRODUCTION

Let X be a topological vector space and let X∗ be the topological dual space
of X. Given a linear continuous functional x∗ ∈ X∗ and a point x ∈ X, we
denote by 〈x∗, x〉 the value of x∗ at x.

The normal cone associated with a set M ⊆ X is defined by

NM (x) :=

{
{x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ 0 for all y ∈M} if x ∈M
∅ otherwise.

Given a nonempty cone C ⊆ X, its dual cone is the set

C+ := {x∗ ∈ X∗ : 〈x∗, x〉 ≥ 0 for all x ∈ C}.

We also use the following subset of C+:

(1) C+0 := {x∗ ∈ X∗ : 〈x∗, x〉 > 0 for all x ∈ C\{0}}.

2. GENERALIZED INTERIORS OF SETS. DEFINITIONS AND BASIC PROPERTIES

Interior and generalized interior notions of sets are highly important when
tackling optimization problems, as they are often used in formulating regular-
ity conditions.

Let X be a nontrivial vector space, and let M ⊆ X be a set. The algebraic
interior of M is defined by

coreM :=

{
x ∈ X : for each y ∈ X there exists δ > 0 such that

x+ λy ∈M for all λ ∈ [0, δ]

}
.

The intrinsic core of M is defined by

icrM :=

{
x ∈ X : for each y ∈ aff(M −M) there exists δ > 0

such that x+ λy ∈M for all λ ∈ [0, δ]

}
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(see Holmes G. B. [11], Zălinescu C. [16]). From the definitions mentioned
abobe it follows that

coreM ⊆M and coreM ⊆ icrM.

When M is a convex set, then we have:

coreM = {x ∈M : cone(M − x) = X}, and

icrM = {x ∈M : cone(M − x) is a linear subspace of X}.
When M is a convex cone, then the set {0}∪ coreM is also a convex cone and

coreM = M + coreM.

Let X be a topological vector space, and let M ⊆ X be a set. We denote
by intM the interior of M and by clM the closure of M . When M is a
convex set, both sets intM and clM are convex. Moreover, if M is convex
and intM 6= ∅, then we have

intM = int(clM) and clM = cl(intM).

For each set M ⊆ X it holds intM ⊆ coreM . The equality intM = coreM
is true if M is a convex set and one of the following conditions is fulfilled:
intM 6= ∅; X is a Banach space and M is closed; X is finite dimensional.

Consider now a separated topological vector space X, and let M ⊆ X be a
set. The strong quasi-relative interior of M is

sqriM :=

{
icrM if aff M is closed
∅ otherwise

(see Borwein J. M., Jeyakumar V., Lewis A. S. and Wolkowicz H. [2],
Jeyakumar V. and Wolkowicz H.[12], Zălinescu C. [16]). When the set
M is convex, then

sqriM = {x ∈M : cone(M − x) is a closed linear subspace of X}.

The quasi-relative interior of an arbitrary set M ⊆ X is

qriM :=
{
x ∈M : cl cone(M − x) is a linear subspace of X

}
(see Borwein J. M. and Lewis A. S. [3]).

The quasi interior of a setM ⊆ X is tightly connected to the quasi-relative
interior and appeared in the literature prior to it. It is defined by

qiM :=
{
x ∈M : cl cone(M − x) = X

}
.

When M is a convex set, then

qiM ⊆ qriM and qri{x} = {x} for all x ∈ X.

Moreover, whenever qiM 6= ∅, then qiM = qriM .
The following chain of inclusions holds for an arbitrary set M ⊆ X:

coreM ⊆ sqriM ⊆ icrM.
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When X is a separated locally convex space, and M ⊆ X is a convex set,
then the following chains of inclusions hold:

(2) intM ⊆ coreM ⊆ sqriM ⊆ icrM ⊆ qriM ⊆M ;

(3) intM ⊆ coreM ⊆ qiM ⊆ qriM ⊆M.

When intM 6= ∅, then all the generalized interior notions in (2) and (3)
collapse in equality to intM .

Let us consider the case when X = Rn, with n ∈ N, and let M ⊆ Rn be a
set. Then the relative interior of M is defined by

riM := {x ∈ aff M : there exists ε > 0 such that B(x, ε) ∩ aff M ⊆M} ,

where B(x, ε) is the closed ball centered at x with radius ε, in the Euclidian
norm. In this finite dimensional setting, when M is a convex set, then the
following equalities hold:

(4) qriM = sqriM = icrM = riM

(according to Borwein J. M. and Lewis A. S. [3], Gowda M. S. and
Teboulle M. [8]). As well, the following chain of equalities proves to be
valid:

(5) coreM = qiM = intM

(according to Limber M.A. and Goodrich R.K. [13], Rockafellar R. T.
[14]).

Let now X be a separated locally convex space, and let C ⊆ X be a
nonempty closed convex cone. Then

qi(C+) = C+0

(see for example Boţ R. I., Grad S. M. and Wanka G. [6, Proposition
2.1.1]). The equality above is mainly the reason why the set C+0 defined by
(1) is called the quasi-relative interior of the dual cone of C (even in
the more general case when C is not closed).

We refer the reader to Boţ R. I. and Csetnek E. R. [4] for a recent
synthesis with respect to regularity conditions by means of generalized interiors
along with new achievements in the same area.

We continue by presenting some characterizations of the quasi interior and
quasi-relative interior of convex sets in separated locally convex spaces.

Theorem 2.1 (Borwein J. M., Lewis A. S.[3]). Let M be a convex subset
of a separated locally convex space X, and let x ∈M . Then

x ∈ qriM if and only if NM (x) is a linear subspace of X∗.

The following characterization of the quasi interior of a convex set was
extended to separated locally convex spaces by Boţ R. I., Csetnek E. R.
and Wanka G. [5].
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Theorem 2.2. Let M be a convex subset of a separated locally convex space
X, and let x ∈M . Then

x ∈ qiM if and only if NM (x) = {0}.

Some useful properties of the quasi-relative interior of a convex set are listed
below. For their proofs we refer the reader to Borwein J. M. and Goebel
R.[1], Borwein J. M. and Lewis A. S.[3], and Boţ R. I., Csetnek E. R.
and Wanka G. [5].

Proposition 2.3. Let M and N be convex subsets of a separated locally
convex space X. Then the following statements are true:

(i) qriM + qriN ⊆ qri(M +N);

(ii) qriM × qriN = qri(M ×N);

(iii) qri(M − x) = (qriM)− x for all x ∈ X;

(iv) qri(αM) = α qriM for all α ∈ R\{0};
(v) λ qriM+(1−λ)M ⊆ qriM for all λ ∈ (0, 1], whence qriM is a convex

set;

(vi) qri(qriM) = qriM ;

(vii) if M is affine, then qriM = M ;

(viii) if qriM 6= ∅, then cl qriM = clM and cl cone qriM = cl coneM .

Remark 2.4. For two convex subsetsM andN of a separated locally convex
X such that M ⊆ N , it holds

(6) qiM ⊆ qiN,

a property which is no longer true for the quasi-relative interior. However,
according to Cammaroto F. and Di Bella B. [7, Proposition 1.12], when
aff M = aff N , then

qriM ⊆ qriN

holds. �

Remark 2.5. Let X be a separated locally convex space, and let C ⊆ X
be a convex cone. Then, using Proposition 2.3 (v) and Remark 2.4 we deduce
that the equality

(7) qiC + C = qiC

holds. �

3. A CONNECTION BETWEEN THE QUASI INTERIOR AND THE QUASI-RELATIVE

INTERIOR OF A CONVEX SET

In this section we present two original results of the author, the first of
them linking in a new way the quasi interior and the quasi-relative interior of
a convex set.
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Theorem 3.1 (Grad A.). Let M be a convex subset of a separated locally
convex space X, and let x ∈M. Then

x ∈ qiM ⇐⇒
{

0 ∈ qi(M −M)
x ∈ qriM.

Proof. Necessity. From x ∈ qiM and Theorem 2.2 it follows thatNM (x) =
{0}. On the other hand, since qriM = qiM , we obviously have x ∈ qriM .
Let now x∗ ∈ NM−M (0). This means that

〈x∗, y − z〉 ≤ 0 for all y, z ∈M.

By taking z := x, we get that

〈x∗, y − x〉 ≤ 0 for all y ∈M,

which means that x∗ ∈ NM (x). Hence we have x∗ = 0, whence it holds
NM−M (0) = {0}. By Theorem 2.2 we conclude that 0 ∈ qi(M −M).

Sufficiency. Let x∗ ∈ NM (x), which means that

〈x∗, y − x〉 ≤ 0 for all y ∈M.

From x ∈ qriM and Theorem 2.1 it follows that NM (x) is a linear subspace
of X∗. Hence we have −x∗ ∈ NM (x). Therefore

〈−x∗, y − x〉 ≤ 0 for all y ∈M.

Hence we get 〈x∗, y − x〉 = 0 for all y ∈M , from which we obtain

〈x∗, y − z〉 = 0 for all y, z ∈M.

Thus we have x∗ ∈ NM−M (0). Consequently, the given hypothesis that 0 ∈
qi(M −M) and Theorem 2.2 imply that x∗ = 0. Thus NM (x) = {0}, and
using again Theorem 2.2, we get x ∈ qiM. �

The following result extends in a natural way to linear functional, the strict
positivity of the product of two strictly positive numbers.

Proposition 3.2 (Grad A.). Let C be a nonempty convex cone of a sepa-
rated locally convex space X. Then, for all x∗ ∈ C+\{0} and for all x ∈ qiC,
the following inequality holds:

(8) 〈x∗, x〉 > 0.

Proof. The case when qiC = ∅ is obvious.
We continue with the case when qiC 6= ∅, and use an approach similar to

the proof given by Boţ R. I., Grad S. M. and Wanka G [6, Proposition
2.1.1]. By contradiction we assume that there exist an x∗0 ∈ C+\{0} and an
x0 ∈ qiC such that

(9) 〈x∗0, x0〉 = 0.

From the definition of the dual cone C+ we know that

(10) 〈x∗0, x〉 ≥ 0 for all x ∈ C.
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Combining (9) and (10) we get

〈−x∗0, x− x0〉 ≤ 0 for all x ∈ C,
which means that −x∗0 ∈ NC(x0). As x0 ∈ qiC, according to Theorem 2.2,
we have NC(x0) = {0}. This implies that −x∗0 = 0, which is a contradiction.
Thus (8) holds. �

For more applications of the previous two results, we refer the reader to the
recent articles Grad A. [9] and Grad A. [10].
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[4] Boţ R. I., Csetnek E. R.: Regularity conditions via generalized interiority notions in
convex optimization: new achievements and their relation to some classical statements,
Optimization 61, no. 1, pages 35-65 (2012)
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