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Abstract. There are many problems in Celestial Mechanics which can be re-
duced to differential equations, either linear or nonlinear. We expose some of
them for which it is possible to obtain the exact solutions. The corresponding
differential equations are derived from various models, such as the three-body
circular restricted problem or the inverse problem of Dynamics.

These equations can be exposed to the students from high school or from
the faculties of sciences in order to understand the importance of the study of
differential equations. They will also learn to apply their knowledge to solving
problems related to phenomena of real world.

1. INTRODUCTION

The students meet differential equations in high school, at Mathematics or
Physics classes. Later on, those who follow the Faculties of Sciences study
in detail the theory of existence and uniqueness of the solutions, and various
classes of such equations. They learn methods of finding the solutions and do
many exercises.

It is very important for them to be motivated by understanding that many
real-world phenomena can be modeled through differential equations, and that
the methods of integration give a deeper insight into these processes. Examples
of second-order linear differential equations, which model electrical circuits,
can be found in [1] and [2]. In this paper we present differential equations
from the field of Celestial Mechanics. They are solved using only elementary
methods, so they are appropriate for undergraduate students, as well as for
good high school pupils.

2. GRAVITATIONAL ORBITS ON THE OX AXIS

A classic problem in Celestial Mechanics is the free fall of a particle toward
a gravitational source. Following [7], we consider the simple case when the
particle moves on a straight line, taken here as Ox axis, to the source situated
at x = 0. The equation of motion in the presence of the Newtonian attraction
law is for x ≥ 0

(1) ẍ+
k

x2
= 0,
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where k > 0 corresponds to an attractive force. Multiplying by ẋ and inte-
grating we get

(2)
1

2
ẋ2 − k

x
= E,

where E is a constant, representing the energy. We consider negative energy
and we denote h = −E > 0.

Since ẋ2 ≥ 0 and k > 0, it follows that E + k/x ≥ 0, hence x ≤ k/h. From
(2) we get

(3) ẋ = ±
√

2

√
k

x
− h, x > 0.

The equation (3) can be written as

dt = ± dx
√

2
√

k
x − h

,

or, substituting u = hx/k (0 ≤ u ≤ 1)

(4)
h
√

2h

k
dt = ± du√

1
u − 1

.

We integrate equation (4), using the substitution v =
√

1
u − 1 to obtain a

rational function, and we get for x0 = x(0)

(5) F (hx(t)/k)− F (hx0/k) = ±

(
h
√

2h

k

)
t,

where

(6) F (u) = −
√
u(1− u) + 1/2 arcsin (2u− 1).

The + sign corresponds to ẋ > 0, and the − sign to ẋ < 0.
In [7], a problem is solved using the result (5)-(6) and real data:
Nuclear waste is left to fall into the Sun, starting with zero velocity. Find

the time needed for the waste to reach the Sun’s surface.

3. A SIMPLE DIFFERENTIAL EQUATION IN THE CIRCULAR RESTRICTED

THREE-BODY PROBLEM

This problem is exposed in [8]. Two bodies, named primaries, move in
circular orbits about their center of mass. A third body, with infinitesimal
mass, moves in space in the field generated by the two bodies of finite mass,
without influencing them. The model roughly applies to a satellite in the
gravitational field of the Earth and Moon (whose orbits are almost circular),
or to an asteroid in the field of Jupiter and the Sun. It can be also seen as
describing the motion of a spacecraft in the field of Jupiter and one of its
moons, e. g. Europa.
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The two main bodies have a total mass that is normalized to one. Their
masses are denoted by m1 = 1 − µ and m2 = µ, respectively. These bodies
rotate in the plane Oxy counterclockwise about their common centre of mass
and with the angular velocity normalized to one. The third body (satellite,
asteroid or spacecraft) moves in three dimensional space and its motion is
assumed not to affect the primaries.

A rotating coordinate system is chosen so that the origin is at the centre
of mass and the primaries are fixed on Ox at (−µ, 0, 0) and (1 − µ, 0, 0),
respectively. Let (x, y, z) be the position of the infinitesimal body in the
rotating frame.

The system of equations which describes the motion of the infinitesimal
body is

(7)
ẍ− 2ẏ = Ωx

ÿ + 2ẋ = Ωy

z̈ = Ωz,

with

(8) Ω =
1

2

(
x2 + y2

)
+

1− µ
r1

+
µ

r2
+
µ (1− µ)

2
,

where

(9) r2
1 = (x+ µ)2 + y2 + z2, r2

2 = (x− 1 + µ)2 + y2 + z2.

The dots denote differentiation with respect to the time.
We simplify the problem by considering the primaries of equal masses m1 =

m2 = 1/2 and by imposing to the third body to move only on Oz. We are left
with the equation

(10) z̈ +
8z

(4z2 + 1)3/2
= 0.

It admits obviously the trivial solution z(t) = 0. We multiply by ż and inte-
grate to get

ż = ±

√
c1 +

4√
4z2 + 1

,

hence

t = ±
z(t)∫
z0

4
√

4u2 + 1√
4 + c1

√
4u2 + 1

du,

where z0 = z(0).
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4. HOMOGENEOUS POTENTIALS IN THE INVERSE PROBLEM OF DYNAMICS

We consider the following version of the inverse problem for one material
point of unit mass, moving in the Oxy inertial Cartesian plane. Given a family
of curves

(11) f (x, y) = c,

find the potentials V (x, y) under whose action, for appropriate initial condi-
tions, the particle will describe the curves of that family. The equations of the
motion are

(12)
ẍ = −Vx
ÿ = −Vy,

where the dots denote derivatives with respect to the time t, and the subscripts
partial derivatives.

We emphasize that in this version of the inverse problem a family of curves
(11) is given, which is in fact determined by the ratio fy/fx. Using the func-
tions

(13)

γ =
fy
fx
, Γ = γγx − γy, κ = 1

γ − γ,

λ =
Γy−γΓx

γΓ , µ = λγ + 3Γ
γ .

For families of straight lines one has Γ = 0, and details of this special case
can be found in [4]. Bozis [5] obtained, for families not consisting in straight
lines, a partial differential equation of second order satisfied by the potentials
V giving rise to the family (11), namely

(14) −Vxx + κVxy + Vyy = λVx + µVy.

The case of planar orbits in one-variable conservative fields is exposed in [3].
The equation (14) becomes an ordinary one if the potential is homogeneous

of degree m,
V (x, y) = xmv(z),

where z = y/x, and the function f which defines the family is also homoge-
neous, hence

γ(x, y) = g(z).

It is shown in [6] that the ordinary differential equation satisfied by v is

(15) Q2v
′′ +Q1v

′ +Q0v = 0,

where

Q2 = 1− z2 − kz,
Q1 = 2mz + k(m− 1) + g′′

gg′ (1 + zg)(z − g) + g′

g (z2 + 2zg + 3)− 2g,

Q0 = −m
(
m+ 1 + g′′

gg′ (1 + zg) + zg′

g

)
, k = 1

g − g.

The coefficient of v′′, Q2, does not vanish except for two cases: g = z leading
to the family of concentric circles x2 + y2 = c, and g = −1/z, leading to the
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excluded case of straight lines y/x = c. Hence, for all the families different
from these two, the differential equation in v is of second order.

Let us consider at first the family of concentric circles x2 +y2 = c, for which
g = z. Equation (15) becomes of first order

(16) (m+ 2)(z2 + 1)v′ −m(m+ 2)zv = 0.

For m = −2, the equation is identically satisfied, which means that V (x, y) =
v(y/x)/x2 is compatible with the family of circles for arbitrary v. For m 6= −2,
the equation (16) becomes

v′

v
= m

z

z2 + 1

with the solution v = c1(z2 + 1)m/2, hence V (x, y) = c1(x2 + y2)m/2.
We shall look for potentials homogeneous of degree 4 which satisfy equation

(15) and give rise to families of hyperbolae or ellipses.
For the family of hyperbolae f = 3x2 − 2y2 with g(z) = −2/3z, equation

(15) reads

(17)
(
10z3 − 15z

)
v′′ −

(
66z2 − 9

)
v′ + 144zv = 0,

and has the solution v = c1(4z2 + 9)z8/5 + c2(8z4 + 36z2 + 3). The potential
will be V (x, y) = x4v(y/x).

For the family of ellipses f = x2 + 2y2, with g(z) = 2z, equation (15) reads

(18)
(
2z3 + z

)
v′′ +

(
6z2 + 9

)
v′ − 48zv = 0.

Its solution is v = c1(4z2 + 1)/z8 + c2(8z4 + 12z2 + 5) and the potential will
be V (x, y) = x4v(y/x).

Equations (17) and (18) were solved using the Maple symbolic algebra sys-
tem. It is a good opportunity to remind the students the general form of
solutions of homogeneous second-order linear differential equation and to let
them check the linear independence of the fundamental solutions by calculat-
ing the corresponding Wronskian.
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