On products of stable range one elements

Grigore Călugăreanu

April 24, 2023

Abstract

1 Introduction

All the rings we consider are associative and have an identity $1 \neq 0$. For a ring $R, U(R)$ denotes the set of all the units of R and $N(R)$ denotes the set of all the nilpotents of R.

An element $a \in R$ has left stable range 1 (lsr1, for short) if whenever $R a+$ $R b=R$ for some $b \in R$, there exists a $y \in R$ such that $a+y b$ is a unit. Equivalently, if $x a+b=1$ implies the existence of an element $y \in R$ such that $a+y b$ is a unit. Removing b, equivalently again, if for every $x \in R$ there exists $y \in R$ such that $a+y(1-x a) \in U(R)$. In this case we also write $l \operatorname{sr}(a)=1$. A symmetric definition can be given on the right (rsr1, for short).

In the sequel, y will be called a unitizer for a with respect to x, denoted $y_{x}^{(a)}$.

It is now well-known (see [1], Lemma 17) that any finite product of left (or right) stable range 1 elements has left (or right) stable range 1.

In this short note we give a formula for the unitizer of a product of left stable range 1 elements and make some applications of it.

2 The formula

The proof goes along the lines of the proof of Lemma 17 in [1].
Theorem 1 If lsr $\left(a^{\prime}\right)=1$, for every $x \in R$ there exists a unitizer $y_{x a}^{\left(a^{\prime}\right)}$ such that $u:=a^{\prime}+y_{x a}^{\left(a^{\prime}\right)}\left(1-x a a^{\prime}\right) \in U(R)$. If also $\operatorname{lsr}(a)=1$, a unitizer for the product $a a^{\prime}$ is given by the formula

$$
y_{x}^{\left(a a^{\prime}\right)}=a y_{x a}^{\left(a^{\prime}\right)}+y_{u x}^{(a)} u\left(1-x a y_{x a}^{\left(a^{\prime}\right)}\right) .
$$

Proof. Since $l s r\left(a^{\prime}\right)=1$, a unitizer $y_{x a}^{\left(a^{\prime}\right)}$ and a unit $u=: a^{\prime}+y_{x a}^{\left(a^{\prime}\right)}\left(1-x a a^{\prime}\right)$, both exist. We start with $x\left(a a^{\prime}\right)+b=1$ in R, that is, $b=1-x a a^{\prime}$. Then
$1=x a\left(u-y_{x a}^{\left(a^{\prime}\right)} b\right)+b=x a u-c b$ with $c=x a y_{x a}^{\left(a^{\prime}\right)}-1$. Conjugation by u gives $1=u x a-u c b u^{-1}$, while $a-y_{u x}^{(a)} u c b u^{-1}=: v \in U(R)$. Hence $a u-y_{u x}^{(a)} u c b=$ $v u \in U(R)$ and finally, since $u=a^{\prime}+y_{x a}^{\left(a^{\prime}\right)} b, a a^{\prime}+\left(a y_{x a}^{\left(a^{\prime}\right)}-y_{u x}^{(a)} u c\right) b=a a^{\prime}+$ $\left[a y_{x a}^{\left(a^{\prime}\right)}+y_{u x}^{(a)} u\left(1-x a y_{x a}^{\left(a^{\prime}\right)}\right)\right] \in U(R)$, as stated.

Notice that if a is a unit, a unitizer (independent of x) is $y_{x}^{(a)}=0$. Therefore
Corollary 2 Let $u \in U(R)$. Then $y_{x}^{(a u)}=y_{u x}^{(a)} u$ and $y_{x}^{(u a)}=u y_{x u}^{(a)}$.
Corollary 3 If $l s r(a)=1$ then $l s r(-a)=1$.
Proof. Just take $u=-1$ in the previous corollary: $y_{x}^{(-a)}=-y_{-x}^{(a)}$.
Corollary 4 Left sr1 elements are invariant to equivalences. If $u, v \in U(R)$ then

$$
y_{x}^{(u a v)}=u y_{x u}^{(a v)}=u y_{v x}^{(a)} v .
$$

Proof. As above, this follows choosing zero the unitizers of units.
Recall that unit-regular elements (in particular, idempotents) have sr1. With respect to unitizers we provide the following

Proposition 5 If $a=$ aua for $a \in R$ and $u \in U(R)$ then a unitizer for a (independent of x) is $u^{-1}-a$. If $e=e^{2}$, a unitizer for e (independent of x) is the complementary idempotent $1-e$.

Proof. Suppose $a=a u a$ with $u \in U(R)$ and x arbitrary in R. We show that $a+\left(u^{-1}-a\right)(1-x a) \in U(R)$, that is, a unitizer for a (independent of $\left.x\right)$ is $y_{x}^{(a)}=u^{-1}-a$. It suffices to replace a with $a u u^{-1}$:
$a+\left(u^{-1}-a\right)(1-x a)=a u u^{-1}+\left(u^{-1}-a u u^{-1}\right)\left(1-x a u u^{-1}\right)=$
$=a u u^{-1}+(1-a u) u^{-1}\left(1-x a u u^{-1}\right)=u^{-1}-(1-a u) u^{-1} x a u u^{-1}=$
$=\left[1-(1-a u) u^{-1} x(a u)\right] u^{-1} \in U(R)$, since $a u$ is idempotent and $(1-$ $a u) u^{-1} x(a u)$ is square-zero.

Just taking $u=1$ in the previous proof shows that $1-e$ is a unitizer for an idempotent e.

References

[1] Huanyin Chen,W.K.Nicholson Stable modules and a theorem of Camillo and Yu. J. of Pure and Applied Algebra 218 (2014), 1431-1442.

