On the recognition of rings of upper triangular matrices

October 18, 2023

1 Introduction

It is well-known that the elements a of a (unital associative) ring R may be identified with the scalar matrices $a I_{n} \in \mathbb{M}_{n}(R)$ and these matrices commute with all the $e_{i j}$. The converse also holds (see [2] or [5]): Let R be a ring containing n^{2} elements $e_{i j}$ satisfying $e_{i j} e_{r s}=\delta_{j r} e_{i s}$ [the δ 's equations] and $\sum_{i=1}^{n} e_{i i}=1$ [also called a full set of matrix units]. Then $R \cong \mathbb{M}_{n}(C)$ where the ring C is the centralizer of the $e_{i j}$ in R.

Sketch of the proof. Define C as in the statement and for $a \in R$ put $a_{i j}=$ $\sum_{r=1}^{n} e_{r i} a e_{j r}$. Then $a_{i j} \in C$ and we have $\sum_{i, j=1}^{n} a_{i j} e_{i j}=a$. Hence the bijection needed is $a \longleftrightarrow\left[a_{i j}\right]$, and this is verified to be an isomorphism.

Note that according to the δ 's equations, this characterization of (full) matrix rings uses n idempotents and $n^{2}-n$ zerosquare elements, that is, n^{2} elements satisfying some conditions.

In the last decade of the past century, the "recognition" of (full) matrix rings, has seen a new impetus, mainly by diminishing the number of elements needed for a characterization.

In [7], a characterization was given using only $n+1$ elements (one nilpotent together with all its powers and another n elements) and in [1] (see also [5]), a characterization of matrix rings was given using only 3 elements (only two powers of a nilpotent and another two elements).

More precisely, these characterizations follow.
Robson: A ring is a complete $n \times n$ matrix ring if and only if it contains elements a_{1}, \ldots, a_{n}, f such that $f^{n}=0$ and

$$
1=a_{1} f^{n-1}+f a_{2} f^{n-2}+f^{2} a_{3} f^{n-3}+\ldots+f^{n-1} a_{n} .
$$

Agnarrson et altri: Let R be a ring and $p, q \geq 1$ be fixed integers. Then $R \cong \mathbb{M}_{p+q}(S)$ for some ring S iff there exist elements $a, b, f \in R$ such that $f^{p+q}=0$ and $a f^{p}+f^{q} b=1$.

In both characterizations, one nilpotent of index $n($ or $p+q)$ is given together with some other elements which permit the reconstruction of the idempotents.

In the second characterization (see also [5], the "only if" part of (17.10)), a (strictly) lower triangular matrix (the sum of the elements on the subdiagonal) is taken

$$
f=E_{21}+E_{32}+\cdots+E_{p+q, p+q-1},
$$

for which $f^{p+q}=0$, and another a, b two (strictly) upper triangular matrices (with identity superdiagonal) are needed.

Notice that here it was essential to use both lower and upper triangular matrices.

We proceed with the subject of this exposition, that is, the recognition of the upper triagular matrix rings.

A result of the same genre (the base ring of the ring of upper triangular matrices is the centralizer of the $e_{i j}$'s) is a special case (Theorem 2.9) in [8]. The characterization of rings of (upper) triangular matrices was given using $\frac{n(n+1)}{2}$ matrix units (i.e. all the upper triangular matrix units) together with some conditions.

More precisely, we recall this special case (for which the natural quasi-order on $\{1,2, \ldots, n\}$ is considered).

Theorem 1 Let R be a ring with a set $\left\{e_{i j}: i \leq j\right\}$ of matrix units, that is, $e_{11}+\ldots+e_{n n}=1$ and $e_{i j} e_{k l}=\delta_{j k} e_{i l}$.
R is isomorphic with a ring of upper triangular matrices $\mathbb{T}_{n}(S)$ if and only if R has a subring S with $1 \in S$ and the following properties.
(i) $S \subseteq C\left(\left\{e_{i j}: i \leq j\right\}\right)$;
(ii) $e_{i i} R e_{j j}=S e_{i j}$ for $i \leq j$;
(iii) $e_{j j} R e_{i i}=\{0\}$ for $i<j$;
(iv) If $s e_{i j}=0$ for some $s \in S$ (and $i \leq j$), then $s=0$.

Moreover, the isomorphism $\phi: \mathbb{T}_{n}(S) \longrightarrow R$ is given: $\phi\left(\left[a_{i j}\right]\right)=\sum_{i \leq j} a_{i j} e_{i j}$.
The goal of this exposition is to perform the explicit inverse of ϕ, which is not an easy task even for $n=2$.

2 The $n=2$ case

To simplify the writing denote $e:=e_{11}, t:=e_{12}$ and so $\bar{e}=e_{22}$.

2.1 Prerequisites

Lemma 2 Let $e=e^{2}$ and $r \in R$. The following conditions are equivalent.
(i) ere $=r e$;
(ii) $\bar{e} r e=0$;
(iii) $\bar{e} r \bar{e}=\bar{e} r$.

Proof. (i) \Rightarrow (ii) $\bar{e}(r e)=(\bar{e} e) r e=0$.
(ii) \Rightarrow (iii) $\bar{e} r \bar{e}=\bar{e} r(1-e)=\bar{e} r$.
(iii) \Rightarrow (i) $e r e=(1-\bar{e}) r(1-\bar{e})=r-\bar{e} r-r \bar{e}+\bar{e} r \bar{e}=r-r \bar{e}=r e$.

Definition. An idempotent e is called left semicentral if $\bar{e} R e=\{0\}$. Equivalently, $r e=e r e$ for every $r \in R$ and also equivalently, $e R \triangleleft R$.

Lemma 3 If e is left semicentral, and $t \in R$ satisfies et $=t$, $t e=0$ then
(iv) trt $=0$,
(v) tre $=0,\left(v^{\prime}\right) \operatorname{tr} \bar{e}=t r$,
(vi) $\bar{e} r t=0 ;(v i)$ ert $=r t$,
(vii) et $=t$ equivalent to $\bar{e} t=0$;
(viii) $t \bar{e}=t$ equivalent to $t e=0$.

Proof. Just notice that in any ring and for any two elements a, b from $a b=b$, $b a=0$ follows $b^{2}=0$. Then $t^{2}=0$ and the rest is easy.

In what follows, (i)-(viii) will be used only with respect to this previous lemma.

Remark. Note that $t \neq 0$ implies $e \notin\{0,1\}$ (from et $=t$ resp $t e=0$). However all equalities hold also for $t=0$.

We also mention $\operatorname{er} \bar{e}=\operatorname{er}(1-\bar{e}) \stackrel{(i)}{=} e r-r e$ (so a left semicentral idempotent may not be central).

In the sequel we suppose $e^{2}=e$, et $=t$ and $t e=0$ (so $\left.t^{2}=0\right)$. Notice that $e R \bar{e}=e_{11} R e_{22}=e_{12} S=S e_{12}$.

Lemma 4 Let $S=C(t)$. If $e R \bar{e}=S t=t S$ then for every $r \in R$ there exist $s, s^{\prime}, s^{\prime \prime} \in S$ such that $r t=t s, t r=s^{\prime} t$ and er $\bar{e}=s^{\prime \prime} t$.

Proof. The existence follows from the hypothesis and the following equalities $r t \stackrel{(v i)}{=}$ ert $\stackrel{(v i i i)}{=} e(r t) \bar{e}=t s, \operatorname{tr} \stackrel{\left(v^{\prime}\right)}{=} \operatorname{tr} \bar{e} \stackrel{(v i i)}{=}$ etre $=s^{\prime} t$ resp. er $\bar{e}=s^{\prime \prime} t$.

2.2 Direct characterization for triangular 2×2 matrix rings

To simplify the wording, we say that t has the cancellation property if $s=0$ whenever $s \in S$ and $s t=0$.

Theorem 5 Let e be a left semicentral idempotent in a ring $R, t \in R$ is such that et $=t$, te $=0$ and for $S=C(e, t)$ assume that t has the cancellation property (with respect to S) and eR $\bar{e}=S t=t S$. Then the map $\varphi: R \rightarrow \mathbb{T}_{2}(S)$ given by $\varphi(r)=\left[\begin{array}{cc}r e+\bar{e} s & s^{\prime \prime} \\ 0 & \bar{e} r+s^{\prime} e\end{array}\right]$ where $r t=t s$, tr $=s^{\prime} t$ and er $\bar{e}=s^{\prime \prime} t$ is a ring isomorphism.

The inverse is given by $\varphi^{-1}\left(\left[\begin{array}{cc}x & y \\ 0 & w\end{array}\right]\right)=x e+y t+w \bar{e}$.

Proof. We have already mentioned that from $e t=t, t e=0$ follows $t^{2}=0$. The existence of the elements $s, s^{\prime}, s^{\prime \prime}$ follows from Lemma 4. Notice that, by the cancellation property of t, these elements are unique with respect to $r t=t s$, $t r=s^{\prime} t$ and er $\bar{e}=s^{\prime \prime} t$, respectively.

The entries of $\varphi(r)$ belong to S, the centralizer $C(e, t)=C(t, \bar{e})$.
Indeed, $e(r e+\bar{e} s)=e r e \stackrel{(i)}{=} r e \stackrel{(i i)}{=}(r e+\bar{e} s) e$, and $t(r e+\bar{e} s) \stackrel{\{v),(v i i i)}{=} t s$, $(r e+\bar{e} s) t \stackrel{(v i)}{=} r t$, and
$\bar{e}\left(\bar{e} r+s^{\prime} e\right)=\bar{e} r+\bar{e} s^{\prime} e \stackrel{(i i)}{=} \bar{e} r \stackrel{(i i i)}{=} \bar{e} r \bar{e}=\left(\bar{e} r+s^{\prime} e\right) \bar{e}$, and $t\left(\bar{e} r+s^{\prime} e\right) t \stackrel{(v i i i),(v)}{=}$ $\operatorname{tr} \stackrel{\left(v^{\prime}\right)}{=} \operatorname{tr} \bar{e} \stackrel{(v i i)}{=} \operatorname{etr} \bar{e}=s^{\prime} t \stackrel{(v i)}{=}\left(\bar{e} r+s^{\prime} e\right) t$
φ is unital, i.e., $\varphi(1)=I_{2}$: indeed, for $r=1$ we get $s=s^{\prime}=1$ and $s^{\prime \prime}=0$ [using the cancellation property of elements of S with respect to t and $e+\bar{e}=1$].
φ is additive: we have $r_{1} t=t s_{1}, r_{2} t=t s_{2}, t r_{1}=s_{1}^{\prime} t, t r_{2}=s_{2}^{\prime} t$ and $e r_{1} \bar{e}=s_{1}^{\prime \prime} t, e r_{2} \bar{e}=s_{2}^{\prime \prime} t$.

Then $\varphi\left(r_{1}\right)=\left[\begin{array}{cc}r_{1} e+\bar{e} s_{1} & s_{1}^{\prime \prime} \\ 0 & \bar{e} r_{1}+s_{1}^{\prime} e\end{array}\right], \varphi\left(r_{2}\right)=\left[\begin{array}{cc}r_{2} e+\bar{e} s_{2} & s_{2}^{\prime \prime} \\ 0 & \bar{e} r_{2}+s_{2}^{\prime} e\end{array}\right]$ and so $\varphi\left(r_{1}\right)+\varphi\left(r_{2}\right)=\left[\begin{array}{cc}\left(r_{1}+r_{2}\right) e+\bar{e}\left(s_{1}+s_{2}\right) & \bar{s}\left(s_{1}^{\prime \prime}+s_{2}^{\prime \prime}\right. \\ 0 & \bar{e}\left(r_{1}+r_{2}\right)+\left(s_{1}^{\prime}+s_{2}^{\prime}\right) e\end{array}\right]=$ $\varphi\left(r_{1}+r_{2}\right)$. Indeed, $\left(r_{1}+r_{2}\right) t=t s_{1}+t s_{2}=t\left(s_{1}+s_{2}\right), t\left(r_{1}+r_{2}\right)=s_{1}^{\prime} t+s_{2}^{\prime} t=$ $\left(s_{1}^{\prime}+s_{2}^{\prime}\right) t$ and $e\left(r_{1}+r_{2}\right) \bar{e}=s_{1}^{\prime \prime} t+s_{2}^{\prime \prime} t=\left(s_{1}^{\prime \prime}+s_{2}^{\prime \prime}\right) t$.
φ is multiplicative amounts to [comparing the corresponding entries of both upper triangular matrices]:
$(1,1):\left(r_{1} e+\bar{e} s_{1}\right)\left(r_{2} e+\bar{e} s_{2}\right)=r_{1} r_{2} e+\bar{e} s_{1} s_{2}\left[\operatorname{indeed} \bar{e}\left(s_{1} r_{2}\right) e \stackrel{(i i)}{=} 0\right.$ and $\left.r_{1}\left(e r_{2} e\right) \stackrel{(i)}{=} r_{1} r_{2} e,\left(\bar{e} s_{1} \bar{e}\right) s_{2} \stackrel{(i i i)}{=} \bar{e} s_{1} s_{2}\right]$
$(1,2):\left(r_{1} e+\bar{e} s_{1}\right) s_{2}^{\prime \prime}+s_{1}^{\prime \prime}\left(\bar{e} r_{2}+s_{2}^{\prime} e\right)=s_{1,2}^{\prime \prime}$ where $e\left(r_{1} r_{2}\right) \bar{e}=s_{1,2}^{\prime \prime} t$ [here we have to check $\left[\left(r_{1} e+\bar{e} s_{1}\right) s_{2}^{\prime \prime}+s_{1}^{\prime \prime}\left(\bar{e} r_{2}+s_{2}^{\prime} e\right)\right] t=e\left(r_{1} r_{2}\right) \bar{e}=e r_{1} r_{2}-r_{1} r_{2} e$;
indeed $\left[\left(r_{1} e+\bar{e} s_{1}\right) s_{2}^{\prime \prime}+s_{1}^{\prime \prime}\left(\bar{e} r_{2}+s_{2}^{\prime} e\right)\right] t=\left(r_{1} e+\bar{e} s_{1}\right) e r_{2} \bar{e}+s_{1}^{\prime \prime} \bar{e} r_{2} t+s_{1}^{\prime \prime} t r_{2} \stackrel{(i i)}{=}$ $\left.=r_{1} e r_{2} \bar{e}+e r_{1} \bar{e} r_{2}=r_{1} e r_{2}-r_{1} r_{2} e+e r_{1} r_{2}-r_{1} e r_{2} \stackrel{(i)}{=}-r_{1} r_{2} e+e r_{1} r_{2}\right]$
$(2,2):\left(\bar{e} r_{1}+s_{1}^{\prime} e\right)\left(\bar{e} r_{2}+s_{2}^{\prime} e\right)=\bar{e} r_{1} r_{2}+s_{1}^{\prime} s_{2}^{\prime} e$ [indeed $\bar{e}\left(r_{1} s_{2}^{\prime}\right) e \stackrel{(i i)}{=} 0$ and $\left.\bar{e} r_{1} \bar{e} r_{2} \stackrel{(i i i)}{=} \bar{e} r_{1} r_{2}, s_{1}^{\prime} e s_{2}^{\prime} e \stackrel{(i)}{=} s_{1}^{\prime} s_{2}^{\prime} e\right]$.
φ is injective: assume $\varphi(r)=\left[\begin{array}{cc}r e+\bar{e} s & s^{\prime \prime} \\ 0 & \bar{e} r+s^{\prime} e\end{array}\right]=0_{2}$, that is, $r e+\bar{e} s=$ $\bar{e} r+s^{\prime} e=s^{\prime \prime}=0$ with $r t=t s, t r=s^{\prime} t$ and $e r \bar{e}=s^{\prime \prime} t$.

As $s^{\prime \prime}=0$ we have $e r \bar{e}=0$ and (using (ii)) er $=e r e=r e$. Right multiplication by e of $r e+\bar{e} s=0$ gives (by (iii)) re $=0$. Left multiplication by \bar{e} of $\bar{e} r+s^{\prime} e=0$ gives (also by (iii)) $\bar{e} r=0$, and so $0=r-e r=r-r e=r$, as desired.
φ is surjective: $x e+y t+w \bar{e}=(r e+\bar{e} s) e+e r \bar{e}+\left(\bar{e} r+s^{\prime} e\right) \bar{e}=r e+e r(1-$ $e)+(1-e) r(1-e)=r$, as desired.

3 The 3×3 case

Here we start with the δ 's relations for three orthogonal idempotents e_{11}, e_{22}, e_{33}, two zerosquare e_{12}, e_{23} and we define $e_{13}:=e_{12} e_{23}$.

The additional δ 's relations hold: $e_{13}^{2}=e_{12}\left(e_{23} e_{12}\right) e_{23}=0, e_{11} e_{13}=$ $e_{11} e_{12} e_{23}=e_{12} e_{23}=e_{13}, e_{13} e_{11}=e_{12}\left(e_{23} e_{11}\right)=0, e_{13} e_{22}=e_{12}\left(e_{23} e_{22}\right)=0$, $e_{22} e_{13}=\left(e_{22} e_{12}\right) e_{23}=0$.

Notice that $e_{11}+e_{22}+e_{33}=1$ implies $\overline{e_{11}}=e_{22}+e_{33}$ and other two permutations.

We gather here some obvious equivalences, consequences of the assumed δ 's relations.

Lemma 6 (vii) $e_{11} e_{12}=e_{12}$ equivalent to $\overline{e_{11}} e_{12}=0$;
(viii) $e_{12} \overline{e_{11}}=e_{12}$ equivalent to $e_{12} e_{11}=0$.
(xii) $e_{11} e_{13}=e_{13}$ equivalent to $\overline{e_{11}} e_{13}=0$.
(xiii) $e_{13} \overline{e_{11}}=e_{13}$ equivalent to $e_{13} e_{11}=0$.
$e_{12} e_{22}=e_{12}$ equivalent to $e_{12} \overline{2_{22}}=0$.
$\overline{e_{22}} e_{12}=e_{12}$ equivalent to $e_{22} e_{12}=0$.
$e_{22} e_{23}=e_{23}$ equivalent to $\overline{e_{22}} e_{23}=0$.
$e_{23} \overline{e_{22}}=e_{23}$ equivalent to $e_{23} e_{22}=0$.
(xxi) $e_{23} e_{33}=e_{23}$ equivalent to $e_{23} \overline{e_{33}}=0$.
(xxii) $\overline{e_{33}} e_{23}=e_{23}$ equivalent to $e_{33} e_{23}=0$.
(xxv) $e_{13} e_{33}=e_{13}$ equivalent to $e_{13} \overline{e_{33}}=0$.
$\overline{e_{33}} e_{13}=e_{13}$ equivalent to $e_{33} e_{13}=0$.
Summarizing, for any idempotent e and element a,
$e a=a$ is equivalent to $\bar{e} a=0$
$a e=a$ is equivalent to $a \bar{e}=0$
$a e=0$ is equivalent to $a \bar{e}=a$, and
$e a=0$ is equivalent to $\bar{e} a=a$.
As $\overline{e_{33}}=e_{11}+e_{22}$, we also have $\overline{e_{33}} e_{22}=e_{22} \overline{e_{33}}=e_{22}$ and similarly $\overline{e_{33}} e_{11}=$ $e_{11} \overline{e_{33}}=e_{11}, \overline{e_{22}} e_{11}=e_{11} \overline{e_{22}}=e_{11}$.

We still suppose e_{11} is left semicentral (i.e., $\overline{e_{11}} R e_{11}=\{0\}$). Hence all properties in Lemma 3 hold but we can add many new ones (related to e_{11}) corresponding to the zerosquares e_{23}, e_{13}. However, here $\overline{e_{11}}=e_{22}$ fails! We now have $\overline{e_{11}}=e_{22}+e_{33}\left(\right.$ from $\left.e_{11}+e_{22}+e_{33}=1\right)$.
Lemma 7 (i) $e_{11} r e_{11}=r e_{11}$;
(ii) $\overline{e_{11}} r e_{11}=0$;
(iii) $\overline{e_{11}} r \overline{e_{11}}=\overline{e_{11}} r$.
(iv) $e_{12} r e_{12}=0$,
(v) $e_{12} r e_{11}=0,\left(v^{\prime}\right) e_{12} r \overline{e_{11}}=e_{12} r$,
(vi) $\overline{e_{11}} r e_{12}=0$; (vi') $e_{11} r e_{12}=r e_{12}$,
(ix) $e_{13} r e_{13}=0$,
(x) $e_{13} r e_{11}=0,\left(x^{\prime}\right) e_{13} r \overline{e_{11}}=e_{13} r$,
(xi) $\overline{e_{11}} r e_{13}=0 ;\left(x i^{\prime}\right) e_{11} r e_{13}=r e_{13}$,

However e_{22} may not be left nor right semicentral but e_{33} is right semicentral. Assuming $e_{33} r \overline{e_{33}}=0$ leads to another (similar and symmetric properties):

Lemma 8 (xiv) $e_{33} r e_{33}=e_{33} r$,
(xv) $e_{33} r \overline{e_{33}}=0$,
(xvi) $\overline{e_{33}} r \overline{e_{33}}=r \overline{e_{33}}$,
(xvii) $e_{33} r e_{23}=0,\left(x v i i{ }^{\prime}\right) \overline{e_{33}} r e_{23}=r e_{23}$,
(xviii) $e_{23} r e_{23}=0$
(xx) $e_{23} r \overline{r_{33}}=0 ; ~\left(x x^{\prime}\right) e_{23} r e_{33}=e_{23} r$,
(ix) $e_{13} r e_{13}=0$,
(xxiii) $e_{33} r e_{13}=0,(x x i i i \prime) \overline{e_{33}} r e_{13}=r e_{13}$,
(xxiv) $e_{13} r \overline{e_{33}}=0,\left(x x i v^{\prime}\right) e_{13} r e_{33}=e_{13} r$.

We start with

$$
\begin{equation*}
r=x_{11} e_{11}+x_{12} e_{12}+x_{13} e_{13}+x_{22} e_{22}+x_{23} e_{23}+x_{33} e_{33} \tag{2}
\end{equation*}
$$

and are looking to $x_{i j} \in C\left(e_{11}, e_{22}, e_{12}, e_{23}\right)=C\left(e_{12}, e_{23}, e_{22}, e_{33}\right)=$
$=C\left(e_{11}, e_{12}, e_{13}, e_{22}, e_{23}, e_{33}\right)$.
The 12 relations obtained by left and right multiplication of (2) with the six $e_{i j}$. The $x_{i j}$'s are supposed to belong to the centralizer.
$e_{11} r=x_{11} e_{11}+\underline{x_{12}} e_{12}+x_{13} e_{13}, r e_{11}=x_{11} e_{11}$
$e_{22} r=x_{22} e_{22}+x_{23} e_{23}, r e_{22}=x_{12} e_{12}+x_{22} e_{22}$
$e_{33} r=x_{33} e_{33}, r e_{33}=x_{13} e_{13}+x_{23} e_{23}+x_{33} e_{33}$
$e_{12} r=x_{22} e_{12}+x_{23} e_{13}, r e_{12}=x_{11} e_{12}$
$e_{13} r=x_{33} e_{13}, r e_{13}=x_{11} e_{13}$
$e_{23} r=x_{33} e_{23}, r e_{23}=x_{12} e_{13}+x_{22} e_{23}$.
11. For x_{11}, by left and right multiplication with e_{11} we get $\left(x_{11}-r\right) e_{11}=$ $0=\left(x_{11}-r\right) e_{12}$ [actually also $\left.\left(x_{11}-r\right) e_{13}=0\right]$ and the continuation is (almost !) identical to the $n=2$ case.

Since $\left(x_{11}-r\right) e_{11}=\left(x_{11}-r\right) e_{12}=0$ we are searching for $x_{11}=r+\alpha$, commuting with e_{11} and e_{12}, where $\alpha e_{11}=\alpha e_{12}=0$.
$e_{11} x_{11}=x_{11} e_{11}$ is equivalent to $e_{11} \alpha=r e_{11}-e_{11} r \stackrel{(i)}{=} e_{11} r e_{11}-e_{11} r=$ $-e_{11} r \overline{e_{11}}$ whence $e_{11}\left(\alpha+r \overline{e_{11}}\right)=0, \alpha+r \overline{e_{11}} \in r\left(e_{11}\right) \ni \overline{e_{11}}$
and so we choose $\alpha+r \overline{e_{11}}=\overline{e_{11}} \beta$. This way $e_{11} x_{11}=e_{11} r e_{11} \stackrel{(i)}{=} r e_{11}=$ $x_{11} e_{11}$ and we have to choose β for $e_{12} x_{11}=x_{11} e_{12}$.

We have $e_{12} x_{11}=e_{12} r e_{11}+e_{12} \overline{e_{11}} \beta^{(v),(v i i i)}=e_{12} \beta$ and $x_{11} e_{12}=r e_{11} e_{12}+$ $\overline{e_{11}} \beta e_{12} \stackrel{(v i)}{=} r e_{12}$, so we need β such that $r e_{12}=e_{12} \beta$.

As $r e_{12} \stackrel{\left(v i^{\prime}\right)}{=} e_{11} r e_{12} \stackrel{(v i i i)}{=} e_{11} r e_{12} \overline{e_{11}} \in e_{11} R \overline{e_{11}}=e_{11} R\left(e_{22}+e_{33}\right) \subseteq e_{11} R e_{22}+$ $e_{11} R e_{33}=e_{12} S+e_{13} S=e_{12} S+e_{12} e_{23} S=e_{12} S$.

For $n=3, \overline{e_{11}} \neq e_{22}$. It is now $\overline{e_{11}}=e_{22}+e_{33}$.
Hence

$$
x_{11}=r e_{11}+\overline{e_{11}} s
$$

with $r e_{12}=e_{12} s$.

The commutation with $e_{13}: x_{11} e_{13} \stackrel{(x i)}{=} r e_{13}=r e_{12} e_{23}=e_{12} s e_{23}$ and $\stackrel{(x),(x i i i)}{=} e_{13} s=e_{12} e_{23} s=e_{12} s e_{23}$ since $e_{i j}$ commute with elements in $e_{13} x_{1}$ S.

The commutation with $e_{22}: x_{11} e_{22}=\overline{e_{11}} s e_{22}=\overline{e_{11}} e_{22} s=e_{22} s$ and $e_{22} x_{11}=$ $e_{22} r e_{11}+e_{22} \overline{e_{11}} s=e_{22} s$ since $e_{22} R e_{11}=\{0\}[$ was already checked]

The commutation with $e_{23}: x_{11} e_{23}=\overline{e_{11}} s e_{23}=\overline{e_{11}} e_{23} s=e_{23} s$ and $e_{23} x_{11}=$ $e_{23} r e_{11}+e_{23} \overline{e_{11}} s=e_{23} s$ since $e_{23} r e_{11}=e_{22}\left(e_{23} r\right) e_{11}=0$ (as above).

Checking $x_{11}=r e_{11}+\overline{e_{11}} s$ with $r e_{12}=e_{12} s$.
$r e_{11}=\left(r e_{11}+\overline{e_{11}} s\right) e_{11} \stackrel{(i i)}{=} r e_{11}, \mathrm{ok}, r e_{13}=\left(r e_{11}+\overline{e_{11}} s\right) e_{13} \stackrel{(x i)}{=} r e_{13}, \mathrm{ok}$
$r e_{12}=\left(r e_{11}+\overline{e_{11}} s\right) e_{12} \stackrel{(v i)}{=} r e_{12}$ ok, and
$e_{11} r=\left(r e_{11}+\overline{e_{11}} s\right) e_{11}+x_{12} e_{12}+x_{13} e_{13} \stackrel{(i i)}{=} r e_{11}+x_{12} e_{12}+x_{13} e_{13}$, that is,

$$
\begin{equation*}
x_{12} e_{12}+x_{13} e_{13}=e_{11} r-r e_{11} \tag{3}
\end{equation*}
$$

remains to be checked. That x_{11} belongs to the centralizer was checked above.
33. Now x_{33} will be similar to x_{11}. We start with $\left[e_{13}\left(x_{33}-r\right)=\right] e_{23}\left(x_{33}-\right.$ $r)=e_{33}\left(x_{33}-r\right)=0$ that is $x_{33}=r+\alpha$ with $\left[e_{13} \alpha=\right] e_{23} \alpha=e_{33} \alpha=0$.
$e_{33} x_{33}=x_{33} e_{33}$ is equivalent to $\alpha e_{33}=e_{33} r-r e_{33} \stackrel{(x i v)}{=} e_{33} r e_{33}-r e_{33}=$ $-\overline{e_{33}} r e_{33}$ whence $\left(\alpha+\overline{e_{33}} r\right) e_{33}=0, \alpha+\overline{e_{33}} r \in l\left(e_{33}\right) \ni \overline{e_{33}}$ and so we choose $\alpha+\overline{e_{33}} r=\beta \overline{e_{33}}$. Thus $x_{33}=e_{33} r+\beta \overline{e_{33}}$ and we choose β for $e_{23} x_{33}=x_{33} e_{23}$. This (using (xx) resp. (xxii), (xvii)) gives $e_{23} r=\beta e_{23}$. Since $e_{23} r \stackrel{\left(x x^{\prime}\right)}{=} e_{23} r e_{33}=$ $e_{22} e_{23} r e_{33} \in e_{22} R e_{33}=e_{23} S$ so there is s_{3} such that $e_{23} r=s_{3} e_{23}$ and

$$
x_{33}=e_{33} r+s_{3} \overline{e_{33}} .
$$

The commutation with $e_{13}: x_{33} e_{13}=e_{33} r e_{13}+s_{3} \overline{e_{33}} e_{13} \stackrel{\left(x v i i i^{\prime}\right),(x v i i i)}{=}=s_{3} e_{13}$ and $e_{13}\left(e_{33} r+s_{3} \overline{e_{33}}\right) \stackrel{(x i v)}{=} e_{13} r$, which holds, left multiplying $e_{23} r=s_{3} e_{23}$ by e_{12}, since $e_{i j}$ commute with elements in S.

The commutation with $e_{22}: x_{33} e_{22}=\left(e_{33} r+s_{3} \overline{e_{33}}\right) e_{22}=s_{3} e_{22}$ and $e_{22} x_{33}=$ $e_{22}\left(e_{33} r+s_{3} \overline{e_{33}}\right)=s_{3} e_{22}$ since $e_{22} \overline{e_{33}}=\overline{e_{33}} e_{22}=e_{22}$.

The commutation with $e_{12}: x_{33} e_{12}=\left(e_{33} r+s_{3} \overline{e_{33}}\right) e_{12}=s_{3} e_{12}$ and $e_{12} x_{11}=$ $e_{12}\left(e_{33} r+s_{3} \overline{e_{33}}\right)=s_{3} e_{12}$ since $e_{12} \overline{e_{33}}=\overline{e_{33}} e_{12}=e_{12}$.

It remains to verify $r e_{33}=x_{13} e_{13}+x_{23} e_{23}+x_{33} e_{33}$, which amounts to $x_{13} e_{13}+x_{23} e_{23}=r e_{33}-\left(e_{33} r+s_{3} \overline{e_{33}}\right) e_{33}=r e_{33}-e_{33} r$.
$\mathbf{1 2 + 2 2}$. The relations are $e_{11} r=x_{11} e_{11}+\underline{x_{12}} e_{12}+x_{13} e_{13}, r e_{22}=\underline{x_{12}} e_{12}+$ $x_{22} e_{22}$ and $r e_{23}=\underline{x_{12}} e_{13}+x_{22} e_{23}$.

Replacement in the first $e_{11} r=\left(r e_{11}+\overline{e_{11}} s\right) e_{11}+\underline{x_{12}} e_{12}+x_{13} e_{13}$ gives (again) (3): $x_{12} e_{12}+x_{13} e_{13}=e_{11} r-r e_{11}$.

We can write the other two $\left(r-x_{22}\right) e_{22}=x_{12} e_{12}$ and $\left(r-x_{22}\right) e_{23}=x_{12} e_{13}=$ $x_{12} e_{12} e_{23}$ [the later follows from previous by right multiplication with e_{23}).

$$
\text { So } r-x_{22}-x_{12} e_{12} \in l\left(e_{23}\right)=\left\{e_{11}, e_{13}, e_{23}, e_{33}\right\}
$$

We write also the other x_{22} relations: $e_{22} r=x_{22} e_{22}+x_{23} e_{23}, e_{12} r=x_{22} e_{12}+$ $x_{23} e_{13}$. Hence
$e_{22}\left(r-x_{22}\right)=x_{23} e_{23}$ and $e_{12}\left(r-x_{22}\right)=x_{23} e_{13}$ [the x 's are in the centralizer]. Both include x_{23}.

The later can be written $r-x_{22}-x_{23} e_{23} \in r\left(e_{12}\right)=\left\{e_{11}, e_{12}, e_{13}, e_{33}\right\}$ and so $\left(1-e_{22}\right)\left(r-x_{22}\right) \in r\left(e_{12}\right)=\left\{e_{11}, e_{12}, e_{13}, e_{33}\right\}$.

Here $1-e_{22}=e_{11}+e_{33}$.
Too complicated, so I give up !

References

[1] G. Agnarsson, S. A. Amitsur, J. C. Robson Recognition of matrix rings II. Israel J. of Math. 96 (1996), 1-13.
[2] P. M. Cohn An Introduction to Ring Theory. Undergraduate Maths Series. Springer, 2000.
[3] J. Han, Y. Lee, S. Park Semicentral idempotents in a ring. J. Korean Math. Soc. 51 (3) (2014), 463-472.
[4] T. Y. Lam, A. Leroy Recognition and Computations of Matrix Rings. Israel J. of Math. 96 (1996), 379-397.
[5] T. Y. Lam Lectures on modules and rings. Graduate Texts in Maths, Springer, 1999.
[6] J. Lambek Lectures on Rings and Modules. Blaisdell Publishing Company 1966.
[7] J. C. Robson Recognition of matrix rings. Comm. Algebra 19 (7) (1991), 2113-2124.
[8] K. C. Smith, L. van Wyk An internal characterization of structural matrix rings. Comm. Algebra 22 (14) (1994), 5599-5622.
[9] L. van Wyk Matrix rings satisfying column sum conditions versus structural matrix rings. Linear Algebra and Appl. 249 (1996), 15-28.

