On the recognition of rings of upper triangular matrices

October 18, 2023

1 Introduction

It is well-known that the elements a of a (unital associative) ring R may be identified with the scalar matrices $aI_n \in \mathbb{M}_n(R)$ and these matrices commute with all the e_{ij} . The converse also holds (see [2] or [5]): Let R be a ring containing n^2 elements e_{ij} satisfying $e_{ij}e_{rs} = \delta_{jr}e_{is}$ [the δ 's equations] and $\sum_{i=1}^{n} e_{ii} = 1$ [also called a full set of matrix units]. Then $R \cong \mathbb{M}_n(C)$ where the ring C is the centralizer of the e_{ij} in R.

Sketch of the proof. Define C as in the statement and for $a \in R$ put $a_{ij} = \sum_{r=1}^{n} e_{ri} a e_{jr}$. Then $a_{ij} \in C$ and we have $\sum_{i,j=1}^{n} a_{ij} e_{ij} = a$. Hence the bijection needed is $a \leftrightarrow [a_{ij}]$, and this is verified to be an isomorphism.

Note that according to the δ 's equations, this characterization of (full) matrix rings uses n idempotents and $n^2 - n$ zerosquare elements, that is, n^2 elements satisfying some conditions.

In the last decade of the past century, the "recognition" of (full) matrix rings, has seen a new impetus, mainly by diminishing the number of elements needed for a characterization.

In [7], a characterization was given using only n + 1 elements (one nilpotent together with all its powers and another n elements) and in [1] (see also [5]), a characterization of matrix rings was given using only 3 elements (only two powers of a nilpotent and another two elements).

More precisely, these characterizations follow.

Robson: A ring is a complete $n \times n$ matrix ring if and only if it contains elements $a_1, ..., a_n, f$ such that $f^n = 0$ and

$$1 = a_1 f^{n-1} + f a_2 f^{n-2} + f^2 a_3 f^{n-3} + \dots + f^{n-1} a_n$$

Agnarrson et altri: Let R be a ring and $p,q \ge 1$ be fixed integers. Then $R \cong \mathbb{M}_{p+q}(S)$ for some ring S iff there exist elements $a, b, f \in R$ such that $f^{p+q} = 0$ and $af^p + f^q b = 1$.

In both characterizations, one nilpotent of index n (or p+q) is given together with some other elements which permit the reconstruction of the idempotents.

In the second characterization (see also [5], the "only if" part of (17.10)), a (strictly) *lower* triangular matrix (the sum of the elements on the subdiagonal) is taken

$$f = E_{21} + E_{32} + \dots + E_{p+q,p+q-1},$$

for which $f^{p+q} = 0$, and another a, b two (strictly) upper triangular matrices (with identity superdiagonal) are needed.

Notice that here *it was essential* to use both lower and upper triangular matrices.

We proceed with the subject of this exposition, that is, the recognition of the upper triagular matrix rings.

A result of the same genre (the base ring of the ring of upper triangular matrices is the centralizer of the e_{ij} 's) is a special case (Theorem 2.9) in [8]. The characterization of rings of (upper) triangular matrices was given using $\frac{n(n+1)}{2}$ matrix units (i.e. *all* the upper triangular matrix units) together with some conditions.

More precisely, we recall this special case (for which the natural quasi-order on $\{1, 2, ..., n\}$ is considered).

Theorem 1 Let R be a ring with a set $\{e_{ij} : i \leq j\}$ of matrix units, that is, $e_{11} + \ldots + e_{nn} = 1$ and $e_{ij}e_{kl} = \delta_{jk}e_{il}$.

R is isomorphic with a ring of upper triangular matrices $\mathbb{T}_n(S)$ if and only if R has a subring S with $1 \in S$ and the following properties.

(i) $S \subseteq C(\{e_{ij} : i \leq j\});$ (ii) $e_{ii}Re_{jj} = Se_{ij}$ for $i \leq j;$ (iii) $e_{jj}Re_{ii} = \{0\}$ for i < j;(iv) If $se_{ij} = 0$ for some $s \in S$ (and $i \leq j$), then s = 0.

Moreover, the isomorphism $\phi : \mathbb{T}_n(S) \longrightarrow R$ is given: $\phi([a_{ij}]) = \sum_{i \leq j} a_{ij} e_{ij}$. The goal of this exposition is to perform the explicit inverse of ϕ , which is not an easy task even for n = 2.

2 The n = 2 case

To simplify the writing denote $e := e_{11}$, $t := e_{12}$ and so $\overline{e} = e_{22}$.

2.1 Prerequisites

Lemma 2 Let $e = e^2$ and $r \in R$. The following conditions are equivalent.

(i) ere = re;(ii) $\overline{e}re = 0;$ (iii) $\overline{e}r\overline{e} = \overline{e}r.$ **Proof.** (i) \Rightarrow (ii) $\overline{e}(re) = (\overline{e}e)re = 0$.

(ii) \Rightarrow (iii) $\overline{e}r\overline{e} = \overline{e}r(1-e) = \overline{e}r$.

 $\text{(iii)} \Rightarrow \text{(i)} \ ere = (1 - \overline{e})r(1 - \overline{e}) = r - \overline{e}r - r\overline{e} + \overline{e}r\overline{e} = r - r\overline{e} = re. \quad \blacksquare$

Definition. An idempotent e is called *left semicentral* if $\overline{e}Re = \{0\}$. Equivalently, re = ere for every $r \in R$ and also equivalently, $eR \triangleleft R$.

Lemma 3 If e is left semicentral, and $t \in R$ satisfies et = t, te = 0 then (iv) trt = 0,

(v) tre = 0, (v') $tr\overline{e} = tr$, (vi) $\overline{e}rt = 0$; (vi') ert = rt,

(vii) et = t equivalent to $\overline{e}t = 0$;

(viii) $t\overline{e} = t$ equivalent to te = 0.

Proof. Just notice that in any ring and for any two elements a, b from ab = b, ba = 0 follows $b^2 = 0$. Then $t^2 = 0$ and the rest is easy.

In what follows, (i)-(viii) will be used **only** with respect to this previous lemma.

Remark. Note that $t \neq 0$ implies $e \notin \{0,1\}$ (from et = t resp te = 0). However all equalities hold also for t = 0.

We also mention $er\overline{e} = er(1-\overline{e}) \stackrel{(i)}{=} er - re$ (so a left semicentral idempotent may **not** be central).

In the sequel we suppose $e^2 = e$, et = t and te = 0 (so $t^2 = 0$). Notice that $eR\overline{e} = e_{11}Re_{22} = e_{12}S = Se_{12}$.

Lemma 4 Let S = C(t). If $eR\overline{e} = St = tS$ then for every $r \in R$ there exist $s, s', s'' \in S$ such that rt = ts, tr = s't and $er\overline{e} = s''t$.

Proof. The existence follows from the hypothesis and the following equalities $rt \stackrel{(vi)}{=} ert \stackrel{(viii)}{=} e(rt)\overline{e} = ts, tr \stackrel{(v')}{=} tr\overline{e} \stackrel{(vii)}{=} etr\overline{e} = s't \text{ resp. } er\overline{e} = s''t.$

2.2 Direct characterization for triangular 2×2 matrix rings

To simplify the wording, we say that t has the cancellation property if s = 0whenever $s \in S$ and st = 0.

Theorem 5 Let e be a left semicentral idempotent in a ring $R, t \in R$ is such that et = t, te = 0 and for S = C(e,t) assume that t has the cancellation property (with respect to S) and $eR\overline{e} = St = tS$. Then the map $\varphi : R \to \mathbb{T}_2(S)$ given by $\varphi(r) = \begin{bmatrix} re + \overline{es} & s'' \\ 0 & \overline{er} + s'e \end{bmatrix}$ where rt = ts, tr = s't and $er\overline{e} = s''t$ is a ring isomorphism.

The inverse is given by $\varphi^{-1}\left(\left[\begin{array}{cc} x & y \\ 0 & w \end{array}\right]\right) = xe + yt + w\overline{e}.$

Proof. We have already mentioned that from et = t, te = 0 follows $t^2 = 0$. The existence of the elements s, s', s'' follows from Lemma 4. Notice that, by the cancellation property of t, these elements are unique with respect to rt = ts, tr = s't and $er\overline{e} = s''t$, respectively.

The entries of $\varphi(r)$ belong to S, the centralizer $C(e,t) = C(t,\overline{e})$.

Indeed, $e(re + \overline{es}) = ere \stackrel{(i)}{=} re \stackrel{(ii)}{=} (re + \overline{es})e$, and $t(re + \overline{es}) \stackrel{\{v\},(viii)}{=} ts$, $(re + \overline{es})t \stackrel{(vi)}{=} rt$, and

 $\overline{e}(\overline{er} + s'e) = \overline{er} + \overline{e}s'e \stackrel{(ii)}{=} \overline{er} \stackrel{(iii)}{=} \overline{er}\overline{e} = (\overline{er} + s'e)\overline{e}, \text{ and } t(\overline{er} + s'e)t \stackrel{(viii),(v)}{=}$ $tr \stackrel{(v')}{=} tr \overline{e} \stackrel{(vii)}{=} etr \overline{e} = s't \stackrel{(vi)}{=} (\overline{e}r + s'e)t$

 φ is **unital**, i.e., $\varphi(1) = I_2$: indeed, for r = 1 we get s = s' = 1 and s'' = 0[using the cancellation property of elements of S with respect to t and $e + \overline{e} = 1$]. φ is additive: we have $r_1t = ts_1$, $r_2t = ts_2$, $tr_1 = s'_1t$, $tr_2 = s'_2t$ and $er_1\overline{e} = s_1''t, \ er_2\overline{e} = s_2''t,$

Then
$$\varphi(r_1) = \begin{bmatrix} r_1 e + \overline{e}s_1 & s_1'' \\ 0 & \overline{e}r_1 + s_1'e \end{bmatrix}, \ \varphi(r_2) = \begin{bmatrix} r_2 e + \overline{e}s_2 & s_2'' \\ 0 & \overline{e}r_2 + s_2'e \end{bmatrix}$$

and so $\varphi(r_1) + \varphi(r_2) = \begin{bmatrix} (r_1 + r_2)e + \overline{e}(s_1 + s_2) & s_1'' + s_2'' \\ 0 & \overline{e}(r_1 + r_2) + (s_1' + s_2')e \end{bmatrix} = \varphi(r_1 + r_2).$ Indeed, $(r_1 + r_2)t = ts_1 + ts_2 = t(s_1 + s_2), t(r_1 + r_2) = s_1't + s_2't = (s_1' + s_2')t.$

 φ is **multiplicative** amounts to [comparing the corresponding entries of both upper triangular matrices]:

(1,1): $(r_1e + \overline{e}s_1)(r_2e + \overline{e}s_2) = r_1r_2e + \overline{e}s_1s_2$ [indeed $\overline{e}(s_1r_2)e \stackrel{(ii)}{=} 0$ and

 $\begin{array}{l} r_1(er_2e) \stackrel{(i)}{=} r_1r_2e, \ (\overline{e}s_1\overline{e})s_2 \stackrel{(iii)}{=} \overline{e}s_1s_2] \\ (1,2): \ (r_1e + \overline{e}s_1)s_2'' + s_1''(\overline{e}r_2 + s_2'e) = s_{1,2}'' \text{ where } e(r_1r_2)\overline{e} = s_{1,2}''t \text{ [here we have to check } [(r_1e + \overline{e}s_1)s_2'' + s_1''(\overline{e}r_2 + s_2'e)]t = e(r_1r_2)\overline{e} = er_1r_2 - r_1r_2e; \end{array}$

indeed $[(r_1e + \overline{e}s_1)s_2'' + s_1''(\overline{e}r_2 + s_2'e)]t = (r_1e + \overline{e}s_1)er_2\overline{e} + s_1''\overline{e}r_2t + s_1''tr_2 \stackrel{(ii)}{=}$ $= r_1 e r_2 \overline{e} + e r_1 \overline{e} r_2 = r_1 e r_2 - r_1 r_2 e + e r_1 r_2 - r_1 e r_2 \frac{(i)}{2} - r_1 r_2 e + e r_1 r_2]$

(2,2): $(\overline{e}r_1 + s'_1 e)(\overline{e}r_2 + s'_2 e) = \overline{e}r_1r_2 + s'_1s'_2 e$ [indeed $\overline{e}(r_1s'_2)e \stackrel{(ii)}{=} 0$ and

 $\begin{array}{l} (2,2): \quad (e_{1} + e_{3}) = (e_{1} + e_{3}) \\ \overline{e}r_{1}\overline{e}r_{2} \stackrel{(iii)}{=} \overline{e}r_{1}r_{2}, \ s_{1}'es_{2}'e \stackrel{(i)}{=} s_{1}'s_{2}'e]. \\ \varphi \text{ is injective: assume } \varphi(r) = \begin{bmatrix} re + \overline{e}s & s'' \\ 0 & \overline{e}r + s'e \\ 0 & \overline{e}r + s'e \end{bmatrix} = 0_{2}, \text{ that is, } re + \overline{e}s = s''t. \end{array}$

As s'' = 0 we have $er\overline{e} = 0$ and (using (ii)) er = ere = re. Right multiplication by e of $re + \overline{es} = 0$ gives (by (iii)) re = 0. Left multiplication by \overline{e} of $\overline{er} + s'e = 0$ gives (also by (iii)) $\overline{er} = 0$, and so 0 = r - er = r - re = r, as desired.

 φ is surjective: $xe + yt + w\overline{e} = (re + \overline{e}s)e + er\overline{e} + (\overline{e}r + s'e)\overline{e} = re + er(1 - er)e^{-2}$ e) + (1 - e)r(1 - e) = r, as desired.

3 The 3×3 case

Here we start with the δ 's relations for three orthogonal idempotents e_{11}, e_{22}, e_{33} , two zerosquare e_{12}, e_{23} and we define $e_{13} := e_{12}e_{23}$.

The additional δ 's relations hold: $e_{13}^2 = e_{12}(e_{23}e_{12})e_{23} = 0$, $e_{11}e_{13} = e_{11}e_{12}e_{23} = e_{12}e_{23} = e_{13}$, $e_{13}e_{11} = e_{12}(e_{23}e_{11}) = 0$, $e_{13}e_{22} = e_{12}(e_{23}e_{22}) = 0$, $e_{22}e_{13} = (e_{22}e_{12})e_{23} = 0$.

Notice that $e_{11} + e_{22} + e_{33} = 1$ implies $\overline{e_{11}} = e_{22} + e_{33}$ and other two permutations.

We gather here some obvious equivalences, consequences of the assumed δ 's relations.

Lemma 6 (vii) $e_{11}e_{12} = e_{12}$ equivalent to $\overline{e_{11}}e_{12} = 0$;

Summarizing, for any idempotent e and element a,

ea = a is equivalent to $\overline{e}a = 0$

ae = a is equivalent to $a\overline{e} = 0$

ae = 0 is equivalent to $a\overline{e} = a$, and ea = 0 is equivalent to $\overline{e}a = a$.

As $\overline{e_{33}} = e_{11} + e_{22}$, we also have $\overline{e_{33}}e_{22} = e_{22}\overline{e_{33}} = e_{22}$ and similarly $\overline{e_{33}}e_{11} = e_{11}\overline{e_{33}} = e_{11}$, $\overline{e_{22}}e_{11} = e_{11}\overline{e_{22}} = e_{11}$.

We still suppose e_{11} is left semicentral (i.e., $\overline{e_{11}}Re_{11} = \{0\}$). Hence all properties in Lemma 3 hold but we can add many new ones (related to e_{11}) corresponding to the zerosquares e_{23} , e_{13} . However, here $\overline{e_{11}} = e_{22}$ fails ! We now have $\overline{e_{11}} = e_{22} + e_{33}$ (from $e_{11} + e_{22} + e_{33} = 1$).

Lemma 7 (i) $e_{11}re_{11} = re_{11}$;

 $\begin{array}{l} (ii) \ \overline{e_{11}}re_{11} = 0; \\ (iii) \ \overline{e_{11}}r\overline{e_{11}} = \overline{e_{11}}r. \\ (iv) \ e_{12}re_{12} = 0, \\ (v) \ e_{12}re_{11} = 0, \ (v') \ e_{12}r\overline{e_{11}} = e_{12}r, \\ (vi) \ \overline{e_{11}}re_{12} = 0; \ (vi') \ e_{11}re_{12} = re_{12}, \\ (ix) \ e_{13}re_{13} = 0, \\ (x) \ e_{13}re_{11} = 0, \ (x') \ e_{13}r\overline{e_{11}} = e_{13}r, \\ (xi) \ \overline{e_{11}}re_{13} = 0; \ (xi') \ e_{11}re_{13} = re_{13}, \end{array}$

However e_{22} may not be left nor right semicentral but e_{33} is right semicentral. Assuming $e_{33}r\overline{e_{33}} = 0$ leads to another (similar and symmetric properties):

Lemma 8 (xiv) $e_{33}re_{33} = e_{33}r$,

 $\begin{array}{l} (xv) \ e_{33}r\overline{e_{33}} = 0, \\ (xvi) \ \overline{e_{33}}r\overline{e_{33}} = r\overline{e_{33}}, \\ (xvii) \ \overline{e_{33}}r\overline{e_{23}} = 0, \ (xvii') \ \overline{e_{33}}r\overline{e_{23}} = r\overline{e_{23}}, \\ (xvii) \ e_{23}r\overline{e_{23}} = 0, \ (xvi) \ \overline{e_{23}}r\overline{e_{33}} = e_{23}r, \\ (ix) \ e_{23}r\overline{e_{33}} = 0; \ (xx') \ e_{23}r\overline{e_{33}} = e_{23}r, \\ (ix) \ e_{13}r\overline{e_{13}} = 0, \\ (xxiii) \ e_{33}r\overline{e_{13}} = 0, \ (xxiii') \ \overline{e_{33}}r\overline{e_{13}} = r\overline{e_{13}}, \\ (xiv) \ e_{13}r\overline{e_{33}} = 0, \ (xxiv') \ e_{13}r\overline{e_{33}} = e_{13}r. \end{array}$

We start with

$$r = x_{11}e_{11} + x_{12}e_{12} + x_{13}e_{13} + x_{22}e_{22} + x_{23}e_{23} + x_{33}e_{33}$$
(2)

and are looking to $x_{ij} \in C(e_{11}, e_{22}, e_{12}, e_{23}) = C(e_{12}, e_{23}, e_{22}, e_{33}) =$

 $= C(e_{11}, e_{12}, e_{13}, e_{22}, e_{23}, e_{33}).$

The 12 relations obtained by left and right multiplication of (2) with the six e_{ij} . The x_{ij} 's are supposed to belong to the centralizer.

 $e_{11}r = x_{11}e_{11} + \underline{x_{12}}e_{12} + x_{13}e_{13}, re_{11} = x_{11}e_{11}$ $e_{22}r = x_{22}e_{22} + \overline{x_{23}}e_{23}, re_{22} = \underline{x_{12}}e_{12} + x_{22}e_{22}$ $e_{33}r = x_{33}e_{33}, re_{33} = x_{13}e_{13} + x_{23}e_{23} + x_{33}e_{33}$ $e_{12}r = x_{22}e_{12} + x_{23}e_{13}, re_{12} = x_{11}e_{12}$ $e_{13}r = x_{33}e_{13}, re_{13} = x_{11}e_{13}$ $e_{23}r = x_{33}e_{23}, re_{23} = x_{12}e_{13} + x_{22}e_{23}.$

11. For x_{11} , by left and right multiplication with e_{11} we get $(x_{11} - r)e_{11} = 0 = (x_{11} - r)e_{12}$ [actually also $(x_{11} - r)e_{13} = 0$] and the continuation is (almost !) identical to the n = 2 case.

Since $(x_{11} - r)e_{11} = (x_{11} - r)e_{12} = 0$ we are searching for $x_{11} = r + \alpha$, commuting with e_{11} and e_{12} , where $\alpha e_{11} = \alpha e_{12} = 0$.

 $e_{11}x_{11} = x_{11}e_{11}$ is equivalent to $e_{11}\alpha = re_{11} - e_{11}r \stackrel{(i)}{=} e_{11}re_{11} - e_{11}r = -e_{11}r\overline{e_{11}}$ whence $e_{11}(\alpha + r\overline{e_{11}}) = 0$, $\alpha + r\overline{e_{11}} \in r(e_{11}) \ni \overline{e_{11}}$

and so we choose $\alpha + r\overline{e_{11}} = \overline{e_{11}}\beta$. This way $e_{11}x_{11} = e_{11}re_{11} \stackrel{(i)}{=} re_{11} = x_{11}e_{11}$ and we have to choose β for $e_{12}x_{11} = x_{11}e_{12}$.

We have $e_{12}x_{11} = e_{12}re_{11} + e_{12}\overline{e_{11}}\beta \stackrel{(v),(viii)}{=} e_{12}\beta$ and $x_{11}e_{12} = re_{11}e_{12} + \overline{e_{11}}\beta e_{12} \stackrel{(vi)}{=} re_{12}$, so we need β such that $re_{12} = e_{12}\beta$.

As $re_{12} \stackrel{(vi')}{=} e_{11}re_{12} \stackrel{(viii)}{=} e_{11}re_{12}\overline{e_{11}} \in e_{11}R\overline{e_{11}} = e_{11}R(e_{22}+e_{33}) \subseteq e_{11}Re_{22}+e_{11}Re_{33} = e_{12}S + e_{13}S = e_{12}S + e_{12}e_{23}S = e_{12}S.$

For n = 3, $\overline{e_{11}} \neq e_{22}$. It is now $\overline{e_{11}} = e_{22} + e_{33}$.

Hence

$$x_{11} = re_{11} + \overline{e_{11}}s$$

with $re_{12} = e_{12}s$.

The commutation with e_{13} : $x_{11}e_{13} \stackrel{(xi)}{=} re_{13} = re_{12}e_{23} = e_{12}se_{23}$ and $e_{13}x_{11} \stackrel{(x),(xiii)}{=} e_{13}s = e_{12}e_{23}s = e_{12}se_{23}$ since e_{ij} commute with elements in S.

The commutation with e_{22} : $x_{11}e_{22} = \overline{e_{11}}se_{22} = \overline{e_{11}}e_{22}s = e_{22}s$ and $e_{22}x_{11} = e_{22}re_{11} + e_{22}\overline{e_{11}}s = e_{22}s$ since $e_{22}Re_{11} = \{0\}$ [was already checked]

The commutation with e_{23} : $x_{11}e_{23} = \overline{e_{11}}se_{23} = \overline{e_{11}}e_{23}s = e_{23}s$ and $e_{23}x_{11} = e_{23}re_{11} + e_{23}\overline{e_{11}}s = e_{23}s$ since $e_{23}re_{11} = e_{22}(e_{23}r)e_{11} = 0$ (as above).

Checking $x_{11} = re_{11} + \overline{e_{11}}s$ with $re_{12} = e_{12}s$. $re_{11} = (re_{11} + \overline{e_{11}}s)e_{11} \stackrel{(ii)}{=} re_{11}$, ok, $re_{13} = (re_{11} + \overline{e_{11}}s)e_{13} \stackrel{(xi)}{=} re_{13}$, ok $re_{12} = (re_{11} + \overline{e_{11}}s)e_{12} \stackrel{(vi)}{=} re_{12}$ ok, and $e_{11}r = (re_{11} + \overline{e_{11}}s)e_{11} + x_{12}e_{12} + x_{13}e_{13} \stackrel{(ii)}{=} re_{11} + x_{12}e_{12} + x_{13}e_{13}$, that is,

$$x_{12}e_{12} + x_{13}e_{13} = e_{11}r - re_{11} \quad (3)$$

remains to be checked. That x_{11} belongs to the centralizer was checked above.

33. Now x_{33} will be similar to x_{11} . We start with $[e_{13}(x_{33} - r) =]e_{23}(x_{33} - r) = e_{33}(x_{33} - r) = 0$ that is $x_{33} = r + \alpha$ with $[e_{13}\alpha =]e_{23}\alpha = e_{33}\alpha = 0$.

 $e_{33}x_{33} = x_{33}e_{33}$ is equivalent to $\alpha e_{33} = e_{33}r - re_{33} \stackrel{(xiv)}{=} e_{33}re_{33} - re_{33} = -\overline{e_{33}}re_{33}$ whence $(\alpha + \overline{e_{33}}r)e_{33} = 0$, $\alpha + \overline{e_{33}}r \in l(e_{33}) \ni \overline{e_{33}}$ and so we choose $\alpha + \overline{e_{33}}r = \beta \overline{e_{33}}$. Thus $x_{33} = e_{33}r + \beta \overline{e_{33}}$ and we choose β for $e_{23}x_{33} = x_{33}e_{23}$. This (using (xx) resp. (xxii), (xvii)) gives $e_{23}r = \beta e_{23}$. Since $e_{23}r \stackrel{(xx')}{=} e_{23}re_{33} = e_{22}e_{23}re_{33} \in e_{22}Re_{33} = e_{23}S$ so there is s_3 such that $e_{23}r = s_3e_{23}$ and

$$x_{33} = e_{33}r + s_3\overline{e_{33}}.$$

The commutation with e_{13} : $x_{33}e_{13} = e_{33}re_{13} + s_3\overline{e_{33}}e_{13} \stackrel{(xviii'),(xviii)}{=} = s_3e_{13}$ and $e_{13}(e_{33}r + s_3\overline{e_{33}}) \stackrel{(xiv)}{=} e_{13}r$, which holds, left multiplying $e_{23}r = s_3e_{23}$ by e_{12} , since e_{ij} commute with elements in S.

The commutation with e_{22} : $x_{33}e_{22} = (e_{33}r + s_3\overline{e_{33}})e_{22} = s_3e_{22}$ and $e_{22}x_{33} = e_{22}(e_{33}r + s_3\overline{e_{33}}) = s_3e_{22}$ since $e_{22}\overline{e_{33}} = \overline{e_{33}}e_{22} = e_{22}$.

The commutation with e_{12} : $x_{33}e_{12} = (e_{33}r + s_3\overline{e_{33}})e_{12} = s_3e_{12}$ and $e_{12}x_{11} = e_{12}(e_{33}r + s_3\overline{e_{33}}) = s_3e_{12}$ since $e_{12}\overline{e_{33}} = \overline{e_{33}}e_{12} = e_{12}$.

It remains to verify $re_{33} = x_{13}e_{13} + x_{23}e_{23} + x_{33}e_{33}$, which amounts to $x_{13}e_{13} + x_{23}e_{23} = re_{33} - (e_{33}r + s_3\overline{e_{33}})e_{33} = re_{33} - e_{33}r$.

12+22. The relations are $e_{11}r = x_{11}e_{11} + \underline{x_{12}}e_{12} + x_{13}e_{13}$, $re_{22} = \underline{x_{12}}e_{12} + x_{22}e_{22}$ and $re_{23} = \underline{x_{12}}e_{13} + x_{22}e_{23}$.

Replacement in the first $e_{11}r = (re_{11} + \overline{e_{11}}s)e_{11} + \underline{x_{12}}e_{12} + x_{13}e_{13}$ gives (again) (3): $x_{12}e_{12} + x_{13}e_{13} = e_{11}r - re_{11}$.

We can write the other two $(r-x_{22})e_{22} = x_{12}e_{12}$ and $(r-x_{22})e_{23} = x_{12}e_{13} = x_{12}e_{12}e_{23}$ [the later follows from previous by right multiplication with e_{23}).

So $r - x_{22} - x_{12}e_{12} \in l(e_{23}) = \{e_{11}, e_{13}, e_{23}, e_{33}\}.$

We write also the other x_{22} relations: $e_{22}r = x_{22}e_{22} + x_{23}e_{23}$, $e_{12}r = x_{22}e_{12} + x_{23}e_{13}$. Hence

 $e_{22}(r-x_{22}) = x_{23}e_{23}$ and $e_{12}(r-x_{22}) = x_{23}e_{13}$ [the x's are in the centralizer]. Both include x_{23} .

The later can be written $r - x_{22} - x_{23}e_{23} \in r(e_{12}) = \{e_{11}, e_{12}, e_{13}, e_{33}\}$ and so $(1 - e_{22})(r - x_{22}) \in r(e_{12}) = \{e_{11}, e_{12}, e_{13}, e_{33}\}.$

Here $1 - e_{22} = e_{11} + e_{33}$.

Too complicated, so I give up !

References

- G. Agnarsson, S. A. Amitsur, J. C. Robson Recognition of matrix rings II. Israel J. of Math. 96 (1996), 1-13.
- [2] P. M. Cohn An Introduction to Ring Theory. Undergraduate Maths Series. Springer, 2000.
- [3] J. Han, Y. Lee, S. Park Semicentral idempotents in a ring. J. Korean Math. Soc. 51 (3) (2014), 463-472.
- [4] T. Y. Lam, A. Leroy Recognition and Computations of Matrix Rings. Israel J. of Math. 96 (1996), 379-397.
- [5] T. Y. Lam Lectures on modules and rings. Graduate Texts in Maths, Springer, 1999.
- [6] J. Lambek Lectures on Rings and Modules. Blaisdell Publishing Company 1966.
- [7] J. C. Robson Recognition of matrix rings. Comm. Algebra 19 (7) (1991), 2113-2124.
- [8] K. C. Smith, L. van Wyk An internal characterization of structural matrix rings. Comm. Algebra 22 (14) (1994), 5599-5622.
- [9] L. van Wyk Matrix rings satisfying column sum conditions versus structural matrix rings. Linear Algebra and Appl. 249 (1996), 15-28.