
NEGATIVE NIL CLEAN RINGS

GRIGORE CĂLUGĂREANU

Abstract. A ring is called negative nil clean if the negative of each nil clean
element is also nil clean. It turns out that a ring is negative nil-clean iff 2
is nilpotent. Consequently, this is a Morita invariant property. The nil-clean
2 × 2 matrices whose negative are (not) nil-clean are described over several
types of rings.

1. Introduction

The rings we consider are associative and unital (i.e., with identity).
For a ring R, Id(R) denotes the idempotents of R, N(R) the nilpotents of R and

ncn(R) denotes the set of all nil-clean elements of R (i.e., a sum of an idempotent
and a nilpotent). In any ring 0, 1 are the trivial idempotents. A nil-clean element
a = e + t with e ∈ Id(R) and t ∈ N(R) is nontrivial if e is not trivial. When we
want to emphasize the idempotent we say a is e-nil-clean.

We start with the following
Definition. A ring is called negative nil-clean if the negative of each nil-clean el-

ement is also nil clean. Equivalently, −ncn(R) ⊆ ncn(R) and so ncn(R) = −ncn(R).
Nil-clean rings are negative nil-clean and the converse obviously holds for rings of
characteristics 2, e.g., Boolean rings.

Since ncn(R) = {0, 1}, any connected (i.e., with only trivial idempotents) reduced
ring R with characteristics 6= 2 (e.g., Z or any field with more than two elements)
is not negative nil-clean.

Since nil-clean rings are clean, we expect that conditions which refer to nil-clean
rings should be simpler to describe than the corresponding ones referring to clean
rings.

In [4], the theory of negative clean rings was developed, among others giving
examples of images of negative clean rings which are not negative clean.

In this note, a simple characterization is given for negative nil-clean rings. These
turn out to be precisely the rings for which 2 is nilpotent.

In the last section, over several types of rings, the nil-clean 2 × 2 matrices with
(not) nil-clean negative are described.

2. Negative nil-clean rings

It is well-known (see [6]) that in any nil-clean ring, 2 is a (central) nilpotent.
This remains true also for negative nil-clean rings. Actually this turns out to be
the characterization for negative nil-clean rings. We have

Lemma 1. −1 is nil-clean in a (unital) ring iff 2 is nilpotent.
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Proof. If −1 = e+ t with e2 = e and t ∈ N(R) then e = −(1 + t) ∈ U(R) so e = 1.
Hence 2 = −t ∈ N(R). Conversely, if 2 ∈ N(R) then −1 = 1 − 2 is a nil-clean
decomposition. �

In order to prove the characterization of negative nil-clean rings, we need the
following key lemma.

Lemma 2. If R is a ring, x a nilpotent element of R, and y an element of a nil
ideal I of R, then x+ y is nilpotent.

Proof. Say xm = 0 and let I be a nil ideal. Since y ∈ I, the image of x+ y in R/I
is the same as the image of x, so the image of (x + y)m in R/I is the same as the
image of xm = 0, i.e., (x+y)m ∈ I. Hence (x+y)m is nilpotent and so is x+y. �

As mentioned in the Introduction, we have

Theorem 3. A ring R is negative nil-clean iff 2 is a (central) nilpotent.

Proof. Let R be a negative nil-clean ring. Then since 1 (as idempotent) is nil-clean,
−1 must also be nil-clean and the statement follows from the Lemma 1.

Conversely, suppose 2 is nilpotent in R, and consider a nil-clean element e + t.
We have −(e + t) = e + (−2e− t), where in the second summand, −2e belongs to
the nilpotent (and so nil) ideal 2R (nilpotent because 2 is nilpotent and central),
and −t is nilpotent, so by Lemma 2, −2e− t is nilpotent. Hence −(e+ t) is indeed
nil-clean. �

As easy examples we mention

Proposition 4. The following are equivalent.
(i) Zn is nil-clean;
(ii) Zn is negative nil-clean;
(iii) n = 2k for some positive integer k.

Proof. (i) ⇒ (ii) Obvious.
(ii) ⇒ (iii) Assume n is divisible by some odd prime. Then 2 is not nilpotent

and so −1 is not nil-clean (by Lemma 1). Hence Zn is not negative nil-clean.
(iii) ⇒ (i) If n = 2k for some positive integer k, every element of Zn can be

written either as 0 + 2s or as 1 + 2s. Both are nil-clean. �

Next, we gather some simple properties of negative nil-clean rings. The term
subring of a ring R will be used including 1 ∈ R. Ring homomorphisms will be
assumed preserving identities.

Proposition 5. Let R be any ring.
(i) The negative of a nil-clean element is clean. So though in general ncn(R) "

cn(R) (the set of clean elements of R), we have −ncn(R) ⊆ cn(R).
(ii) Subrings, overrings and images of negative nil-clean rings are also negative

nil-clean.
(iii) If R is not negative nil-clean, and I is an ideal, R/I may be (negative)

nil-clean.
(iv) Direct products of rings are negative nil-clean iff all components are negative

nil-clean.
(v) Strongly (or uniquely) nil-clean elements need not have nil-clean negative.
(vi) Matrix rings over negative nil-clean rings are also negative nil-clean.
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Proof. (i) If a = e+ t then −a = (1− e)− (1 + t) is clean.
(ii) Follows from the characterization theorem.
(iii) Indeed Z is not negative nil-clean, but Z4 is (strongly) nil-clean and so

negative nil-clean.
(iv) Obvious.
(v) Take 1 ∈ Z or any other connected reduced ring with characteristics 6= 2.
(vi) Indeed, if 2 is nilpotent in R, so is 2In in Mn(R). �

In particular, corners and centers of negative nil-clean rings are negative nil-
clean. Combining with (vi) above, it follows that

Proposition 6. The negative nil-clean property is Morita invariant.

It is well-known that polynomial rings are not clean and so nor nil-clean. However

Proposition 7. Polynomial rings over negative nil-clean rings are negative nil-
clean.

Proof. Follows from the characterization theorem. �

Corollary 8. Negative nil-clean rings need not be clean.

Moreover, clean rings need not be negative nil-clean. As an example, any field
with more than two elements is clean but 2 is not nilpotent.

Since polynomial rings over nonzero exchange rings are never exchange rings (see
[7]), negative nil-clean rings need not be exchange.

Further, since (nil-)clean rings are both exchange and negative nil-clean we may
wonder about the converse. In order to show that the converse fails, we can use [10]
(Example 3.1, starting with a field F of characteristic 2). Indeed, there exists an
exchange ring of characteristic 2 that is not (nil-)clean, but it is negative nil-clean.

If R is a ring and Tn(R) denotes the ring of upper triangular matrices over R,
we provide a direct proof (from definition) for the following

Proposition 9. Tn(R) is negative nil-clean iff R is negative nil-clean.

Proof. Let a = e + t ∈ ncn(R). Then aIn = eIn + tIn ∈ ncn(Tn(R)) and so
−aIn = E + T ∈ ncn(Tn(R)), by hypothesis. Then −a = e11 + t11 ∈ ncn(R) (as
idempotent or nilpotent upper triangular matrices have idempotent resp. nilpotent
entries on the diagonal).

Conversely, suppose A = E + T is nil-clean in Tn(R). Then aii = eii +
tii are all nil-clean in R for 1 ≤ i ≤ n. Hence, by hypothesis, −aii = fi +
si (with idempotent fi and nilpotent si) are also nil-clean in R. Then −A =










f1 + s1 −a12 · · · −a1n
0 f2 + s2 · · · −a2n
...

... · · ·
...

0 0 · · · fn + sn











=

=











f1 0 · · · 0
0 f2 · · · 0
...

... · · ·
...

0 0 · · · fn











+











s1 −a12 · · · −a1n
0 s2 · · · −a2n
...

... · · ·
...

0 0 · · · sn











∈ ncn(Tn(R)). �
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Similarly one proves

Proposition 10. For any ring R and any R−R-bimodule M , the trivial extension
[

R M
0 R

]

is negative nil-clean iff R is negative nil-clean.

Finally for formal power series we have

Proposition 11. If R[[X ]] is negative clean then R is negative clean.

Proof. As already mentioned, images of negative nil-clean rings are negative nil-
clean. In our case, we take the retraction ϕ : R[[X ]] → R, ϕ(a + bx + cx2 + ...) =
a. �

We mention from [8]: for any ring R, the set of clean elements of cn(R[[x]]) =
cn(R) +R[[x]].

For a converse of the previous proposition, that is, R[[X ]] is negative nil-clean
whenever R is negative nil-clean, we need ncn(R[[X ]]) = ncn(R) +XR[[X ]].

While the inclusion ncn(R) +XR[[X ]] ⊆ ncn(R[[X ]]) holds, the converse inclu-
sion fails: If R is a domain, 1 +X ∈ ncn(R) +XR[[X ]] but is not in ncn(R[[x]]).

It seems difficult in general to compute ncn(R[[x]]). In fact, the nilpotent el-
ements of a power series ring have (so far) no clear description. There exists a
commutative ring and a power series s =

∑

aix
i such that the coefficients ai are

nilpotent of bounded degree and yet s is not nilpotent (see [2]).

2.1. Comparison with weakly nil-clean. In [1] the concept of a weakly nil

clean ring was introduced as follows: a unital ring in which every element can be
expressed as sum or difference of a nilpotent and an idempotent (already introduced
by Danchev, McGovern [5] in the commutative case).

Clearly, a ring is weakly nil-clean iff ncn(R) ∪ (−ncn(R)) = R.

Proposition 12. The negative nil-clean and the weakly nil-clean properties are
independent.

Proof. Indeed, by Proposition 7, there are negative nil-clean polynomial rings over
commutative rings, but (see [1]), if R is commutative then R[X ] is not weak nil
clean. Conversely, Z3 or Z6 are weakly nil-clean but not negative nil-clean (as 2 is
not nilpotent). �

Obviously

Proposition 13. Any negative and weakly nil-clean ring is nil-clean.

3. Nil-clean 2× 2 matrices whose negative is (not) nil-clean

First, we deal with the trivial nil-clean matrices, that is, the nilpotents (02-nil-
clean) and the unipotents (I2-nil-clean) matrices. Since negative of nilpotents are
also nilpotent, these are also nil-clean.

Since nontrivial nil-clean 2×2 matrices over commutative domains are character-
ized by systems of equations, we have to deal separately with unipotents and with
nontrivial nil-clean matrices. In this section R denotes a commutative domain.

More precisely, we have to answer four questions:
(A) which are the unipotents whose negative is not unipotent;
(B) which are the unipotents whose negative is not nontrivial nil-clean;
(C) which are the nontrivial nil-clean matrices whose negative is not unipotent;
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(D) which are the nontrivial nil-clean matrices whose negative is not nontrivial
nil-clean.

(A) This case is simple.

Proposition 14. Over commutative rings, negatives of unipotent matrices are
unipotent iff the characteristics equals 4. Negatives of unipotent 2 × 2 matrices
over commutative domains are not unipotent unless of characteristics 2.

Proof. Given a nilpotent T =

[

a b
c −a

]

with a2 + bc = 0, we are looking for a

nilpotent S =

[

x y
z −x

]

with x2 + yz = 0 such that −I2 − T = I2 + S. The

equality amounts to a linear system including 1 + x = −1− a and 1− x = −1 + a.
Such an element x exists only if 2 = −2, that is, char(R) = 4, a necessary condition,
possible if R is a commutative domain only if 2 = 0. Conversely, if 4 = 0, −I2−T =
[

3− a −b
−c 3 + a

]

= I2 +

[

2− a −b
−c 2 + a

]

, as desired.

In this case, x = 2− a, y = −b, z = −c and x2 = a2. �

Example. For R = Z4 take the nilpotent T =

[

1 1
3 3

]

. Then −(I2 + T ) =
[

2 3
1 0

]

= I2 +

[

1 3
1 3

]

.

(B) Recall (e.g., see [3]) that nontrivial nil-clean matrices are characterized by

Theorem 15. A 2 × 2 matrix A over a commutative domain D is nontrivial nil-

clean iff A has the form

[

a+ 1 b
c −a

]

for some a, b, c ∈ D such that det(A) 6= 0

and the system
{

x2 + x+ yz = 0 (1)
(2a+ 1)x+ cy + bz = a2 + bc (2)

with unknowns x, y, z, has at least one solution over D. We can suppose b 6= 0 and
if (2) holds, (1) is equivalent to

bx2 − (2a+ 1)xy − cy2 + bx+ (a2 + bc)y = 0 (3).

Recall that A = E + N with nontrivial idempotent E =

[

x+ 1 y
z −x

]

i.e.,

− det(E) = x2 + x + yz = 0, that is (1), and nilpotent N . Since the condition
Tr(N) = 0 is already fulfilled, using (1), the condition det(N) = 0 amounts to
(2a+ 1)x+ cy + bz = a2 + bc, that is (2).

Thus, this case is settled by the following

Proposition 16. Negatives of unipotent 2 × 2 matrices over commutative do-
mains are not nontrivial nil-clean unless the characteristics of the domain is 3.
If char(D) = 3, the negative of an unipotent is nontrivial nil-clean iff the system

{

x2 + x+ yz = 0 (1)
(1 + a)x− cy − bz = 1 + a (2)

with
−bx2 + axy + cy2 − bx+ (1 + a)y = 0 (3)
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is solvable over D.

Proof. With the notation in (A), according to the previous theorem, the trace
Tr(−I2 − T ) = 1 is a necessary condition. This amounts to (−1 − a) + (−1 +
a) = −2 = 1, possible only if 3 = 0. If the characteristics is 3, −I2 − T =
[

2− a −b
−c 2 + a

]

has trace and determinant equal 1 and the system becomes

{

x2 + x+ yz = 0 (1)
(1 + a)x− cy − bz = 1+ a (2)

with
−bx2 + axy + cy2 − bx+ (1 + a)y = 0 (3).

�

Example. For D = F3 take T =

[

1 1
2 2

]

. Then −I2 − T =

[

1 2
1 0

]

=
[

1 2
0 0

]

+

[

0 0
1 0

]

is (nontrivial) nil-clean but not unipotent.

(For −b = 1 + a = 2, a solution is x = y = 0, z = 1).

(C) Analogous with (B).

Proposition 17. Negatives of nontrivial nil-clean 2×2 matrices over commutative
domains are not unipotent unless of the characteristics of the domain is 3. If

char(D) = 3 then the negative of

[

a+ 1 b
c −a

]

is unipotent iff a2 + bc = 2a+ 1.

Proof. We start with a nontrivial nil-clean matrix A =

[

a+ 1 b
c −a

]

and looking

for a nilpotent N such that −A = I2+N . Again Tr(−A) = −1, Tr(I2+N) = 2 so
characteristics 3 of the domain is necessary for this equality. If the characteristics

is 3, then −A =

[

2− a −b
−c a

]

= I2 +

[

1− a −b
−c −1 + a

]

is indeed (Trace =0,

determinant = 0) unipotent iff a2 + bc = 2a+ 1. �

Example. We can reverse the example of (B). Over F3 take the nontrivial

nil-clean matrix A =

[

1 2
1 0

]

and −A =

[

2 1
2 0

]

= I2 +

[

1 1
2 2

]

is indeed

unipotent.
(D) Since the general case is hard to handle (including two successive applica-

tions of Theorem 15), we add a restriction following Steger (see [9]): we suppose R
is a ID ring, that is, idempotent matrices are similar to diagonal matrices. Exam-
ples of ID rings include: division rings, local rings, projective-free rings, principal
ideal domains, elementary divisor rings, unit-regular rings and serial rings.

In this case, every nontrivial idempotent 2× 2 matrix is similar to E11, so, up to
similarity, it suffices to characterize the E11-nil-clean 2× 2 matrices whose negative
is (not) nontrivial nil-clean.

We obtain

Proposition 18. Negatives of nontrivial nil-clean 2×2 matrices over commutative
ID domains are not nontrivial nil-clean unless the characteristics of the domain is
2.
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Proof. We start with a nilpotent T =

[

a b
c −a

]

(with a2 + bc = 0) and consider

A = E11 + T respectively −A = −E11 − T =

[

−a− 1 −b
−c a

]

, matrix with trace

−1. If the characteristics is 2, we apply Theorem 15 (for matrices with trace 1).
As −1 = 1 this amounts just to change the signs of all a, b, c in the equations of
Theorem 15. �

Example. Over F2 consider the nontrivial nil-clean matrix A = E11 + E12.
Since −1 = 1, −A = A is again nontrivial nil-clean.

As already mentioned in the Introduction, for characteristics 2, negative of el-
ements (incl. idempotents) coincide with these, so the example is just a special
idempotent.

Acknowledgement 19. Thanks are due to George Bergman for pointing out the
key Lemma 2 and several improving comments.

References

[1] D. K. Basnet, J. Bhattacharyya Weak nil clean rings. https://arxiv.org/abs/1810.01282
[2] J.W. Brewer Power series over commutative rings. Lecture Notes in Pure and Applied Math-

ematics, 1st Edition, CRC Press (1981), 112 pages.
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