NEGATIVE NIL CLEAN RINGS

GRIGORE CĂLUGĂREANU

ABSTRACT. A ring is called negative nil clean if the negative of each nil clean element is also nil clean. It turns out that a ring is negative nil-clean iff 2 is nilpotent. Consequently, this is a Morita invariant property. The nil-clean 2×2 matrices whose negative are (not) nil-clean are described over several types of rings.

1. INTRODUCTION

The rings we consider are associative and unital (i.e., with identity).

For a ring R, Id(R) denotes the idempotents of R, N(R) the nilpotents of R and ncn(R) denotes the set of all nil-clean elements of R (i.e., a sum of an idempotent and a nilpotent). In any ring 0, 1 are the *trivial* idempotents. A nil-clean element a = e + t with $e \in Id(R)$ and $t \in N(R)$ is nontrivial if e is not trivial. When we want to emphasize the idempotent we say a is e-nil-clean.

We start with the following

Definition. A ring is called *negative nil-clean* if the negative of each nil-clean element is also nil clean. Equivalently, $-ncn(R) \subseteq ncn(R)$ and so ncn(R) = -ncn(R). Nil-clean rings are negative nil-clean and the converse obviously holds for rings of characteristics 2, e.g., Boolean rings.

Since $ncn(R) = \{0, 1\}$, any connected (i.e., with only trivial idempotents) reduced ring R with characteristics $\neq 2$ (e.g., Z or any field with more than two elements) is not negative nil-clean.

Since nil-clean rings are clean, we expect that conditions which refer to nil-clean rings should be simpler to describe than the corresponding ones referring to clean rings.

In [4], the theory of negative clean rings was developed, among others giving examples of images of negative clean rings which are not negative clean.

In this note, a simple characterization is given for negative nil-clean rings. These turn out to be precisely the rings for which 2 is nilpotent.

In the last section, over several types of rings, the nil-clean 2×2 matrices with (not) nil-clean negative are described.

2. Negative Nil-Clean Rings

It is well-known (see [6]) that in any nil-clean ring, 2 is a (central) nilpotent. This remains true also for negative nil-clean rings. Actually this turns out to be the characterization for negative nil-clean rings. We have

Lemma 1. -1 is nil-clean in a (unital) ring iff 2 is nilpotent.

Keywords: nil-clean ring, negative nil-clean ring, Morita invariant, quadratic Diophantine equation, 2×2 matrix. MSC 2020 Classification: 16S99, 16U10, 15A15.

Proof. If -1 = e + t with $e^2 = e$ and $t \in N(R)$ then $e = -(1+t) \in U(R)$ so e = 1. Hence $2 = -t \in N(R)$. Conversely, if $2 \in N(R)$ then -1 = 1 - 2 is a nil-clean decomposition.

In order to prove the characterization of negative nil-clean rings, we need the following key lemma.

Lemma 2. If R is a ring, x a nilpotent element of R, and y an element of a nil ideal I of R, then x + y is nilpotent.

Proof. Say $x^m = 0$ and let I be a nil ideal. Since $y \in I$, the image of x + y in R/I is the same as the image of x, so the image of $(x + y)^m$ in R/I is the same as the image of $x^m = 0$, i.e., $(x+y)^m \in I$. Hence $(x+y)^m$ is nilpotent and so is x+y. \Box

As mentioned in the Introduction, we have

Theorem 3. A ring R is negative nil-clean iff 2 is a (central) nilpotent.

Proof. Let R be a negative nil-clean ring. Then since 1 (as idempotent) is nil-clean, -1 must also be nil-clean and the statement follows from the Lemma 1.

Conversely, suppose 2 is nilpotent in R, and consider a nil-clean element e + t. We have -(e + t) = e + (-2e - t), where in the second summand, -2e belongs to the nilpotent (and so nil) ideal 2R (nilpotent because 2 is nilpotent and central), and -t is nilpotent, so by Lemma 2, -2e - t is nilpotent. Hence -(e + t) is indeed nil-clean.

As easy examples we mention

Proposition 4. The following are equivalent.

(i) Z_n is nil-clean;
(ii) Z_n is negative nil-clean;
(iii) n = 2^k for some positive integer k.

Proof. (i) \Rightarrow (ii) Obvious.

(ii) \Rightarrow (iii) Assume *n* is divisible by some odd prime. Then 2 is not nilpotent and so -1 is not nil-clean (by Lemma 1). Hence \mathbb{Z}_n is not negative nil-clean.

(iii) \Rightarrow (i) If $n = 2^k$ for some positive integer k, every element of \mathbb{Z}_n can be written either as 0 + 2s or as 1 + 2s. Both are nil-clean.

Next, we gather some simple properties of negative nil-clean rings. The term subring of a ring R will be used including $1 \in R$. Ring homomorphisms will be assumed preserving identities.

Proposition 5. Let R be any ring.

(i) The negative of a nil-clean element is clean. So though in general $\operatorname{ncn}(R) \nsubseteq \operatorname{cn}(R)$ (the set of clean elements of R), we have $-\operatorname{ncn}(R) \subseteq \operatorname{cn}(R)$.

(ii) Subrings, overrings and images of negative nil-clean rings are also negative nil-clean.

(iii) If R is not negative nil-clean, and I is an ideal, R/I may be (negative) nil-clean.

(iv) Direct products of rings are negative nil-clean iff all components are negative nil-clean.

(v) Strongly (or uniquely) nil-clean elements need not have nil-clean negative.

(vi) Matrix rings over negative nil-clean rings are also negative nil-clean.

 $\mathbf{2}$

Proof. (i) If a = e + t then -a = (1 - e) - (1 + t) is clean. (ii) Follows from the characterization theorem.

(ii) Indeed \mathbb{Z} is not negative nil-clean, but \mathbb{Z}_4 is (strongly) nil-clean and so

negative ini-clean, but 224 is (strongly) ini-clean and so negative ini-clean.

(iv) Obvious.

(v) Take $1 \in \mathbb{Z}$ or any other connected reduced ring with characteristics $\neq 2$.

(vi) Indeed, if 2 is nilpotent in R, so is $2I_n$ in $\mathbb{M}_n(R)$.

In particular, *corners* and *centers* of negative nil-clean rings are negative nilclean. Combining with (vi) above, it follows that

Proposition 6. The negative nil-clean property is Morita invariant.

It is well-known that polynomial rings are not clean and so nor nil-clean. However

Proposition 7. Polynomial rings over negative nil-clean rings are negative nilclean.

Proof. Follows from the characterization theorem.

Corollary 8. Negative nil-clean rings need not be clean.

Moreover, *clean rings need not be negative nil-clean*. As an example, any field with more than two elements is clean but 2 is not nilpotent.

Since polynomial rings over nonzero exchange rings are never exchange rings (see [7]), negative nil-clean rings need not be exchange.

Further, since *(nil-)clean rings are both exchange and negative nil-clean* we may wonder about the converse. In order to show that *the converse fails*, we can use [10] (Example 3.1, starting with a field F of characteristic 2). Indeed, there exists an exchange ring of characteristic 2 that is not (nil-)clean, but it is negative nil-clean.

If R is a ring and $\mathbb{T}_n(R)$ denotes the ring of upper triangular matrices over R, we provide a direct proof (from definition) for the following

Proposition 9. $\mathbb{T}_n(R)$ is negative nil-clean iff R is negative nil-clean.

Proof. Let $a = e + t \in \operatorname{ncn}(R)$. Then $aI_n = eI_n + tI_n \in \operatorname{ncn}(\mathbb{T}_n(R))$ and so $-aI_n = E + T \in \operatorname{ncn}(\mathbb{T}_n(R))$, by hypothesis. Then $-a = e_{11} + t_{11} \in \operatorname{ncn}(R)$ (as idempotent or nilpotent upper triangular matrices have idempotent resp. nilpotent entries on the diagonal).

Conversely, suppose A = E + T is nil-clean in $\mathbb{T}_n(R)$. Then $a_{ii} = e_{ii} + t_{ii}$ are all nil-clean in R for $1 \leq i \leq n$. Hence, by hypothesis, $-a_{ii} = f_i + s_i$ (with idempotent f_i and nilpotent s_i) are also nil-clean in R. Then $-A = s_i$

$$\begin{bmatrix} f_1 + s_1 & -a_{12} & \cdots & -a_{1n} \\ 0 & f_2 + s_2 & \cdots & -a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & f_n + s_n \end{bmatrix} = \\ = \begin{bmatrix} f_1 & 0 & \cdots & 0 \\ 0 & f_2 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & f_n \end{bmatrix} + \begin{bmatrix} s_1 & -a_{12} & \cdots & -a_{1n} \\ 0 & s_2 & \cdots & -a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & s_n \end{bmatrix} \in \operatorname{ncn}(\mathbb{T}_n(R)). \qquad \Box$$

Similarly one proves

Proposition 10. For any ring R and any R-R-bimodule M, the trivial extension $\begin{bmatrix} R & M \\ 0 & R \end{bmatrix}$ is negative nil-clean iff R is negative nil-clean.

Finally for formal power series we have

Proposition 11. If R[[X]] is negative clean then R is negative clean.

Proof. As already mentioned, images of negative nil-clean rings are negative nilclean. In our case, we take the retraction $\varphi : R[[X]] \to R$, $\varphi(a + bx + cx^2 + ...) = a$.

We mention from [8]: for any ring R, the set of clean elements of cn(R[[x]]) = cn(R) + R[[x]].

For a converse of the previous proposition, that is, R[[X]] is negative nil-clean whenever R is negative nil-clean, we need $\operatorname{ncn}(R[[X]]) = \operatorname{ncn}(R) + XR[[X]]$.

While the inclusion $\operatorname{ncn}(R) + XR[[X]] \subseteq \operatorname{ncn}(R[[X]])$ holds, the converse inclusion fails: If R is a domain, $1 + X \in \operatorname{ncn}(R) + XR[[X]]$ but is not in $\operatorname{ncn}(R[[x]])$.

It seems difficult in general to compute $\operatorname{ncn}(R[[x]])$. In fact, the nilpotent elements of a power series ring have (so far) no clear description. There exists a commutative ring and a power series $s = \sum a_i x^i$ such that the coefficients a_i are nilpotent of bounded degree and yet s is not nilpotent (see [2]).

2.1. Comparison with weakly nil-clean. In [1] the concept of a weakly nil clean ring was introduced as follows: a unital ring in which every element can be expressed as sum or difference of a nilpotent and an idempotent (already introduced by Danchev, McGovern [5] in the commutative case).

Clearly, a ring is weakly nil-clean iff $ncn(R) \cup (-ncn(R)) = R$.

Proposition 12. The negative nil-clean and the weakly nil-clean properties are independent.

Proof. Indeed, by Proposition 7, there are negative nil-clean polynomial rings over commutative rings, but (see [1]), if R is commutative then R[X] is not weak nil clean. Conversely, \mathbb{Z}_3 or \mathbb{Z}_6 are weakly nil-clean but not negative nil-clean (as 2 is not nilpotent).

Obviously

Proposition 13. Any negative and weakly nil-clean ring is nil-clean.

3. Nil-clean 2×2 matrices whose negative is (not) nil-clean

First, we deal with the trivial nil-clean matrices, that is, the nilpotents $(0_2$ -nilclean) and the unipotents $(I_2$ -nil-clean) matrices. Since negative of nilpotents are also nilpotent, these are also nil-clean.

Since nontrivial nil-clean 2×2 matrices over commutative domains are characterized by systems of equations, we have to deal separately with unipotents and with nontrivial nil-clean matrices. In this section R denotes a commutative domain.

More precisely, we have to answer four questions:

- (A) which are the unipotents whose negative is not unipotent;
- (B) which are the unipotents whose negative is not nontrivial nil-clean;
- (C) which are the nontrivial nil-clean matrices whose negative is not unipotent;

4

(D) which are the nontrivial nil-clean matrices whose negative is not nontrivial nil-clean.

(A) This case is simple.

Proposition 14. Over commutative rings, negatives of unipotent matrices are unipotent iff the characteristics equals 4. Negatives of unipotent 2×2 matrices over commutative domains are not unipotent unless of characteristics 2.

Proof. Given a nilpotent $T = \begin{bmatrix} a & b \\ c & -a \end{bmatrix}$ with $a^2 + bc = 0$, we are looking for a nilpotent $S = \begin{bmatrix} x & y \\ z & -x \end{bmatrix}$ with $x^2 + yz = 0$ such that $-I_2 - T = I_2 + S$. The equality amounts to a linear system including 1 + x = -1 - a and 1 - x = -1 + a. Such an element x exists only if 2 = -2, that is, char(R) = 4, a necessary condition, possible if R is a commutative domain only if 2 = 0. Conversely, if $4 = 0, -I_2 - T = \begin{bmatrix} 3-a & -b \\ -c & 3+a \end{bmatrix} = I_2 + \begin{bmatrix} 2-a & -b \\ -c & 2+a \end{bmatrix}$, as desired. In this case, x = 2 - a, y = -b, z = -c and $x^2 = a^2$.

Example. For $R = \mathbb{Z}_4$ take the nilpotent $T = \begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix}$. Then $-(I_2 + T) = \begin{bmatrix} 2 & 3 \\ 1 & 0 \end{bmatrix} = I_2 + \begin{bmatrix} 1 & 3 \\ 1 & 3 \end{bmatrix}$.

(B) Recall (e.g., see [3]) that nontrivial nil-clean matrices are characterized by **Theorem 15.** $A \ 2 \times 2$ matrix A over a commutative domain D is nontrivial nilclean iff A has the form $\begin{bmatrix} a+1 & b \\ c & -a \end{bmatrix}$ for some $a, b, c \in D$ such that $\det(A) \neq 0$ and the system

$$\begin{cases} x^2 + x + yz = 0 \quad (1) \\ (2a+1)x + cy + bz = a^2 + bc \quad (2) \end{cases}$$

with unknowns x, y, z, has at least one solution over D. We can suppose $b \neq 0$ and if (2) holds, (1) is equivalent to

$$bx^{2} - (2a+1)xy - cy^{2} + bx + (a^{2} + bc)y = 0$$
 (3)

Recall that A = E + N with nontrivial idempotent $E = \begin{bmatrix} x+1 & y \\ z & -x \end{bmatrix}$ i.e., $-\det(E) = x^2 + x + yz = 0$, that is (1), and nilpotent N. Since the condition Tr(N) = 0 is already fulfilled, using (1), the condition $\det(N) = 0$ amounts to $(2a+1)x + cy + bz = a^2 + bc$, that is (2).

Thus, this case is settled by the following

Proposition 16. Negatives of unipotent 2×2 matrices over commutative domains are not nontrivial nil-clean unless the characteristics of the domain is 3. If char(D) = 3, the negative of an unipotent is nontrivial nil-clean iff the system

$$\begin{cases} x^2 + x + yz = 0 \quad (1) \\ (1+a)x - cy - bz = 1 + a \quad (2) \end{cases}$$

with

$$-bx^{2} + axy + cy^{2} - bx + (1+a)y = 0 \quad (3)$$

is solvable over D.

Proof. With the notation in (A), according to the previous theorem, the trace $Tr(-I_2 - T) = 1$ is a necessary condition. This amounts to (-1 - a) + (-1 + a) = -2 = 1, possible only if 3 = 0. If the characteristics is $3, -I_2 - T = \begin{bmatrix} 2-a & -b \\ -c & 2+a \end{bmatrix}$ has trace and determinant equal 1 and the system becomes

$$\begin{cases} x^2 + x + yz = 0 \quad (1) \\ (1+a)x - cy - bz = 1 + a \quad (2) \end{cases}$$

with

$$-bx^{2} + axy + cy^{2} - bx + (1+a)y = 0 \quad (3).$$

Example. For $D = \mathbb{F}_3$ take $T = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$. Then $-I_2 - T = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ is (nontrivial) nil-clean but not unipotent. (For -b = 1 + a = 2, a solution is x = y = 0, z = 1).

(C) Analogous with (B).

Proposition 17. Negatives of nontrivial nil-clean 2×2 matrices over commutative domains are not unipotent unless of the characteristics of the domain is 3. If $\operatorname{char}(D) = 3$ then the negative of $\begin{bmatrix} a+1 & b \\ c & -a \end{bmatrix}$ is unipotent iff $a^2 + bc = 2a + 1$.

Proof. We start with a nontrivial nil-clean matrix $A = \begin{bmatrix} a+1 & b \\ c & -a \end{bmatrix}$ and looking for a nilpotent N such that $-A = I_2 + N$. Again Tr(-A) = -1, $Tr(I_2 + N) = 2$ so characteristics 3 of the domain is necessary for this equality. If the characteristics is 3, then $-A = \begin{bmatrix} 2-a & -b \\ -c & a \end{bmatrix} = I_2 + \begin{bmatrix} 1-a & -b \\ -c & -1+a \end{bmatrix}$ is indeed (Trace =0, determinant = 0) unipotent iff $a^2 + bc = 2a + 1$.

Example. We can reverse the example of **(B)**. Over \mathbb{F}_3 take the nontrivial nil-clean matrix $A = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$ and $-A = \begin{bmatrix} 2 & 1 \\ 2 & 0 \end{bmatrix} = I_2 + \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$ is indeed unipotent.

(D) Since the general case is hard to handle (including two successive applications of Theorem 15), we add a restriction following Steger (see [9]): we suppose Ris a ID ring, that is, idempotent matrices are similar to diagonal matrices. Examples of ID rings include: division rings, local rings, projective-free rings, principal ideal domains, elementary divisor rings, unit-regular rings and serial rings.

In this case, every nontrivial idempotent 2×2 matrix is similar to E_{11} , so, up to similarity, it suffices to characterize the E_{11} -nil-clean 2×2 matrices whose negative is (not) nontrivial nil-clean.

We obtain

Proposition 18. Negatives of nontrivial nil-clean 2×2 matrices over commutative ID domains are not nontrivial nil-clean unless the characteristics of the domain is 2.

6

Proof. We start with a nilpotent $T = \begin{bmatrix} a & b \\ c & -a \end{bmatrix}$ (with $a^2 + bc = 0$) and consider $A = E_{11} + T$ respectively $-A = -E_{11} - T = \begin{bmatrix} -a - 1 & -b \\ -c & a \end{bmatrix}$, matrix with trace

-1. If the characteristics is 2, we apply Theorem 15 (for matrices with trace 1). As -1 = 1 this amounts just to change the signs of all a, b, c in the equations of Theorem 15.

Example. Over \mathbb{F}_2 consider the nontrivial nil-clean matrix $A = E_{11} + E_{12}$. Since -1 = 1, -A = A is again nontrivial nil-clean.

As already mentioned in the Introduction, for characteristics 2, negative of elements (incl. idempotents) coincide with these, so the example is just a special idempotent.

Acknowledgement 19. Thanks are due to George Bergman for pointing out the key Lemma 2 and several improving comments.

References

- [1] D. K. Basnet, J. Bhattacharyya Weak nil clean rings. https://arxiv.org/abs/1810.01282
- [2] J.W. Brewer Power series over commutative rings. Lecture Notes in Pure and Applied Mathematics, 1st Edition, CRC Press (1981), 112 pages.
- [3] G. Călugăreanu Nil-clean integral 2 × 2 matrices: The elliptic case. Bull. Math. Soc. Sci. Roum. 62 (110) (3) (2019), 239-250.
- [4] G. Călugăreanu, H. F. Pop Negative clean rings. Anal. St. Univ. Ovidius Cta., Series Math., 30 (2) (2022), 63-89.
- [5] P. V. Danchev, W. W. McGovern Commutative weakly nil clean unital rings. J. Algebra 425 (2015), 410-422.
- [6] A. J. Diesl Nil clean rings. J. of Algebra 383 (2013), 197-211.
- [7] C. Y. Hong, N. K. Kim, Y. Lee Exchange rings and their extensions. J. of Pure and Appl. Algebra 179 (1-2) (2003), 117-126.
- [8] P. Kanwar, A. Leroy, J. Matczuk Clean elements in polynomial rings. Contemporary math. 634, International Conference on Noncommutative Rings and Their Applications, Université d'Artois, Lens, France (2013), 197-205.
- [9] A. Steger Diagonability of idempotent matrices. Pacific J. Math. 19 (3) (1966), 535-542.
- [10] J. Šter Corner rings of a clean ring need not be clean. Comm. in Algebra 40 (2012), 1595-1604.