NEGATIVE NIL CLEAN RINGS

GRIGORE CĂLUGĂREANU

Abstract

A ring is called negative nil clean if the negative of each nil clean element is also nil clean. It turns out that a ring is negative nil-clean iff 2 is nilpotent. Consequently, this is a Morita invariant property. The nil-clean 2×2 matrices whose negative are (not) nil-clean are described over several types of rings.

1. Introduction

The rings we consider are associative and unital (i.e., with identity).
For a ring $R, I d(R)$ denotes the idempotents of $R, N(R)$ the nilpotents of R and $\operatorname{ncn}(R)$ denotes the set of all nil-clean elements of R (i.e., a sum of an idempotent and a nilpotent). In any ring 0,1 are the trivial idempotents. A nil-clean element $a=e+t$ with $e \in I d(R)$ and $t \in N(R)$ is nontrivial if e is not trivial. When we want to emphasize the idempotent we say a is e-nil-clean.

We start with the following
Definition. A ring is called negative nil-clean if the negative of each nil-clean element is also nil clean. Equivalently, $-\operatorname{ncn}(R) \subseteq \operatorname{ncn}(R)$ and so $\mathrm{ncn}(R)=-\operatorname{ncn}(R)$. Nil-clean rings are negative nil-clean and the converse obviously holds for rings of characteristics 2, e.g., Boolean rings.

Since $\operatorname{ncn}(R)=\{0,1\}$, any connected (i.e., with only trivial idempotents) reduced ring R with characteristics $\neq 2$ (e.g., \mathbb{Z} or any field with more than two elements) is not negative nil-clean.

Since nil-clean rings are clean, we expect that conditions which refer to nil-clean rings should be simpler to describe than the corresponding ones referring to clean rings.

In [4], the theory of negative clean rings was developed, among others giving examples of images of negative clean rings which are not negative clean.

In this note, a simple characterization is given for negative nil-clean rings. These turn out to be precisely the rings for which 2 is nilpotent.

In the last section, over several types of rings, the nil-clean 2×2 matrices with (not) nil-clean negative are described.

2. Negative nil-Clean Rings

It is well-known (see [6]) that in any nil-clean ring, 2 is a (central) nilpotent. This remains true also for negative nil-clean rings. Actually this turns out to be the characterization for negative nil-clean rings. We have

Lemma 1. -1 is nil-clean in a (unital) ring iff 2 is nilpotent.

[^0]Proof. If $-1=e+t$ with $e^{2}=e$ and $t \in N(R)$ then $e=-(1+t) \in U(R)$ so $e=1$. Hence $2=-t \in N(R)$. Conversely, if $2 \in N(R)$ then $-1=1-2$ is a nil-clean decomposition.

In order to prove the characterization of negative nil-clean rings, we need the following key lemma.
Lemma 2. If R is a ring, x a nilpotent element of R, and y an element of a nil ideal I of R, then $x+y$ is nilpotent.
Proof. Say $x^{m}=0$ and let I be a nil ideal. Since $y \in I$, the image of $x+y$ in R / I is the same as the image of x, so the image of $(x+y)^{m}$ in R / I is the same as the image of $x^{m}=0$, i.e., $(x+y)^{m} \in I$. Hence $(x+y)^{m}$ is nilpotent and so is $x+y$.

As mentioned in the Introduction, we have
Theorem 3. A ring R is negative nil-clean iff 2 is a (central) nilpotent.
Proof. Let R be a negative nil-clean ring. Then since 1 (as idempotent) is nil-clean, -1 must also be nil-clean and the statement follows from the Lemma 1.

Conversely, suppose 2 is nilpotent in R, and consider a nil-clean element $e+t$. We have $-(e+t)=e+(-2 e-t)$, where in the second summand, $-2 e$ belongs to the nilpotent (and so nil) ideal $2 R$ (nilpotent because 2 is nilpotent and central), and $-t$ is nilpotent, so by Lemma 2, $-2 e-t$ is nilpotent. Hence $-(e+t)$ is indeed nil-clean.

As easy examples we mention
Proposition 4. The following are equivalent.
(i) \mathbb{Z}_{n} is nil-clean;
(ii) \mathbb{Z}_{n} is negative nil-clean;
(iii) $n=2^{k}$ for some positive integer k.

Proof. (i) \Rightarrow (ii) Obvious.
(ii) \Rightarrow (iii) Assume n is divisible by some odd prime. Then 2 is not nilpotent and so -1 is not nil-clean (by Lemma 1). Hence \mathbb{Z}_{n} is not negative nil-clean.
(iii) \Rightarrow (i) If $n=2^{k}$ for some positive integer k, every element of \mathbb{Z}_{n} can be written either as $0+2 s$ or as $1+2 s$. Both are nil-clean.

Next, we gather some simple properties of negative nil-clean rings. The term subring of a ring R will be used including $1 \in R$. Ring homomorphisms will be assumed preserving identities.

Proposition 5. Let R be any ring.
(i) The negative of a nil-clean element is clean. So though in general $\operatorname{ncn}(R) \nsubseteq$ $\mathrm{cn}(R)$ (the set of clean elements of R), we have $-\operatorname{ncn}(R) \subseteq \operatorname{cn}(R)$.
(ii) Subrings, overrings and images of negative nil-clean rings are also negative nil-clean.
(iii) If R is not negative nil-clean, and I is an ideal, R / I may be (negative) nil-clean.
(iv) Direct products of rings are negative nil-clean iff all components are negative nil-clean.
(v) Strongly (or uniquely) nil-clean elements need not have nil-clean negative.
(vi) Matrix rings over negative nil-clean rings are also negative nil-clean.

Proof. (i) If $a=e+t$ then $-a=(1-e)-(1+t)$ is clean.
(ii) Follows from the characterization theorem.
(iii) Indeed \mathbb{Z} is not negative nil-clean, but \mathbb{Z}_{4} is (strongly) nil-clean and so negative nil-clean.
(iv) Obvious.
(v) Take $1 \in \mathbb{Z}$ or any other connected reduced ring with characteristics $\neq 2$.
(vi) Indeed, if 2 is nilpotent in R, so is $2 I_{n}$ in $\mathbb{M}_{n}(R)$.

In particular, corners and centers of negative nil-clean rings are negative nilclean. Combining with (vi) above, it follows that

Proposition 6. The negative nil-clean property is Morita invariant.
It is well-known that polynomial rings are not clean and so nor nil-clean. However
Proposition 7. Polynomial rings over negative nil-clean rings are negative nilclean.

Proof. Follows from the characterization theorem.
Corollary 8. Negative nil-clean rings need not be clean.
Moreover, clean rings need not be negative nil-clean. As an example, any field with more than two elements is clean but 2 is not nilpotent.

Since polynomial rings over nonzero exchange rings are never exchange rings (see [7]), negative nil-clean rings need not be exchange.

Further, since (nil-)clean rings are both exchange and negative nil-clean we may wonder about the converse. In order to show that the converse fails, we can use [10] (Example 3.1, starting with a field F of characteristic 2). Indeed, there exists an exchange ring of characteristic 2 that is not (nil-)clean, but it is negative nil-clean.

If R is a ring and $\mathbb{T}_{n}(R)$ denotes the ring of upper triangular matrices over R, we provide a direct proof (from definition) for the following

Proposition 9. $\mathbb{T}_{n}(R)$ is negative nil-clean iff R is negative nil-clean.
Proof. Let $a=e+t \in \operatorname{ncn}(R)$. Then $a I_{n}=e I_{n}+t I_{n} \in \operatorname{ncn}\left(\mathbb{T}_{n}(R)\right)$ and so $-a I_{n}=E+T \in \operatorname{ncn}\left(\mathbb{T}_{n}(R)\right)$, by hypothesis. Then $-a=e_{11}+t_{11} \in \operatorname{ncn}(R)$ (as idempotent or nilpotent upper triangular matrices have idempotent resp. nilpotent entries on the diagonal).

Conversely, suppose $A=E+T$ is nil-clean in $\mathbb{T}_{n}(R)$. Then $a_{i i}=e_{i i}+$ $t_{i i}$ are all nil-clean in R for $1 \leq i \leq n$. Hence, by hypothesis, $-a_{i i}=f_{i}+$ s_{i} (with idempotent f_{i} and nilpotent s_{i}) are also nil-clean in R. Then $-A=$
$\left[\begin{array}{cccc}f_{1}+s_{1} & -a_{12} & \cdots & -a_{1 n} \\ 0 & f_{2}+s_{2} & \cdots & -a_{2 n} \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & f_{n}+s_{n}\end{array}\right]=$

$$
=\left[\begin{array}{cccc}
f_{1} & 0 & \cdots & 0 \\
0 & f_{2} & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & f_{n}
\end{array}\right]+\left[\begin{array}{cccc}
s_{1} & -a_{12} & \cdots & -a_{1 n} \\
0 & s_{2} & \cdots & -a_{2 n} \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & s_{n}
\end{array}\right] \in \operatorname{ncn}\left(\mathbb{T}_{n}(R)\right)
$$

Similarly one proves
Proposition 10. For any ring R and any R - R-bimodule M, the trivial extension $\left[\begin{array}{cc}R & M \\ 0 & R\end{array}\right]$ is negative nil-clean iff R is negative nil-clean.

Finally for formal power series we have
Proposition 11. If $R[[X]]$ is negative clean then R is negative clean.
Proof. As already mentioned, images of negative nil-clean rings are negative nilclean. In our case, we take the retraction $\varphi: R[[X]] \rightarrow R, \varphi\left(a+b x+c x^{2}+\ldots\right)=$ a.

We mention from [8]: for any ring R, the set of clean elements of $c n(R[[x]])=$ $c n(R)+R[[x]]$.

For a converse of the previous proposition, that is, $R[[X]]$ is negative nil-clean whenever R is negative nil-clean, we need $\operatorname{ncn}(R[[X]])=\operatorname{ncn}(R)+X R[[X]]$.

While the inclusion $\operatorname{ncn}(R)+X R[[X]] \subseteq \operatorname{ncn}(R[[X]])$ holds, the converse inclusion fails: If R is a domain, $1+X \in \operatorname{ncn}(R)+X R[[X]]$ but is not in $\operatorname{ncn}(R[[x]])$.

It seems difficult in general to compute $\operatorname{ncn}(R[[x]])$. In fact, the nilpotent elements of a power series ring have (so far) no clear description. There exists a commutative ring and a power series $s=\sum a_{i} x^{i}$ such that the coefficients a_{i} are nilpotent of bounded degree and yet s is not nilpotent (see [2]).
2.1. Comparison with weakly nil-clean. In [1] the concept of a weakly nil clean ring was introduced as follows: a unital ring in which every element can be expressed as sum or difference of a nilpotent and an idempotent (already introduced by Danchev, McGovern [5] in the commutative case).

Clearly, a ring is weakly nil-clean iff $\operatorname{ncn}(R) \cup(-\operatorname{ncn}(R))=R$.
Proposition 12. The negative nil-clean and the weakly nil-clean properties are independent.

Proof. Indeed, by Proposition 7, there are negative nil-clean polynomial rings over commutative rings, but (see [1]), if R is commutative then $R[X]$ is not weak nil clean. Conversely, \mathbb{Z}_{3} or \mathbb{Z}_{6} are weakly nil-clean but not negative nil-clean (as 2 is not nilpotent).

Obviously
Proposition 13. Any negative and weakly nil-clean ring is nil-clean.

3. Nil-Clean 2×2 matrices whose negative is (not) nil-Clean

First, we deal with the trivial nil-clean matrices, that is, the nilpotents $\left(0_{2}\right.$-nilclean) and the unipotents (I_{2}-nil-clean) matrices. Since negative of nilpotents are also nilpotent, these are also nil-clean.

Since nontrivial nil-clean 2×2 matrices over commutative domains are characterized by systems of equations, we have to deal separately with unipotents and with nontrivial nil-clean matrices. In this section R denotes a commutative domain.

More precisely, we have to answer four questions:
(A) which are the unipotents whose negative is not unipotent;
(B) which are the unipotents whose negative is not nontrivial nil-clean;
(C) which are the nontrivial nil-clean matrices whose negative is not unipotent;
(D) which are the nontrivial nil-clean matrices whose negative is not nontrivial nil-clean.
(A) This case is simple.

Proposition 14. Over commutative rings, negatives of unipotent matrices are unipotent iff the characteristics equals 4. Negatives of unipotent 2×2 matrices over commutative domains are not unipotent unless of characteristics 2.
Proof. Given a nilpotent $T=\left[\begin{array}{cc}a & b \\ c & -a\end{array}\right]$ with $a^{2}+b c=0$, we are looking for a nilpotent $S=\left[\begin{array}{cc}x & y \\ z & -x\end{array}\right]$ with $x^{2}+y z=0$ such that $-I_{2}-T=I_{2}+S$. The equality amounts to a linear system including $1+x=-1-a$ and $1-x=-1+a$. Such an element x exists only if $2=-2$, that is, $\operatorname{char}(R)=4$, a necessary condition, possible if R is a commutative domain only if $2=0$. Conversely, if $4=0,-I_{2}-T=$ $\left[\begin{array}{cc}3-a & -b \\ -c & 3+a\end{array}\right]=I_{2}+\left[\begin{array}{cc}2-a & -b \\ -c & 2+a\end{array}\right]$, as desired.

In this case, $x=2-a, y=-b, z=-c$ and $x^{2}=a^{2}$.
Example. For $R=\mathbb{Z}_{4}$ take the nilpotent $T=\left[\begin{array}{ll}1 & 1 \\ 3 & 3\end{array}\right]$. Then $-\left(I_{2}+T\right)=$ $\left[\begin{array}{ll}2 & 3 \\ 1 & 0\end{array}\right]=I_{2}+\left[\begin{array}{ll}1 & 3 \\ 1 & 3\end{array}\right]$.
(B) Recall (e.g., see [3]) that nontrivial nil-clean matrices are characterized by

Theorem 15. A 2×2 matrix A over a commutative domain D is nontrivial nilclean iff A has the form $\left[\begin{array}{cc}a+1 & b \\ c & -a\end{array}\right]$ for some $a, b, c \in D$ such that $\operatorname{det}(A) \neq 0$ and the system

$$
\left\{\begin{array}{c}
x^{2}+x+y z=0 \tag{2}\\
(2 a+1) x+c y+b z=a^{2}+b c
\end{array}\right.
$$

with unknowns x, y, z, has at least one solution over D. We can suppose $b \neq 0$ and if (2) holds, (1) is equivalent to

$$
\begin{equation*}
b x^{2}-(2 a+1) x y-c y^{2}+b x+\left(a^{2}+b c\right) y=0 \tag{3}
\end{equation*}
$$

Recall that $A=E+N$ with nontrivial idempotent $E=\left[\begin{array}{cc}x+1 & y \\ z & -x\end{array}\right]$ i.e., $-\operatorname{det}(E)=x^{2}+x+y z=0$, that is (1), and nilpotent N. Since the condition $\operatorname{Tr}(N)=0$ is already fulfilled, using (1), the condition $\operatorname{det}(N)=0$ amounts to $(2 a+1) x+c y+b z=a^{2}+b c$, that is (2).

Thus, this case is settled by the following
Proposition 16. Negatives of unipotent 2×2 matrices over commutative domains are not nontrivial nil-clean unless the characteristics of the domain is 3. If $\operatorname{char}(D)=3$, the negative of an unipotent is nontrivial nil-clean iff the system

$$
\left\{\begin{array}{c}
x^{2}+x+y z=0 \tag{}\\
(1+a) x-c y-b z=1+a
\end{array}\right.
$$

with

$$
\begin{equation*}
-b x^{2}+a x y+c y^{2}-b x+(1+a) y=0 \tag{2}
\end{equation*}
$$

is solvable over D.
Proof. With the notation in (A), according to the previous theorem, the trace $\operatorname{Tr}\left(-I_{2}-T\right)=1$ is a necessary condition. This amounts to $(-1-a)+(-1+$ a) $=-2=1$, possible only if $3=0$. If the characteristics is $3,-I_{2}-T=$ $\left[\begin{array}{cc}2-a & -b \\ -c & 2+a\end{array}\right]$ has trace and determinant equal 1 and the system becomes

$$
\left\{\begin{array}{c}
x^{2}+x+y z=0 \tag{1}\\
(1+a) x-c y-b z=1+a
\end{array}\right.
$$

with

$$
\begin{equation*}
-b x^{2}+a x y+c y^{2}-b x+(1+a) y=0 \tag{2}
\end{equation*}
$$

Example. For $D=\mathbb{F}_{3}$ take $T=\left[\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right]$. Then $-I_{2}-T=\left[\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right]=$ $\left[\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}\right]+\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$ is (nontrivial) nil-clean but not unipotent.
(For $-b=1+a=2$, a solution is $x=y=0, z=1$).
(C) Analogous with (B).

Proposition 17. Negatives of nontrivial nil-clean 2×2 matrices over commutative domains are not unipotent unless of the characteristics of the domain is 3. If $\operatorname{char}(D)=3$ then the negative of $\left[\begin{array}{cc}a+1 & b \\ c & -a\end{array}\right]$ is unipotent iff $a^{2}+b c=2 a+1$. Proof. We start with a nontrivial nil-clean matrix $A=\left[\begin{array}{cc}a+1 & b \\ c & -a\end{array}\right]$ and looking for a nilpotent N such that $-A=I_{2}+N$. Again $\operatorname{Tr}(-A)=-1, \operatorname{Tr}\left(I_{2}+N\right)=2$ so characteristics 3 of the domain is necessary for this equality. If the characteristics is 3 , then $-A=\left[\begin{array}{cc}2-a & -b \\ -c & a\end{array}\right]=I_{2}+\left[\begin{array}{cc}1-a & -b \\ -c & -1+a\end{array}\right]$ is indeed (Trace $=0$, determinant $=0$) unipotent iff $a^{2}+b c=2 a+1$.

Example. We can reverse the example of (B). Over \mathbb{F}_{3} take the nontrivial nil-clean matrix $A=\left[\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right]$ and $-A=\left[\begin{array}{cc}2 & 1 \\ 2 & 0\end{array}\right]=I_{2}+\left[\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right]$ is indeed unipotent.
(D) Since the general case is hard to handle (including two successive applications of Theorem 15), we add a restriction following Steger (see [9]): we suppose R is a ID ring, that is, idempotent matrices are similar to diagonal matrices. Examples of ID rings include: division rings, local rings, projective-free rings, principal ideal domains, elementary divisor rings, unit-regular rings and serial rings.

In this case, every nontrivial idempotent 2×2 matrix is similar to E_{11}, so, up to similarity, it suffices to characterize the E_{11}-nil-clean 2×2 matrices whose negative is (not) nontrivial nil-clean.

We obtain
Proposition 18. Negatives of nontrivial nil-clean 2×2 matrices over commutative ID domains are not nontrivial nil-clean unless the characteristics of the domain is 2.

Proof. We start with a nilpotent $T=\left[\begin{array}{cc}a & b \\ c & -a\end{array}\right]$ (with $a^{2}+b c=0$) and consider $A=E_{11}+T$ respectively $-A=-E_{11}-T=\left[\begin{array}{cc}-a-1 & -b \\ -c & a\end{array}\right]$, matrix with trace -1 . If the characteristics is 2 , we apply Theorem 15 (for matrices with trace 1). As $-1=1$ this amounts just to change the signs of all a, b, c in the equations of Theorem 15.

Example. Over \mathbb{F}_{2} consider the nontrivial nil-clean matrix $A=E_{11}+E_{12}$. Since $-1=1,-A=A$ is again nontrivial nil-clean.

As already mentioned in the Introduction, for characteristics 2, negative of elements (incl. idempotents) coincide with these, so the example is just a special idempotent.
Acknowledgement 19. Thanks are due to George Bergman for pointing out the key Lemma 2 and several improving comments.

References

[1] D. K. Basnet, J. Bhattacharyya Weak nil clean rings. https://arxiv.org/abs/1810.01282
[2] J.W. Brewer Power series over commutative rings. Lecture Notes in Pure and Applied Mathematics, 1st Edition, CRC Press (1981), 112 pages.
[3] G. Călugăreanu Nil-clean integral 2×2 matrices: The elliptic case. Bull. Math. Soc. Sci. Roum. 62 (110) (3) (2019), 239-250.
[4] G. Călugăreanu, H. F. Pop Negative clean rings. Anal. St. Univ. Ovidius Cta., Series Math., 30 (2) (2022), 63-89.
[5] P. V. Danchev, W. W. McGovern Commutative weakly nil clean unital rings. J. Algebra 425 (2015), 410-422.
[6] A. J. Diesl Nil clean rings. J. of Algebra 383 (2013), 197-211.
[7] C. Y. Hong, N. K. Kim, Y. Lee Exchange rings and their extensions. J. of Pure and Appl. Algebra 179 (1-2) (2003), 117-126.
[8] P. Kanwar, A. Leroy, J. Matczuk Clean elements in polynomial rings. Contemporary math. 634, International Conference on Noncommutative Rings and Their Applications, Université d'Artois, Lens, France (2013), 197-205.
[9] A. Steger Diagonability of idempotent matrices. Pacific J. Math. 19 (3) (1966), 535-542.
[10] J. Šter Corner rings of a clean ring need not be clean. Comm. in Algebra 40 (2012), 1595-1604.

[^0]: Keywords: nil-clean ring, negative nil-clean ring, Morita invariant, quadratic Diophantine equation, 2×2 matrix. MSC 2020 Classification: 16S99, 16U10, 15A15.

