UNIPOTENT-REGULAR MATRICES AND RINGS

GRIGORE CĂLUGĂREANU, HORIA F. POP

Abstract

An element a in a ring R is called unipotent-regular if there is a unipotent u such that $a=a u a$. A ring is unipotent-regular if so are all its elements. We show that a ring is unipotent-regular iff it is Boolean. Additionally, we characterize the unipotent-regular 2×2 matrices over Prüfer domains. Not all unipotent-regular matrices are idempotent.

1. Introduction

To the best of our knowledge, so far there is no characterization of unit-regular matrices (over commutative rings), not even for 2×2 matrices.

Therefore we introduce and characterize a naturally defined subset of unit-regular matrices.

Definition. An element $a \in R$ is called unipotent-regular if there exists a unipotent unit u such that $a=a u a$. Equivalently, a is unipotent-regular if there exists a nilpotent t such that $a=a(1+t) a$. A ring is called unipotent-regular if so are all its elements.

Obviously, unipotent-regular elements are unit-regular and unit-regular elements are regular.

As in case of unit-regular elements, it is easy to see that an element is unipotentregular iff it is a product of an idempotent and a unipotent element (in either order).

In this short note we first show that unipotent-regular rings are scarce: these are precisely the Boolean rings.

Secondly, we characterize the unipotent-regular 2×2 matrices over Prüfer domains.

The rings we consider are associative with identity. By $U(R)$ we denote the set of all units of R and by $N(R)$ we denote the set of all nilpotents of R. The "regular" word for elements or rings means Von Neumann regular.

2. Unipotent-REGULAR RINGS And 2×2 matrices

The so-called UU-rings (rings with only unipotent units) were defined and studied in [1]. Their study was further developed in [3].

Thus, a ring R is UU iff $U(R)=1+N(R)$. For the sake of completeness we recall (see [5]) the following

Definitions. An element r of a ring R is called clean if $r=e+u$ with $e^{2}=e$ and $u \in U(R)$. An element x of a ring R is called left exchange (initially left "suitable") if there exists $e^{2}=e \in R x$ such that $1-e \in R(1-x)$. Right exchange elements are defined similarly and it is proved that the exchange property is left-right symmetric (see [5] Theorem 2.1). A ring is called Abelian if all its idempotents are central.

[^0]As already mentioned in the Introduction we have the following result. For reader's convenience we supply (almost) all the details.
Theorem 1. A ring is unipotent-regular iff it is Boolean.
Proof. First observe that a unit is unipotent-regular iff it is unipotent. Indeed, as inverses of unipotents are unipotent, one way is obvious. Conversely, suppose $u \in U(R)$ and $u=e(1+t)$ for an idempotent e and a nilpotent t. Then $e u=u$ and so $e=1$. Hence $u=1+t$, as claimed.

As a consequence, every unipotent-regular ring is UU. Secondly, we show that R is a regular UU-ring iff R is a Boolean ring. Again, one way is obvious, so assume R is a regular UU-ring. We first show that R is reduced. The only existing proof goes like this. Assume R is not reduced, i.e., there exists a nonzero nilpotent in R. Then there exists $e^{2}=e$ in R such that the corner $e R e$ is isomorphic to $\mathbb{M}_{n}(S)$ for some S (by Levitzki, [4], Th. 2.1), but $e R e$ is UU while $\mathbb{M}_{n}(S)$ is not UU (see [1]), a contradiction.

Since R is reduced, it is easy to see R is Abelian (we just show $(e r-e r e)^{2}=$ $\left.0=(r e-e r e)^{2}\right)$.

Next, recall that every regular element is exchange. Indeed, if $a=a x a$, write $f=x a=f^{2}$. Then take $e=f+(1-f) x f=e^{2} \in R x$ and so $1-e=(1-f)(1-x)$ (see [5] Proposition 1.6). Hence regular rings are exchange.

Further, we show that any Abelian exchange ring is clean. As R is exchange for any $x \in R$ we choose $e^{2}=e \in R x$ with $1-e \in R(1-x)$. If $e=a x$ we may assume $e a=a$ so that $a x a=a$. Since idempotents are central $x a=a x$. Similarly we write $1-e=b(1-x)$ where $(1-e) b=b$ and $b(1-x)=(1-x) b$. Then an easy calculation shows that $a-b$ is the inverse of $x-(1-e)$ (see [5] Proposition 1.8).

Finally, as R is clean and $U(R)=\{1\}$, start with any element $r \in R$. Since $r+1$ is clean, $r+1=e+u$ with $e^{2}=e$ and $u \in U(R)$ and so $r=e$, all elements of R are idempotents.

The second part of the proof appeared in $[3]$ as Theorem $4.1,(5) \Rightarrow(6) \Rightarrow(3)$. It would be nice to have a direct (somewhat elementary) proof for the statement: "any regular UU ring is reduced". For the time being, the one mentioned above (via Levitzky's result) is the only one known.

As for matrix rings, since for any ring $R \neq 0$ and any integer $n \geq 2, \mathbb{M}_{n}(R)$ is not a UU-ring (see [1]), we have the following result

Proposition 2. For any ring $R \neq 0$ and any integer $n \geq 2, \mathbb{M}_{n}(R)$ is not unipotent-regular.

In what follows we determine the 2×2 unipotent-regular matrices over a Prüfer domain.

First notice that only zero determinant 2×2 matrices can be unipotent-regular. Indeed, this follows at once since $\operatorname{det}\left(E\left(I_{2}+T\right)\right)=\operatorname{det}(E) \operatorname{det}\left(I_{2}+T\right)=0 \cdot 1=0$, for any idempotent E and nilpotent T.

Next, since in our characterization we use Prüfer domains, recall that a Prüfer domain is a semihereditary integral domain. Equivalently, an integral domain R is a Prüfer domain if every nonzero finitely generated ideal of R is invertible. Fields, PIDs and Bézout domains are Prüfer domains but UFDs may not be Prüfer.

In the next theorem we intend to use the Kronecker (Rouché) - Capelli theorem for compatible linear systems. As early as 1971 we recall from [2] the following characterization. In this characterization, the ideal $D_{t}(A)$ generated by the $t \times t$ minors of the matrix A is called the t-th determinantal ideal of A and we put $D_{0}=1$. As customarily, $[A, \mathbf{b}]$ denotes the augmented matrix.

Theorem 3. Let R be an integral domain, A a matrix of rank r over R and \mathbf{x} and \mathbf{b} column vectors over R. The condition $D_{r}(A)=D_{r}[A, \mathbf{b}]$ is necessary and sufficient for the system $A \mathbf{x}=\mathbf{b}$ to be solvable iff R is a Prüfer domain.

Our characterization follows.
Theorem 4. A (zero determinant) matrix $A=\left[a_{i j}\right]_{1 \leq i, j \leq 2}$ over a Prüfer domain is unipotent-regular iff there exist a, c with $c \mid a(1-a)$ such that $\operatorname{crow}_{1}(A)=\operatorname{arow}_{2}(A)$ and if $b c=a(1-a)$ then $\left(a_{11}-a\right)^{2},\left(a_{12}-b\right)^{2}$ and $\left(a_{11}-a\right)\left(a_{12}-b\right)$ are divisible by $b a_{11}-a a_{12}$. The divisibilities are equivalent with $\left(a_{21}-c\right)^{2},\left(a_{22}+a-1\right)^{2}$ and $\left(a_{21}-c\right)\left(a_{22}+a-1\right)$ being divisible by $(1-a) a_{21}-c a_{22}$.

We discuss separately the cases $a \in\{0,1\}$, so below we assume $a, b, c \neq 0$ and $a \neq 1$.

Proof. As noticed in the Introduction, an element is unipotent-regular iff it is a product of an idempotent and a unipotent element (in either order). Therefore, over any integral domain a unipotent-regular 2×2 matrix is of form $E\left(I_{2}+T\right)=$ $\left[\begin{array}{cc}a & b \\ c & 1-a\end{array}\right]\left[\begin{array}{cc}1+x & y \\ z & 1-x\end{array}\right]$ with $a(1-a)=b c$ and $x^{2}+y z=0$. Denoting $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$, the equality $A=E\left(I_{2}+T\right)$ amounts to the system

$$
\begin{array}{cl}
a(1+x)+b z & =a_{11} \\
b(1-x)+a y & =a_{12} \\
c(1+x)+(1-a) z & =a_{21} \\
-(1-a)(1-x)+c y & =a_{22}
\end{array}
$$

We write the linear system as follows

$$
\begin{array}{ccc}
a x+b z & = & a_{11}-a \\
-b x+a y & = & a_{12}-b \\
c x+(1-a) z & = & a_{21}-c \\
--(1-a) x+c y & = & a_{22}+a-1
\end{array}
$$

The four equations form a linear system with 3 unknowns and 4 equations whose augmented matrix is

$$
\left[\begin{array}{cccc}
a & 0 & b & a_{11}-a \\
-b & a & 0 & a_{12}-b \\
c & 0 & 1-a & a_{21}-c \\
a-1 & c & 0 & a_{22}+a-1
\end{array}\right]
$$

An easy computation shows that the system matrix $\left[\begin{array}{ccc}a & 0 & b \\ -b & a & 0 \\ c & 0 & 1-a \\ a-1 & c & 0\end{array}\right]$ has rank 2 , as $a(1-a)=b c$.

Since the 3×3 minors of the system matrix are zero, so is the determinant of the augmented matrix.

Another easy computation shows that the remaining twelve 3×3 minors of the augmented matrix are zero iff $\operatorname{crow}_{1}(A)=a \operatorname{row}_{2}(A)$.

Thus, in order to find a solution we select (say) the first two equations i.e., $a x+b z=a_{11}-a,-b x+a y=a_{12}-b$. Then $x=\frac{a_{11}-a-b z}{a}-1$ and $y=\frac{b\left(a_{11}-a-b z\right)+a\left(a_{12}-b\right)}{a^{2}}$ and by replacing in $x^{2}+y z=0$ we obtain $x=-\frac{\left(a_{11}-a\right)\left(a_{12}-b\right)}{b a_{11}-a a_{12}}, y=-\frac{\left(a_{12}-b\right)^{2}}{b a_{11}-a a_{12}}$ and $z=\frac{\left(a_{11}-a\right)^{2}}{b a_{11}-a a_{12}}$. Hence, the existence of this solution requires the divisibilities in the statement.

The case $a=1$. As $a(1-a)=b c$, at least one of b, c must be zero and (say) $E=\left[\begin{array}{ll}1 & b \\ 0 & 0\end{array}\right]$. Then $a_{21}=a_{22}=0$ are necessary conditions for a matrix $A=$ $\left[a_{i j}\right]_{1 \leq i, j \leq 2}$ to be unipotent-regular. As in the previous proof, $x=a_{11}-b z-1, y=$ $a_{12}-b+b x=a_{12}-b+b\left(a_{11}-b z-1\right)$ and $x^{2}+y z=0$ gives $x=-\frac{\left(a_{11}-1\right)\left(a_{12}-b\right)}{b a_{11}-a_{12}}$, $y=-\frac{\left(a_{12}-b\right)^{2}}{b a_{11}-a_{12}}$ and $z=\frac{\left(a_{11}-1\right)^{2}}{b a_{11}-a_{12}}$ with $\left(a_{11}-1\right)^{2},\left(a_{12}-b\right)^{2}$ and $\left(a_{11}-1\right)\left(a_{12}-b\right)$ divisible by $b a_{11}-a_{12}$.

The case $b=0$ follows by transpose.
The case $a=0$. Again at least one of b, c must be zero and (say) $E=\left[\begin{array}{ll}0 & b \\ 0 & 1\end{array}\right]$. The first two equations of the linear system are $b z=a_{11}, b(1-x)=a_{12}$. Therefore if both a_{11}, a_{12} are divisible by b, we get $x=1-\frac{a_{12}}{b}, z=\frac{a_{11}}{b}$ and arbitrary y.

Remark. If R is not an integral domain, we don't have a known form for 2×2 idempotent or nilpotent matrices and so the above proof is not suitable.

Same for $n \times n$ matrices with $n \geq 3$.

In view of Theorem 1, we could wonder whether there exist unipotent-regular matrices which are not idempotent. Such matrices do exist.

Example. The zero determinant integral matrix $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$ is not idempotent but is unipotent-regular.

The rows are dependent so we can take $a=k, c=2 k$ for any k. To choose b, from $k(1-k)=2 k b$ we need $2 b=1-k$.

For $k=1$, that is $a=1, c=2, c$ divides $a(1-a)=0$. Then $b=0$ and $0^{2}, 2^{2}$ and $0 \cdot 2$ are divisible by $a_{12}=2$. Indeed, $A=\left[\begin{array}{ll}1 & 0 \\ 2 & 0\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$ is an idempotent-unipotent product.

The decomposition is unique. Since $2 b=1-k, k$ must be odd, say $k=2 l-1$. Then $b-2 a=3-5 l$ should divide $2(1-l)^{2},(1-l)^{2}$ and $4(1-l)^{2}$. Over \mathbb{Z}, this amounts to a quadratic Diophantine equation $l^{2}+5 l m-2 l-3 m+1=0$ which has only one solution: $(l, m)=(1,0)$. Hence $k=1$.
[The details. Solving the first two equations of the corresponding linear system and replacing in $x^{2}+y z=0$, we get $x=-\frac{(1-a)(2-b)}{b-2 a}, y=-\frac{(2-b)^{2}}{b-2 a}$ and
$z=\frac{(1-a)^{2}}{b-2 a}$. For $a=1$, we obtain $x=z=0, y=2-b$. Finally, as $a(1-a)=0=b c$ we have $b=0$].

References

[1] G. Călugăreanu UU rings. Carpathian J. Math. 31 (2) (2015), 157-163.
[2] P. Camion, L. S. Levy, H. B. Mann Linear equations over commutative rings. J. of Algebra 18 (1971), 432-446.
[3] P. Danchev, T. Y. Lam Rings with unipotent units. Publ. Math. Debrecen 88 (3-4) (2016), 449-466.
[4] J. Levitzki On the structure of algebraic algebras and related rings. Trans. Amer. Math. Soc. 74 (1953), 384-409.
[5] W. K. Nicholson Lifting idempotents and exchange rings. Trans. Amer. Math. Soc. 229 (1977), 269-278.

Department of Mathematics, Babeş-Bolyai University, 1 Kogălniceanu Street, Clujnapoca, Romania;, Department of Computer Science, Babeş-Bolyai University, 1 Kogălniceanu Street, Cluj-Napoca, Romania

Email address: calu@math.ubbcluj.ro; horia.pop@ubbcluj.ro

[^0]: Keywords: unipotent-regular, matrix, Prüfer domain. MSC 2020 Classification: 16U10, 16U30, 16U40, 16S50. Orcid: 0000-0002-3353-6958; 0000-0003-2777-7541.

