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Abstract—Answering a question stated by Diesl in 2006, Andrica, Călugăreanu gave in 2014
an example of 2 × 2 integral nil-clean matrix which is not clean, claming some kind of mini-
mality.

By computer aid, we describe a procedure which is partially exhaustive, and gives all
examples of 2× 2 integral nil-clean matrix which are not clean.

This way, as far as the absolute value of the entries and of the determinant are concerned,
we find two new examples with smaller determinant.

1. INTRODUCTION

The important rôle of idempotents, nilpotent elements and units in Ring Theory was recognized
already a century ago. Considering elements which are sums of two such elements is more recent.
Sums of an idempotent and a unit (called clean elements) were defined by Nicholson (1977) in
[7]. Sums of an idempotent and a nilpotent element (called nil-clean elements) were considered by
Diesl (2006) in his Ph. D. thesis (see also [5]). Further, a ring (with identity) was called clean if all
its elements are clean and nil-clean if all its elements are nil-clean. An element was called uniquely

clean (or nil-clean) if it has only one clean (resp. nil-clean) decomposition, and strongly clean (or
nil-clean), if the components of the decomposition commute. A nil-clean (or clean) element is called
trivial if the idempotent in its decomposition is trivial (i.e. 0 or 1). A nil-clean element has index
n if it has precisely n nil-clean (different) decompositions.

A one line proof shows that every nil-clean ring is clean. Indeed, for any element a in a nil-clean
ring R, a− 1 = e+ t with idempotent e and nilpotent t yields a = e+(1+ t), where 1+ t is known
to be a unit.

While this was already noticed by Diesl in 2006, at the element level, the corresponding implica-
tion remained an open problem for eight years, i.e. a question was stated: ”Are nil-clean elements,
clean ?”

In 2014 [2], an example of 2 × 2 integral nil-clean matrix which is not clean, was given. Since
in 2013, the authors were not aware of existing software on the Internet which instantly solves
Diophantine equations (as [1] or [6]), the paper consists of 9 pages with some complicated analyze
and computation.

At some point, it is mentioned that the example (which turned out to be uniquely but not
strongly nil-clean) is minimal, as far as the absolute value of the coefficients and of the determinant,
are concerned. We quote (p. 7): ”By inspection, one can see that there are no selections of u+x and
v+y less than ±7 and ±9, at least for r ∈ {2, 3, ..., 10}, which satisfy all the above nondivisibilities.
Therefore v + y = −7, u + x = 9 is some kind of minimal selection. In order to keep numbers in
the Pell equation as low as possible we choose r = 2 and so δ = −57”.

In this note, a program was designed in order to give, in a partial exhaustive manner, all the
examples of nil-clean but not clean 2 × 2 integral matrices, the decomposition of the nil-clean

0001-4346/1966/0-10-0001 c©1966 Springer Science+Business Media, Inc. 1
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example having the entries of the components (idempotent and nilpotent) bounded in absolute
value by a positive integer denoted z.

The goal, among other conclusions, was also to check the statement ”some kind of minimal
selection” quoted above.

From z = 6 to z = 11, up to conjugation with two involutions and transpose (with one exception,
we list only one representative from classes of eight matrices), the computer produced 27 nil-clean
2× 2 integral matrices which are not clean.

The 2014 example has determinant 57. Up to conjugations and transpose, we found two nil-clean
2×2 integral matrices which are not clean of determinant 51 and two other examples of determinant
57. All our findings are summarized in the following

Theorem 1. Up to transpose and the conjugations mentioned in the start of Section 3, among

the integral 2 × 2 nil-clean matrices which are not clean, only

[

−3 −7
9 4

]

and

[

6 −9
9 −5

]

have

minimal determinant, equal to 51. These two matrices are conjugate and of nil-clean index 2. There
are three integral 2 × 2 nil-clean matrices which are not clean of determinant 57: the example in

[2], i.e.

[

3 9
−7 −2

]

and

[

−4 −11
7 5

]

,

[

−6 −11
9 7

]

. All three are uniquely nil-clean, but not

pairwise conjugated.

2. HOW DOES THE PROGRAM WORK?

We have to find all pairs of matrices A and B such that A is idempotent, B is nilpotent and
A + B cannot be decomposed in a sum C +D where C 6= A is idempotent and D is unit. Since
a brute-force program is limited to verifying discrete and finite domains, we have opted for an
incremental approach, controlled by two parameters: an integer value z, which is the maximal
absolute value of the entries of A and B taken together, and another integer value z1, which is the
maximal absolute value of the entries of C.

We test all pairs of matrices A and B in an incremental loop controlled by z, starting with z = 0
and going upwards to 1, 2, . . . . For each pair A,B we verify incrementally all matrices C having
the maximal element in absolute value equal to 0, 1, . . . , z1, where z1 is preset by the user (in our
tests, we have opted for z1 = 100).

For our incremental approach the following results are relevant. Consider the first order logic
predicate P (z, z1) given by:

P (z, z1) = “For any matrices A and B with entries bounded by z, such that A is idempotent
and B is nilpotent, there exists an idempotent matrix C 6= A with entries bounded by z1, such
that the matrix A+B − C is unit”.

It is of course true that, if z1 < z2, then P (z, z1) =⇒ P (z, z2) and the implication is irreversible.

This means that all the pairs of matrices A and B returned by our program, verify the property
that A+B cannot be decomposed in a sum C +D where C 6= A has entries bounded by z1, C is
idempotent and D is unit. This condition is more relaxed than the original. The dependency on z1
is the reason to work with a higher value for z1. The higher the value, the smaller the number of
pairs A and B we will get.

This completes our logical analysis of the correctness of our programming model. For a detailed
explanation of the actual implementation, see Section 4.

3. THE RESULTS

Before giving the list of our findings, notice that, properties like idempotent, nilpotent or unit,
are invariant to conjugation. Moreover, for square matrices these properties are also invariant to
transpose.
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Hence if

[

a b

c d

]

is an example, so are:
[

a −b

−c d

]

, obtained conjugating by

[

1 0
0 −1

]

,

[

d c

b a

]

, obtained conjugating by

[

0 1
1 0

]

,

and the transpose

[

a c

b d

]

, or, mixing the above mentioned operations. For each representative,

such a class includes 8 matrices.

To minimize the outputs, the program gives only one representative in each of these classes.

For z ≤ 5 there were no such examples.

Up to the operations mentioned above, for z = 6, two matrices were obtained:

[

−3 −7
9 4

]

and
[

−3 −12
7 4

]

.

For reader’s convenience, we list all the eight matrices which correspond to the first:
[

−3 −7
9 4

]

,

[

−3 −9
7 4

]

,

[

−3 9
−7 4

]

,

[

−3 7
−9 4

]

and

[

4 −7
9 −3

]

,

[

4 −9
7 −3

]

,

[

4 9
−7 −3

]

,
[

4 7
−9 −3

]

.

For z = 7, one more example:

[

−4 −11
7 5

]

.

For z = 8, three more examples:

[

−5 −9
11 6

]

,

[

−2 −9
14 3

]

,

[

4 −16
9 −3

]

.

The example in [2], i.e.

[

3 9
−7 −2

]

has the nil-clean decomposition

[

0 0
−6 1

]

+

[

3 9
−1 −3

]

.

As expected, the program gave this example only for z = 9. There are seven (up to operations and
previous cases for z) more:

[

−2 −7
14 3

]

,

[

−3 −9
9 4

]

,

[

4 −7
11 −3

]

,

[

6 −15
11 −5

]

,

[

6 −9
9 −5

]

,

[

6 18
−9 −5

]

, and
[

−6 −11
9 7

]

.

For z = 10 the program run 25 hours, so we decided to stop after z = 11. Another seven
representatives were produced:

[

3 −9
17 −2

]

,

[

4 12
−19 −3

]

,

[

4 −19
13 −3

]

,

[

−4 −19
11 5

]

,

[

−6 −11
18 7

]

,

[

−7 −11
11 8

]

, and
[

−11 −1
−1 12

]

.

For z = 11 there were another seven representatives, which we did not verify.

Remarks. 1) We list here the determinants of the first 19 representatives: 51, 72, 57, 69, 120,
132, 57, 92, 69, 65, 135, 51, 132, 57, 147, 216, 235, 189, 156, 65.

2) The program had a limitation (z1 = 100) for the idempotent C which is subtracted from
A+B. Hence, the matrices indicated still could be clean but with a larger z1.

The last one indicated above, called attention to: it is the only one (from the twenty listed above)
with three negative entries. And indeed, it is clean but with z1 = 146. Here are both (nil-clean and
clean) decompositions:

[

−11 −1
−1 12

]

=

[

−5 −10
3 6

]

+

[

−6 9
−4 6

]

=

[

1 0
−146 0

]

+

[

−12 −1
145 12

]

.

Therefore, the program just indicates possible candidates for nil-clean matrices which are not
clean, and we have to check the cleanness for each one. This was done for all representatives using
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the next theorem (see [3], for a proof). As a final result, all the other 19 (examples corresponding
to z ≤ 10) are (nil-clean and) not clean.

Theorem 2. A 2× 2 integral matrix A =

[

a b

c d

]

is nontrivial clean iff the system

{

x2 + x+ yz = 0 (1)
(a− d)x+ cy + bz + det(A)− d = ±1 ( ± 2)

with unknowns x, y, z, has at least one solution over Z. If b 6= 0 and (±2) holds, then (1) is

equivalent to

bx2 − (a− d)xy − cy2 + bx+ (d− det(A)± 1)y = 0 (± 3).

Remark. The equations (±3) have at least the solutions (0, 0) and (−1, 0).
(i) (0, 0) verifies (±2) iff b divides d− det(A)± 1;
(ii) (−1, 0) verifies (±2) iff b divides a− det(A)± 1;
(iii) (a, b) verifies (±2) iff b divides d− a2 ± 1;
(iv) (a− 2, b) verifies (-2) iff b divides d+ (a− 1)2.

With only three exceptions, (0, 0), (−1, 0) were the only solutions for (+3), and the equation
(-3) had only the solutions (0, 0), (−1, 0), (a, b), (a− 2, b), so the verifications were reduced to the
above divisibilities.

Since the example in [2] is uniquely nil-clean but not strongly nil-clean, and, as seen in our
main result, the other two 57 determinant matrices are also uniquely nil-clean, a verification was
in order: whether all the examples listed above are all uniquely nil-clean or not. Below we show
that the first two examples are not uniquely nil-clean.

In order to verify the (uniquely) nil-cleanness of an integral 2×2 matrix we can use the following
characterization (see [4], for a proof)

Theorem 3. A 2 × 2 integral matrix A is nontrivial nil-clean iff A has the form

[

a+ 1 b

c −a

]

for some integers a, b, c such that det(A) 6= 0 and the system

{

x2 + x+ yz = 0 (1)
(2a+ 1)x+ cy + bz = a2 + bc (2)

with unknowns x, y, z, has at least one solution over Z. We can suppose b 6= 0 and if (2) holds, (1)
is equivalent to

bx2 − (2a+ 1)xy − cy2 + bx+ (a2 + bc)y = 0 (3).

In order to eliminate some solutions, we can use the following
Remark. The equation (2) has the solution
(i) (0, 0) iff b divides a2;
(ii) (−1, 0) iff b divides (a+ 1)2;
(iii) (a, b) iff b divides a2 + a.

1)

[

−3 −7
9 4

]

; here a = −4, b = −7, c = 9 so equation (3) is −7x2+7xy−9y2−7x−47y = 0,

and b divides none of a2, (a+ 1)2, a2 + a.
The equation has the solutions (0, 0), (−1, 0), (−4,−7), which we eliminate by the above remark,

and, (−1,−6), (−6,−6).
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Now (2) reads −7x + 9y − 7z = −47 and both solutions give nil-clean decompositions (z = 0
and z = 5), that is

[

−3 −7
9 4

]

=

[

0 −6
0 1

]

+

[

−3 −1
9 3

]

=

[

−5 −6
5 6

]

+

[

2 −1
4 −2

]

. Hence this matrix is

not uniquely nil-clean.

2)

[

−3 −12
7 4

]

; here a = −4, b = −12, c = 7 so equation (3) is −12x2+7xy−7y2−12x−68y =

0, and b divides none of a2, (a + 1)2, but b divides a2 + a. The solutions are (0, 0), (−1, 0) which
we eliminate, (−4,−12) which is acceptable and (2,−6). The last one satisfies (2) which is now

−7x + 7y − 12z = −68 with z = 1, so again

[

−3 −12
7 4

]

=

[

−3 −12
1 4

]

+

[

0 0
6 0

]

=
[

3 −6
1 −2

]

+

[

−6 −6
6 6

]

, and the matrix is not uniquely nil-clean.

According to the first remark of this section, at least for the classes of examples listed, the
example in [2] (which is uniquely nil-clean but not clean), is not minimal.

Notice that the program gives only one representative, with respect to the two special conju-
gations and transpose, mentioned above. This means that among the representatives listed above,
there still could be matrices that are conjugate. Of course, this could happen only if these have
the same determinant.

We are now able to summarize and state our main result

Theorem 4. Up to transpose and the conjugations mentioned in the start of this section, among

the integral 2 × 2 nil-clean matrices which are not clean, only

[

−3 −7
9 4

]

and

[

6 −9
9 −5

]

have

minimal determinant, equal to 51. These two matrices are conjugate and of nil-clean index 2. There
are three integral 2×2 nil-clean matrices which are not clean of determinant 57: the example in [2],
[

3 9
−7 −2

]

, and

[

−4 −11
7 5

]

,

[

−6 −11
9 7

]

. All three are uniquely nil-clean, but not pairwise

conjugated.

Proof. Only the conjugations remain to be established. For the 51 determinant matrices we have
[

1 1
0 1

] [

−3 −7
9 4

]

=

[

6 −9
9 −5

] [

1 1
0 1

]

. As for the 57 determinant matrices, using The-

orem 3, the only nil-clean decompositions are

[

−4 −11
7 5

]

=

[

−6 −7
6 7

]

+

[

2 −4
1 −2

]

and
[

−6 −11
9 7

]

=

[

0 −7
0 1

]

+

[

−6 −4
9 6

]

, respectively.

To show that (say)

[

3 9
−7 −2

]

and

[

−4 −11
7 5

]

are not conjugate, we start with an unknown

invertible matrix U =

[

x y

z t

]

, i.e., xt − yz = 1 and require U

[

3 9
−7 −2

]

=

[

−4 −11
7 5

]

U .

This reduces to a five equations system in x, y, z, t. Eliminating y, z we get the quadratic Diophan-
tine equation 63x2 + 136xt+ 77t2 + 4 = 0 which has no integer solutions (use [6]).

The case

[

3 9
−7 −2

]

,

[

−6 −11
9 7

]

is dealt similarly. Eliminating x, z we obtain the quadratic

Diophantine equation 9y2 + 13yt+ 11t2 + 9 = 0 with no integer solutions.

In closing, a program was designed in order to generate the conjugate (integral) matrices of
[

−3 −7
9 4

]

and to check whether among these (all have determinant 51, are nil-clean and not
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clean) there are matrices with all entries in absolute value ≤ 8. No such matrix was found, so
[

−3 −7
9 4

]

remains the minimal example.

4. THE CODE

This section provides the C + + code corresponding to the main testing loop of the program.
While self-explanatory in itself, a few explanations on the source code itself are still required.

The functions write mat, is distinct, is niplotent, is idempotent, is unit, max mat, and
maximal z are straightforward helper functions.

The function test ab receives as input parameters an idempotent matrix A, a nilpotent matrix
B, and a limit entries absolute value zmat. The function uses a main incremental loop with the
positive integer value z looping from 0 to zmat. It generates all idempotent matrices C different
of A and having the maximal absolute value entry equal to the loop variable z. The first time it
finds a matrix C that verifies that A + B − C is unit, it exits with a false result. If it terminates
the loop without a previous exit, it will naturally exit with a true result, meaning that no suitable
matrix C has been found.

The function test all uses a main infinite incremental loop with the positive integer value z as
the loop variable. It generates all idempotent matrices A and all nilpotent matrices B having the
maximal absolute value entry equal to the loop variable z. With all such pairs of matrices A and
B, it runs the function test ab which is the main testing function. In case of success, it prints the
relevant helping messages.

using namespace std ;
const int N=2;

// wr i t e a matrix to cout

void write mat ( int a [N ] [N ] ) ;

// t rue i f a and c are d i s t i n c t

bool i s d i s t i n c t ( int a [N ] [N] , int c [N ] [N ] ) ;

// t rue i f a i s n i l p o t e n t

bool i s n i l p o t e n t ( int a [N ] [N ] ) ;

// t rue i f a i s idempotent

bool i s i dempotent ( int a [N ] [N ] ) ;

// t rue i f a i s un i t

bool i s u n i t ( int a [N ] [N ] ) ;

// re turns the maximal e lement o f x in a b s o l u t e va lue

int max mat ( int x [N ] [N ] ) ;

// v e r i f i e s i f the maximal e lement o f a and b

// in a b s o l u t e va lue i s z

bool maximal z ( int a [N ] [N] , int b [N ] [N] , int z ) ;

// do the t e s t i n g f o r matr i ces a and b and va lue z mat

bool t e s t a b ( int a [N ] [N] , int b [N ] [N] , int z mat ) {
int c [N ] [N ] ;
for ( int z1=0; z1<=z mat ; z1++) {

MATHEMATICAL NOTES Vol. 0 No. 0 1966



A NIL-CLEAN EXAMPLE IMPROVED BY COMPUTER 7

for ( int k00=−z1 ; k00<=z1 ; k00++)
for ( int k01=−z1 ; k01<=z1 ; k01++)
for ( int k10=−z1 ; k10<=z1 ; k10++)
for ( int k11=−z1 ; k11<=z1 ; k11++) {

c [ 0 ] [ 0 ] = k00 ;
c [ 0 ] [ 1 ] = k01 ;
c [ 1 ] [ 0 ] = k10 ;
c [ 1 ] [ 1 ] = k11 ;
i f ( (max mat ( c ) == z1 ) && i s d i s t i n c t (a , c ) &&

i s idempotent ( c ) ) {
int ac [N ] [N ] ;
for ( int i =0; i<N; i++)
for ( int j =0; j<N; j++) {

ac [ i ] [ j ] = a [ i ] [ j ] + b [ i ] [ j ] − c [ i ] [ j ] ;
}
i f ( i s u n i t ( ac ) ) return fa l se ;

}
}

}
return true ;

}

// main incrementa l t e s t i n g loop

void t e s t a l l ( int z mat ) {
int a [N ] [N ] ;
int b [N ] [N ] ;
for ( int z=0; ; z++) {

cout << ”z = ” << z << endl ;
for ( int i 00=−z ; i00<=z ; i 00++)
for ( int i 01=−z ; i01<=z ; i 01++)
for ( int i 10=−z ; i10<=z ; i 10++)
for ( int i 11=−z ; i11<=z ; i 11++) {

a [ 0 ] [ 0 ] = i00 ;
a [ 0 ] [ 1 ] = i01 ;
a [ 1 ] [ 0 ] = i10 ;
a [ 1 ] [ 1 ] = i11 ;
i f ( i s i dempotent ( a ) ) {

for ( int j00=−z ; j00<=z ; j00++)
for ( int j01=−z ; j01<=z ; j01++)
for ( int j10=−z ; j10<=z ; j10++)
for ( int j11=−z ; j11<=z ; j11++) {

b [ 0 ] [ 0 ] = j00 ;
b [ 0 ] [ 1 ] = j01 ;
b [ 1 ] [ 0 ] = j10 ;
b [ 1 ] [ 1 ] = j11 ;
i f ( i s n i l p o t e n t (b ) ) {

i f ( maximal z (a , b , z ) ) {
i f ( t e s t a b (a , b , z mat ) ) {

cout << ”SUCCESS = ” ;
write mat ( a ) ;
cout << ” = ” ;
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write mat (b ) ;
cout << endl ;

}
}

}
}

}
}

}
}

Acknowledgement 5. Thanks are due to the referee, for his/her comments. Some of these and

new observations of our own, have finally improved our presentation.

BIBLIOGRAPHY

1. D. Alpern Quadratic equation solver. www.alpertron.com.ar/QUAD.HTM.
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3. G. Călugăreanu Clean integral 2× 2 matrices. Studia Sci. Math. Hungarica 55 (1) (2018), 41-52.
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