A zero determinant 2×2 matrix which has not stable range one

G. Călugăreanu, H. F. Pop

July 4, 2023

Abstract

In an attempt to answer a question stated by T. Y. Lam, we tried, without success to find such an example over $\mathbb{Z}[i \sqrt{5}]$.

1 Introduction

In [1] it is shown that over \mathbb{Z}, the only sr1 2×2 matrices have determinant in $\{-1,0,1\}$. In a forthcoming paper ([3]), T. Y. Lam generalized this result, proving

Theorem 1 Let $A \in R=M_{n}(S)$, where $n \geq 1$ and S is a commutative elementary divisor domain $(E D D)$. If $\operatorname{det}(A) \in\{0\} \cup U(S)$, then $s r_{R}(A)=1$. In the case where $S=\mathbb{Z}$, the converse of this statement also holds.

Accordingly, Lam also asks the following
Question. Let $R=M_{n}(S)$ where S is any commutative ring, and $n \geq 1$. If $A \in R$ is such that $\operatorname{det}(A)=0$, does it follow that $s r_{R}(A)=1$?

2 The example

In an attempt to provide an example justifying a negative answer, we thought of the commutative ring $R=\mathbb{Z}[i \sqrt{5}]$, well-known of not being UFD and at the (also well-known) zero determinant 2×2 matrix $M=\left[\begin{array}{cc}3 & 1-i \sqrt{5} \\ 1+i \sqrt{5} & 2\end{array}\right]$. Notice that R is not an EDD: if R would be EDD, it should be a PID and so UFD, a contradiction.

We first recall the following result (see [2] Cor. 5 (a), p. 13).
Proposition $2 \operatorname{sr}(R)=1$ iff for each $b \in R$, the homomorphism $U(R) \rightarrow$ $U(R / R b)$ is surjective .

Then we have

Lemma $3 \operatorname{sr}(R)=s r\left(\mathbb{M}_{n}(R)\right)=2$ for any $n \geq 1$.
Proof. (A. Vasiu) Since R is the normalization of \mathbb{Z} in a totally imaginary quadratic extension K of \mathbb{Q}, it follows that $U(R)$ is finite.

Using the previous proposition, $\operatorname{sr}(R) \neq 1$; as $\operatorname{sr}(R) \leq 2$, we conclude that $s r(R)=2$. Finally, a matrix ring $\mathbb{M}_{n}(R)$ (for a fixed positive integer n) has stable range one iff the base ring R has stable range one (see [4]).

Summarizing, $\mathbb{Z}[i \sqrt{5}]$ and $\mathbb{M}_{n}(\mathbb{Z}[i \sqrt{5}])$ both have stable range two, but some elements in each of these may have stable range one.

The question stated above asks to what extent zero determinant 2×2 matrices have sr1. As will follow below, the matrix M above, has sr1, so is not a suitable counterexample. A simple sufficient [so far...] condition for zero determinant 2×2 matrices will be found.

We next recall the characterization theorem proved in [1].
Theorem 4 Let R be a commutative ring and $A \in \mathbb{M}_{2}(R)$. Then A has left stable range 1 iff for any $X \in \mathbb{M}_{2}(R)$ there exists $Y \in \mathbb{M}_{2}(R)$ such that

$$
\operatorname{det}(Y)(\operatorname{det}(X) \operatorname{det}(A)-\operatorname{Tr}(X A)+1)+\operatorname{det}(A(\operatorname{Tr}(X Y)+1))-\operatorname{Tr}(A \operatorname{adj}(Y))
$$

is a unit of R.
Here $\operatorname{adj}(Y)$ is the classical adjoint (the adjugate).
The following consequences will be useful.
Corollary 5 Let R be a commutative ring and $A \in \mathbb{M}_{2}(R)$. If $\operatorname{det}(A)=0$, then $\operatorname{sr}_{R}(A)=1$ iff for any $X \in \mathbb{M}_{2}(R)$ there exists $Y \in \mathbb{M}_{2}(R)$ such that $\operatorname{det}(Y)(1-\operatorname{Tr}(X A)-\operatorname{Tr}(\operatorname{Aadj}(Y))=1$.

Corollary 6 Let R be a commutative ring, $0_{2} \neq A \in \mathbb{M}_{2}(R)$ and $\operatorname{det}(A)=0$. If there exist $Y \in \mathbb{M}_{2}(R)$ such that $\operatorname{det}(Y)=0$ and $\operatorname{Tr}(\operatorname{Aadj}(Y))=-1$ then $s r_{R}(A)=1$.

Corollary 7 The matrix $M=\left[\begin{array}{cc}3 & 1-i \sqrt{5} \\ 1+i \sqrt{5} & 2\end{array}\right]$ has sr1. Moreover, a unitizer exists which is independent of X.

Proof. Since $\operatorname{det}(M)=0$, using the last corollary, it suffices to take $Y=$ $\left[\begin{array}{cc}2+2 i \sqrt{5} & 3 \\ -2+2 i \sqrt{5} & 2+i \sqrt{5}\end{array}\right]$. One verifies that $\operatorname{det}(Y)=0$ and $\operatorname{Tr}(\operatorname{Madj}(Y))=$
-1.

We can rephrase Corollary 6 as follows.
Theorem 8 Let R be a commutative ring, $0_{2} \neq A \in \mathbb{M}_{2}(R)$ and $\operatorname{det}(A)=0$. If there exists a matrix Y such that $\operatorname{det}(Y)=0$ and $A Y$ is a nontrivial idempotent, then $\operatorname{sr}_{R}(A)=1$.

Proof. We just replace in Corollary $6, \operatorname{adj}(Y)$ with Y and then Y by $-Y$ (this can be done as $\operatorname{det}(Y)=\operatorname{det}(\operatorname{adj}(Y))$ for 2×2 matrices, and $\operatorname{Tr}(-B)=-\operatorname{Tr}(B))$ and then use Cayley-Hamilton theorem (as $\operatorname{det}(A Y)=0$ and $\operatorname{Tr}(A Y)=1$).

Example. For the matrix $M=\left[\begin{array}{cc}3 & 1-i \sqrt{5} \\ 1+i \sqrt{5} & 2\end{array}\right]$ we started with and $Y=\left[\begin{array}{cc}2+2 i \sqrt{5} & 3 \\ -2+2 i \sqrt{5} & 2+i \sqrt{5}\end{array}\right]$ we have $-a d j(Y)=\left[\begin{array}{cc}-2-i \sqrt{5} & 3 \\ -2+2 i \sqrt{5} & -2-2 i \sqrt{5}\end{array}\right]$. Indeed, $M(-\operatorname{adj}(Y))=\left[\begin{array}{cc}2+i \sqrt{5} & -3 \\ -1+i \sqrt{5} & -1-i \sqrt{5}\end{array}\right]$ is idempotent (zero determinant and trace $=1$) and det $\left[\begin{array}{cc}-2-i \sqrt{5} & 3 \\ -2+2 i \sqrt{5} & -2-2 i \sqrt{5}\end{array}\right]=0$.

3 Computer aid

First, everything is about zero determinant 2×2 matrices over $\mathbb{Z}[i \sqrt{5}]$; the computer will browse the zero determinant nonzero 2×2 matrices A.

If there exists Y such that $\operatorname{det}(Y)=0$ and $A Y$ is a nontrivial idempotent, computer displays nothing and continues browsing the A 's.

Computer displays only the matrices A for which NO zero determinant matrix Y with idempotent $A Y$ exists.

Computer displays $A=-(1+i \sqrt{5})\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$, since for $z=1$ it is the first matrix considered. It is easy to generalize this example.

Lemma 9 In the conditions of Theorem 8, if $\operatorname{gcd}(A) \notin\{ \pm 1\}=U(\mathbb{Z}[i \sqrt{5}])$ then a (zero determinant) matrix Y does not exist.

Proof. Let $\alpha \in \mathbb{Z}[i \sqrt{5}]$ with $\alpha \notin\{ \pm 1\}$ and $A=\alpha A^{\prime}$. Then $\operatorname{Tr}(A Y)=$ $\alpha \operatorname{Tr}\left(A^{\prime} Y\right)=1$ implies α is a unit, a contradiction.

Indeed, displays also $(1+i \sqrt{5})\left[\begin{array}{cc}-1 & -1 \\ 1 & 1\end{array}\right], \pm(1+i \sqrt{5})\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right], \pm(1+$ $i \sqrt{5})\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and others similar.

In the general case, if $A=\alpha A^{\prime}$, then $\operatorname{det}(Y)(1-\operatorname{Tr}(X A))-\operatorname{Tr}(\operatorname{Aadj}(Y)=$ $\operatorname{det}(Y)-\alpha \beta=1$ implies $\operatorname{gcd}(\operatorname{det}(Y), \alpha)=1$.

Computer displays also $A=\left[\begin{array}{ll}\alpha & \alpha \\ \bar{\alpha} & \bar{\alpha}\end{array}\right]$ with $\alpha=1+i \sqrt{5}$. Both $\alpha, \bar{\alpha}$ are irreducible in $\mathbb{Z}[i \sqrt{5}]$ so $\operatorname{gcd}(\alpha, \bar{\alpha})=1$.

Also transpose and other two similar like $\left[\begin{array}{cc}\alpha & \bar{\alpha} \\ -\alpha & -\bar{\alpha}\end{array}\right]$.
Explanation: $\operatorname{Tr}(A Y)=\alpha\left(y_{11}+y_{21}\right)+\bar{\alpha}\left(y_{12}+y_{22}\right)=1$. See proof below: there is no linear combination of $\alpha, \bar{\alpha}$ equal to 1 .

Also $\pm\left[\begin{array}{cc}\alpha & 0 \\ \bar{\alpha} & 0\end{array}\right]$ or $\pm\left[\begin{array}{cc}\alpha & \bar{\alpha} \\ 0 & 0\end{array}\right]$ or with opposite signs. Again, of course zero determinant.
$\operatorname{Tr}(A Y)=\alpha y_{11}+\bar{\alpha} y_{12}=1$.
The explanation: $\mathbb{Z}[i \sqrt{5}]$ is not Bézout! $\operatorname{gcd}(\alpha, \bar{\alpha})=1$ but there is no linear combination of α and $\bar{\alpha}$ equal to 1 .

Proof. $(1+i \sqrt{5})(a+b i \sqrt{5})+(1-i \sqrt{5})(c+d i \sqrt{5})=1$ amounts to $a+c-$ $5(b-d)=1$ and $a+b-c+d=0$. Replacing $c=a+b+d$ gives $2 a-4 b+6 c=1$ with no integer solutions.

Like in the above proof, $(1+i \sqrt{5})(a+b i \sqrt{5})+(1-i \sqrt{5})(c+d i \sqrt{5})=x$ is equivalent to $2 \mid x$.

We abandoned the program: after 3 days and a half only matrices with $z=1$ and upper left corner $-(1+i \sqrt{5})$ were partly covered.

4 Attempts

First attempt. Coming back to the general case, $\operatorname{det}(Y)[1-\operatorname{Tr}(X A)]-$ $\operatorname{Tr}\left(\operatorname{Aadj}(Y)=1\right.$, we consider $A=\left[\begin{array}{ll}1+i \sqrt{5} & 0 \\ 1-i \sqrt{5} & 0\end{array}\right]$.

By computation (the usual notations), for every X we should (not) find an Y [we no more suppose $\operatorname{det}(Y)=0$] such that

$$
\operatorname{det}(Y)\left[1-x_{11}(1+i \sqrt{5})-x_{12}(1-i \sqrt{5})\right]-y_{22}(1+i \sqrt{5})+y_{12}(1-i \sqrt{5})=1
$$

of course with $\operatorname{det}(Y)=y_{11} y_{22}-y_{12} y_{21}$.
The benefit is now that computer has to browse only two entries of X : $x_{11}, x_{12} \in \mathbb{Z}[i \sqrt{5}]$. It displays only when a matrix $Y=\left[\begin{array}{ll}y_{11} & y_{12} \\ y_{21} & y_{22}\end{array}\right]$ is not found.

Summary. Computer browses $x_{11}, x_{12} \in \mathbb{Z}[i \sqrt{5}]$. For each such pair, it searches for 4 entries $y_{11}, y_{12}, y_{21}, y_{22} \in \mathbb{Z}[i \sqrt{5}]$ such that
$\left(y_{11} y_{22}-y_{12} y_{21}\right)\left[1-x_{11}(1+i \sqrt{5})-x_{12}(1-i \sqrt{5})\right]-y_{22}(1+i \sqrt{5})+y_{12}(1-i \sqrt{5})=1$.
That is, an equation in $\mathbb{Z}[i \sqrt{5}]$, without matrices, determinants or traces.
Second attempt. In the first attempt, replace $1+i \sqrt{5}$ by 2 . That is

$$
\left(y_{11} y_{22}-y_{12} y_{21}\right)\left[1-2 x_{11}-x_{12}(1-i \sqrt{5})\right]-2 y_{22}+y_{12}(1-i \sqrt{5})=1
$$

Third attempt. In the first attempt replace $1+i \sqrt{5}$ by $2+i \sqrt{5}$. That is $\left(y_{11} y_{22}-y_{12} y_{21}\right)\left[1-x_{11}(2+i \sqrt{5})-x_{12}(1-i \sqrt{5})\right]-y_{22}(2+i \sqrt{5})+y_{12}(1-i \sqrt{5})=1$.

```
Forth attempt. Consider \(A=\left[\begin{array}{cc}2 & 2 \\ 1+i \sqrt{5} & 1+i \sqrt{5}\end{array}\right]\). Then \(\operatorname{Aadj}(Y)=\) \(\left[\begin{array}{cc}2\left(y_{11}+y_{21}\right) & (1+i \sqrt{5})\left(y_{12}+y_{22}\right)\end{array}\right]\) and
\(X A=\left[\begin{array}{cc}2 x_{11}+(1+i \sqrt{5}) x_{12} & * \\ * & 2 x_{21}+(1+i \sqrt{5}) x_{22}\end{array}\right]\). Now
\(\left.\operatorname{det}(Y)\left[1-2 x_{11}-(1+i \sqrt{5}) x_{12}-2 x_{21}-(1+i \sqrt{5}) x_{22}\right)\right]-2\left(y_{11}+y_{21}\right)-(1+\) \(i \sqrt{5})\left(y_{12}+y_{22}\right)=1\).
```

After days, no matrix was displayed.

5 Another idea

Would be to vanish (instead of $\operatorname{det}(Y)) 1-\operatorname{Tr}(X A)$. That is, to find an X such that $\operatorname{Tr}(X A)=1$ but there is no Y with $\operatorname{Tr}(\operatorname{Aadj}(Y))=-1$.

Unfortunately, this is not possible as $\operatorname{Tr}(C D)=\operatorname{Tr}(D C)$ for any matrices C, D.

Hence, if a matrix X exists with $\operatorname{Tr}(X A)=1$ then for $Y=-a d j(X)$ we get $\operatorname{Tr}(\operatorname{Aadj}(Y)=\operatorname{Tr}(\operatorname{Aadj}(-\operatorname{adj}(X)))=-\operatorname{Tr}(A X)=-\operatorname{Tr}(X A)=-1$.

In general, if we take $Y=-\operatorname{adj}(X)$, the characterization gives $\operatorname{det}(X)-)(1-$ $\operatorname{Tr}(X A))=0$, so this unitizer choice works only when $\operatorname{det}(X)=1$ or else $\operatorname{Tr}(X A)=1$.

6 Final comment

As considerable efforts were made, without success, to find a zero determinant 2×2 matrix over $\mathbb{Z}[i \sqrt{5}]$ which has not sr1, it remains plausible that the initial question has an affirmative answer, i.e., zero determinant 2×2 matrices over $\mathbb{Z}[i \sqrt{5}]$ have stable range one.

References

[1] G. Călugăreanu, H. F. Pop On stable range one matrices. Bull. Math. Soc. Sci. Math. Roumanie Tome 65 (113) (3) (2022), 317-327.
[2] G. Călugăreanu, H. F. Pop, A. Vasiu On some invertible completions over commutative rings, https://arxiv.org/abs/2303.08413, to appear.
[3] T. Y. Lam Ring elements of stable range one, to appear.
[4] L. N. Vaserstein The stable range of rings and dimension of topological spaces. Func. Anal. Appl. 5 (1971), 17-27.

