A zero determinant 2×2 matrix which has not stable range one

G. Călugăreanu, H. F. Pop

July 4, 2023

Abstract

In an attempt to answer a question stated by T. Y. Lam, we tried, without success to find such an example over $\mathbb{Z}[i\sqrt{5}]$.

1 Introduction

In [1] it is shown that over \mathbb{Z} , the only sr1 2 × 2 matrices have determinant in $\{-1, 0, 1\}$. In a forthcoming paper ([3]), T. Y. Lam generalized this result, proving

Theorem 1 Let $A \in R = M_n(S)$, where $n \ge 1$ and S is a commutative elementary divisor domain (EDD). If det $(A) \in \{0\} \cup U(S)$, then $sr_R(A) = 1$. In the case where $S = \mathbb{Z}$, the converse of this statement also holds.

Accordingly, Lam also asks the following

Question. Let $R = M_n(S)$ where S is any commutative ring, and $n \ge 1$. If $A \in R$ is such that $\det(A) = 0$, does it follow that $sr_R(A) = 1$?

2 The example

In an attempt to provide an example justifying a negative answer, we thought of the commutative ring $R = \mathbb{Z}[i\sqrt{5}]$, well-known of not being UFD and at the (also well-known) zero determinant 2×2 matrix $M = \begin{bmatrix} 3 & 1 - i\sqrt{5} \\ 1 + i\sqrt{5} & 2 \end{bmatrix}$. Notice that R is not an EDD: if R would be EDD, it should be a PID and so UFD, a contradiction.

We first recall the following result (see [2] Cor. 5 (a), p. 13).

Proposition 2 sr(R) = 1 iff for each $b \in R$, the homomorphism $U(R) \rightarrow U(R/Rb)$ is surjective.

Then we have

Lemma 3 $sr(R) = sr(\mathbb{M}_n(R)) = 2$ for any $n \ge 1$.

Proof. (A. Vasiu) Since R is the normalization of \mathbb{Z} in a totally imaginary quadratic extension K of \mathbb{Q} , it follows that U(R) is finite.

Using the previous proposition, $sr(R) \neq 1$; as $sr(R) \leq 2$, we conclude that sr(R) = 2. Finally, a matrix ring $\mathbb{M}_n(R)$ (for a fixed positive integer n) has stable range one iff the base ring R has stable range one (see [4]).

Summarizing, $\mathbb{Z}[i\sqrt{5}]$ and $\mathbb{M}_n(\mathbb{Z}[i\sqrt{5}])$ both have stable range two, but some elements in each of these may have stable range one.

The question stated above asks to what extent zero determinant 2×2 matrices have sr1. As will follow below, the matrix M above, has sr1, so is not a suitable counterexample. A simple sufficient [so far...] condition for zero determinant 2×2 matrices will be found.

We next recall the characterization theorem proved in [1].

Theorem 4 Let R be a commutative ring and $A \in M_2(R)$. Then A has left stable range 1 iff for any $X \in M_2(R)$ there exists $Y \in M_2(R)$ such that

 $\det(Y)(\det(X)\det(A) - \operatorname{Tr}(XA) + 1) + \det(A(\operatorname{Tr}(XY) + 1)) - \operatorname{Tr}(A\operatorname{adj}(Y))$

is a unit of R.

Here $\operatorname{adj}(Y)$ is the classical adjoint (the adjugate). The following consequences will be useful.

Corollary 5 Let R be a commutative ring and $A \in M_2(R)$. If det(A) = 0, then $sr_R(A) = 1$ iff for any $X \in M_2(R)$ there exists $Y \in M_2(R)$ such that det(Y)(1 - Tr(XA) - Tr(Aadj(Y)) = 1.

Corollary 6 Let R be a commutative ring, $0_2 \neq A \in \mathbb{M}_2(R)$ and $\det(A) = 0$. If there exist $Y \in \mathbb{M}_2(R)$ such that $\det(Y) = 0$ and Tr(Aadj(Y)) = -1 then $sr_R(A) = 1$.

Corollary 7 The matrix $M = \begin{bmatrix} 3 & 1 - i\sqrt{5} \\ 1 + i\sqrt{5} & 2 \end{bmatrix}$ has sr1. Moreover, a unitizer exists which is independent of X.

Proof. Since det(M) = 0, using the last corollary, it suffices to take $Y = \begin{bmatrix} 2+2i\sqrt{5} & 3\\ -2+2i\sqrt{5} & 2+i\sqrt{5} \end{bmatrix}$. One verifies that det(Y) = 0 and Tr(Madj(Y)) = -1.

We can rephrase Corollary 6 as follows.

Theorem 8 Let R be a commutative ring, $0_2 \neq A \in \mathbb{M}_2(R)$ and $\det(A) = 0$. If there exists a matrix Y such that $\det(Y) = 0$ and AY is a nontrivial idempotent, then $sr_R(A) = 1$.

Proof. We just replace in Corollary 6, adj(Y) with Y and then Y by -Y (this can be done as det(Y) = det(adj(Y)) for 2×2 matrices, and Tr(-B) = -Tr(B)) and then use Cayley-Hamilton theorem (as det(AY) = 0 and Tr(AY) = 1). Example. For the matrix $M = \begin{bmatrix} 3 & 1-i\sqrt{5} \\ 1+i\sqrt{5} & 2 \end{bmatrix}$ we started with and $Y = \begin{bmatrix} 2+2i\sqrt{5} & 3 \\ -2+2i\sqrt{5} & 2+i\sqrt{5} \end{bmatrix}$ we have $-adj(Y) = \begin{bmatrix} -2-i\sqrt{5} & 3 \\ -2+2i\sqrt{5} & -2-2i\sqrt{5} \end{bmatrix}$. Indeed, $M(-adj(Y)) = \begin{bmatrix} 2+i\sqrt{5} & -3 \\ -1+i\sqrt{5} & -1-i\sqrt{5} \end{bmatrix}$ is idempotent (zero determinant and trace = 1) and det $\begin{bmatrix} -2-i\sqrt{5} & 3 \\ -2+2i\sqrt{5} & -2-2i\sqrt{5} \end{bmatrix} = 0$.

3 Computer aid

First, everything is about zero determinant 2×2 matrices over $\mathbb{Z}[i\sqrt{5}]$; the computer will browse the zero determinant nonzero 2×2 matrices A.

If there exists Y such that det(Y) = 0 and AY is a nontrivial idempotent, computer displays nothing and continues browsing the A's.

Computer displays only the matrices A for which **NO** zero determinant matrix Y with idempotent AY exists.

Computer displays $A = -(1 + i\sqrt{5}) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, since for z = 1 it is the first matrix considered. It is easy to generalize this example.

Lemma 9 In the conditions of Theorem 8, if $gcd(A) \notin \{\pm 1\} = U(\mathbb{Z}[i\sqrt{5}])$ then a (zero determinant) matrix Y does not exist.

Proof. Let $\alpha \in \mathbb{Z}[i\sqrt{5}]$ with $\alpha \notin \{\pm 1\}$ and $A = \alpha A'$. Then Tr(AY) = $\alpha Tr(A'Y) = 1$ implies α is a unit, a contradiction.

 $T(A'Y) = 1 \text{ implies } \alpha \text{ is a unit, a constant set of the se$

 $i\sqrt{5}$) $\begin{bmatrix} 1 & 0\\ 0 & 0 \end{bmatrix}$ and others similar.

In the general case, if $A = \alpha A'$, then $\det(Y)(1 - Tr(XA)) - Tr(Aadj(Y) = \det(Y) - \alpha\beta = 1$ implies $\gcd(\det(Y), \alpha) = 1$.

Computer displays also $A = \begin{bmatrix} \alpha & \alpha \\ \overline{\alpha} & \overline{\alpha} \end{bmatrix}$ with $\alpha = 1 + i\sqrt{5}$. Both α , $\overline{\alpha}$ are irreducible in $\mathbb{Z}[i\sqrt{5}]$ so $gcd(\alpha, \overline{\alpha}) = 1$.

Also transpose and other two similar like $\begin{bmatrix} \alpha & \overline{\alpha} \\ -\alpha & -\overline{\alpha} \end{bmatrix}$. Explanation: $Tr(AY) = \alpha(y_{11} + y_{21}) + \overline{\alpha}(y_{12} + y_{22}) = 1$. See proof below:

there is no linear combination of α , $\overline{\alpha}$ equal to 1.

Also $\pm \begin{bmatrix} \alpha & 0 \\ \overline{\alpha} & 0 \end{bmatrix}$ or $\pm \begin{bmatrix} \alpha & \overline{\alpha} \\ 0 & 0 \end{bmatrix}$ or with opposite signs. Again, of course zero determinant.

 $Tr(AY) = \alpha y_{11} + \overline{\alpha} y_{12} = 1.$

The explanation: $\mathbb{Z}[i\sqrt{5}]$ is not Bézout ! $gcd(\alpha, \overline{\alpha}) = 1$ but there is no linear combination of α and $\overline{\alpha}$ equal to 1.

Proof. $(1 + i\sqrt{5})(a + bi\sqrt{5}) + (1 - i\sqrt{5})(c + di\sqrt{5}) = 1$ amounts to a + c - 5(b - d) = 1 and a + b - c + d = 0. Replacing c = a + b + d gives 2a - 4b + 6c = 1 with no integer solutions.

Like in the above proof, $(1 + i\sqrt{5})(a + bi\sqrt{5}) + (1 - i\sqrt{5})(c + di\sqrt{5}) = x$ is equivalent to $2 \mid x$.

We abandoned the program: after 3 days and a half only matrices with z = 1and upper left corner $-(1 + i\sqrt{5})$ were partly covered.

4 Attempts

First attempt. Coming back to the general case, det(Y)[1 - Tr(XA)] - Tr(Aadj(Y) = 1, we consider $A = \begin{bmatrix} 1 + i\sqrt{5} & 0\\ 1 - i\sqrt{5} & 0 \end{bmatrix}$.

By computation (the usual notations), for every X we should (not) find an Y [we no more suppose det(Y) = 0] such that

$$\det(Y)[1 - x_{11}(1 + i\sqrt{5}) - x_{12}(1 - i\sqrt{5})] - y_{22}(1 + i\sqrt{5}) + y_{12}(1 - i\sqrt{5}) = 1$$

of course with $det(Y) = y_{11}y_{22} - y_{12}y_{21}$.

The benefit is now that computer has to browse only two entries of X: $x_{11}, x_{12} \in \mathbb{Z}[i\sqrt{5}]$. It displays only when a matrix $Y = \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix}$ is **not** found.

Summary. Computer browses $x_{11}, x_{12} \in \mathbb{Z}[i\sqrt{5}]$. For each such pair, it searches for 4 entries $y_{11}, y_{12}, y_{21}, y_{22} \in \mathbb{Z}[i\sqrt{5}]$ such that

$$(y_{11}y_{22} - y_{12}y_{21})[1 - x_{11}(1 + i\sqrt{5}) - x_{12}(1 - i\sqrt{5})] - y_{22}(1 + i\sqrt{5}) + y_{12}(1 - i\sqrt{5}) = 1.$$

That is, an equation in $\mathbb{Z}[i\sqrt{5}]$, without matrices, determinants or traces.

Second attempt. In the first attempt, replace $1 + i\sqrt{5}$ by 2. That is

$$(y_{11}y_{22} - y_{12}y_{21})[1 - 2x_{11} - x_{12}(1 - i\sqrt{5})] - 2y_{22} + y_{12}(1 - i\sqrt{5}) = 1.$$

Third attempt. In the first attempt replace $1 + i\sqrt{5}$ by $2 + i\sqrt{5}$. That is

$$(y_{11}y_{22} - y_{12}y_{21})[1 - x_{11}(2 + i\sqrt{5}) - x_{12}(1 - i\sqrt{5})] - y_{22}(2 + i\sqrt{5}) + y_{12}(1 - i\sqrt{5}) = 1.$$

Forth attempt. Consider $A = \begin{bmatrix} 2 & 2 \\ 1+i\sqrt{5} & 1+i\sqrt{5} \end{bmatrix}$. Then $Aadj(Y) = \begin{bmatrix} 2(y_{11}+y_{21}) & * \\ * & (1+i\sqrt{5})(y_{12}+y_{22}) \end{bmatrix}$ and $XA = \begin{bmatrix} 2x_{11}+(1+i\sqrt{5})x_{12} & * \\ * & 2x_{21}+(1+i\sqrt{5})x_{22} \end{bmatrix}$. Now $det(Y)[1-2x_{11}-(1+i\sqrt{5})x_{12}-2x_{21}-(1+i\sqrt{5})x_{22}] - 2(y_{11}+y_{21}) - (1+i\sqrt{5})(y_{12}+y_{22}) = 1.$

After days, no matrix was displayed.

5 Another idea

Would be to vanish (instead of det(Y)) 1 - Tr(XA). That is, to find an X such that Tr(XA) = 1 but there is no Y with Tr(Aadj(Y)) = -1.

Unfortunately, this is not possible as Tr(CD) = Tr(DC) for any matrices C, D.

Hence, if a matrix X exists with Tr(XA) = 1 then for Y = -adj(X) we get Tr(Aadj(Y) = Tr(Aadj(-adj(X))) = -Tr(AX) = -Tr(XA) = -1.

In general, if we take Y = -adj(X), the characterization gives det(X) - (1 - Tr(XA)) = 0, so this unitizer choice works only when det(X) = 1 or else Tr(XA) = 1.

6 Final comment

As considerable efforts were made, without success, to find a zero determinant 2×2 matrix over $\mathbb{Z}[i\sqrt{5}]$ which has not sr1, it remains *plausible* that the initial question has an affirmative answer, i.e., *zero determinant* 2×2 matrices over $\mathbb{Z}[i\sqrt{5}]$ have stable range one.

References

- G. Călugăreanu, H. F. Pop On stable range one matrices. Bull. Math. Soc. Sci. Math. Roumanie Tome 65 (113) (3) (2022), 317-327.
- [2] G. Călugăreanu, H. F. Pop, A. Vasiu On some invertible completions over commutative rings, https://arxiv.org/abs/2303.08413, to appear.
- [3] T. Y. Lam Ring elements of stable range one, to appear.
- [4] L. N. Vaserstein The stable range of rings and dimension of topological spaces. Func. Anal. Appl. 5 (1971), 17-27.