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RENÉ BRANDENBERG

Abstract. For the first time complete lists of two pairs of inner and outer
radii classes of the three types of regular polytopes which exist in all dimen-
sions are presented. A new access using isotropic polytopes provides easier
understanding of the underlying geometry and helps unifying the results.

1. Introduction

There are three types of regular polytopes which exist in every dimension d:
regular simplices, (hyper-) cubes, and regular cross-polytopes. In this paper
we investigate two pairs of inner and outer j-radii (rj, Rj) and (r̄j, R̄j) of these
polytopes (inner and outer radii classes are almost always considered in pairs,
such that for a 0-symmetric body K and its dual K◦ the inner (outer) radii of K
are the reciprocal values of the outer (inner) radii of K◦ [9]).

The inner j-radii rj and r̄j of a body K are defined as the radii of largest j-balls
contained in j-dimensional slices K ∩F of K, whereby the value of rj is obtained
from maximizing and the value of r̄j is obtained from minimizing over the possible
directions of F . The outer j-radii Rj and R̄j of a body K are defined as the radii
of smallest j-balls containing the projection of K onto j-dimensional subspaces
F , whereby the value of Rj is obtained from minimizing and the value of R̄j is
obtained from maximizing over the possible directions of F . One should note that
rd = r̄d is the usual inradius and Rd = R̄d is the usual outer radius. Moreover, it
is well known [3] that R1 = r̄1 is the half width and r1 = R̄1 is the half diameter.
In some Russian papers the inner radii rj are also called Bernstein diameters and
the outer radii Rj Kolmogorov diameters (or sometimes Kolmogorov width).

The inner radii rj of regular simplices were studied in [1]. Ball uses a well
known result of John [10] in his proof, which also plays an important role in our
computation of the outer radii Rj of regular simplices.

Until recently we thought that besides the classical results of Steinhagen [15]
and Jung [11] about the outer 1- and the outer d-radii, respectively, the Rj’s of
regular simplices were computed only in the case that j = d − 1 by Weißbach
[16, 17]. The pretended open cases originally stimulated our work. However, on
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the one hand it turned out that already Pukhov [13] computed the Rj’s of regular
simplices in the remaining cases. On the other hand, in [4] it was shown that the
proof of Weißbach for the (d − 1)-case with even d contained a crucial error.

The R̄j’s and the r̄j’s of regular simplices were considered in [9] and [2], respec-
tively. While the R̄j’s were completely listed, the r̄j’s could only be computed
in several special cases. However, a lower bound was given and a criterion when
this bound is attained. We show that this criterion is fulfilled in all remaining
cases, which means that we can now complete this list.

As the last piece to complete the radii of regular simplices, the result about
Rd−1(T

d) for even d could recently be reestablished in [5].
If we turn to the other two types of regular polytopes, it follows immediately

from their (central) symmetry that rd = R1 and r1 = Rd and therefore that the
r̄j’s and the R̄j’s do not depend on j. Hence we concentrate our attention on
(rj, Rj) in case of symmetric bodies.

Pukhov gives references for papers in which the Rj’s of regular cross-polytopes
are computed, from which it is possible to deduce the rj’s of cubes via polarization
[8]. Everett, Stojmenov́ıc, Valtr, and Whitesides [6] give a recursive formula for
the inner radii of general d-dimensional boxes, which generalizes the cited result
about cubes. However, Everett et al. obviously did not know the papers cited by
Pukhov, since they thought that even the inner radii of cubes were not known
previously, except from trivial cases and the outer 3-radius of a cube, computed
by Shklarsky, Chentzov, and Yaglom [14].

We do not know a reference on the outer radii of boxes (and/or the inner radii
of general cross-polytopes). This gap is closed by showing that these radii are the
circumradii of smallest j-faces of boxes. Table 1 summarizes the results about
regular polytopes.

However, instead of just putting together the radii from all the authors cited
above, this paper unifies the different papers. We show that all the (rj, Rj) radii
of regular polytopes, apart from the rj’s of regular simplices, can be obtained
from the Rj’s of regular simplices. Moreover, the r̄j’s of regular simplices can be
obtained from the Rj’s of regular simplices, in almost all cases.

Pukhov used the result about the Rj’s of regular cross-polytopes in his compu-
tation of the Rj’s of regular simplices, which would lead to an improper circular
closing of our chain of proof. This is one reason, to resettle a complete new proof.
Another is the strong connection to isotropic polytopes (Kawashima called them
π-polytopes [12], but we prefer to call them isotropic as they are in an isotropic
position in the sense of [7]). Specifically, we show that the existence of a (j, d+1)-
isotropic polytope is equivalent to the existence of a j-dimensional projection of
the regular d-simplex such that a previously computed general lower bound for
the outer radii is attained. Afterwards we state a way of constructing (j, d + 1)-
isotropic polytopes for arbitrary pairs (j, d), except for the cases where d is even
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regular simplex cube
regular

cross-polytope

Rj

√

j
d

, j 6∈{1,d−1}
or d odd

d+1
d

√

1
d+2

, j = 1
and d even

2d−1
2d

, j = d−1
and d even

√

j
d

√

j
d

rj

√

d+1
j(j+1)d

√

1
j(d+1)

√

1
j(d+1)

R̄j

√

j(d+1)
(j+1)d

1 1

r̄j

√

1
j(d+1)

, j 6∈{1,d−1}
or d odd

d+1
d

√

1
d+2

, j = 1
and d even

2√
d(d+2)+

√
d(d−2)

, j = d−1
and d even

√

1
d(d+1)

√

1
d(d+1)

Table 1. For the first time, a complete table of the radii of the
three types of regular polytopes can be given. The polytopes are
scaled such that their circumradius is 1.

and j ∈ {1, d − 1}, showing that the lower bound is tight in all but the two
exceptional cases.

We will then show that the lower bound criterion of [2] is fulfilled in almost all
cases (all open cases), such that the r̄j’s of regular simplices can be completed.

Finally, it is shown how to deduce the radii of cubes and regular cross-polytopes
from the results about the Rj’s of regular simplices and formulas for the radii of
general boxes and cross-polytopes, as mentioned above, are stated.

2. Preliminaries

Let Ed = (Rd, || · ||) denote the d-dimensional Euclidean space, d ≥ 2, Bd and
Sd−1 the unit ball and the unit sphere in Ed, and 〈· , ·〉 the usual scalar product
〈x, y〉 = xT y. Furthermore, we use {e1, . . . , ed} for the standard basis of Ed. A
set K ⊂ E

d is called a body if it is bounded, closed, convex and contains an inner
point. For every body K ⊂ Ed let K◦ = {y ∈ Ed : 〈x, y〉 ≤ 1 for all x ∈ K}
denote the polar of K.

By Lj,d and Aj,d we denote the set of all j-dimensional linear subspaces and
all j-dimensional affine subspaces of E

d, respectively. For any E ∈ Lj,d let E⊥ ∈
Ld−j,d be the orthogonal complement of E. Let lin{s1, . . . , sj} denote the linear

span {x ∈ Ed : x =
∑j

k=1 λksk, λk ∈ R} of s1, . . . , sj ∈ Sd−1. For any set
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A ∈ Ed, A|E denotes the (orthogonal) projection of A onto E ∈ Lj,d. For
any x ∈ Ed1 and y ∈ Ed2 let x ⊗ y denote the rank 1 matrix with elements
xiyj, i = 1, . . . , d1 and note that for any set of orthonormal vectors {s1, . . . , sj}
the projection P of Ed onto lin{s1, . . . , sj} can be represented by the matrix
∑j

l=1 sl ⊗ sl. For any two sets A, B ⊂ Ed the Minkowski sum A + B is defined as
A + B = {a + b ∈ Ed : a ∈ A, b ∈ B}.

For any convex set K let r(K) and R(K) denote the inner and outer radius of
K, respectively. Now, for any j ∈ {1, . . . , d} the inner j-radii of K are defined
by

rj(K) = max
E∈Lj,d

max
q∈Ed

r(K ∩ (E + q)),

r̄j(K) = min
E∈Lj,d

max
q∈Ed

r(K ∩ (E + q)),

and the outer j-radii by

Rj(K) = min
E∈Lj,d

R(K|E),

R̄j(K) = max
E∈Lj,d

R(K|E).

The outer radii often are also introduced in terms of enclosing cylinders. That
means, defining a j-cylinder as the set F + q + ρ(B∩F⊥), for F ∈ Ad−j,d, q ∈ Ed

and radius ρ > 0, then, e.g., Rj(K) is the minimal radius of a K enclosing
j-cylinder.

Surely, for all 1 ≤ j ≤ d the inner and outer j-radii are invariant under
translation and rotation. Furthermore, if the convex body is scaled by a factor ρ,
so are its radii. For this reason, we use the term ’ball’ to signify any body similar
(in the above sense) to Bd, and the same we do for simplices, cross-polytopes and
boxes.

Let T d denote the regular d-simplex of circumradius R(T d) = 1, which we as-

sume to be embedded in Ed+1 as T d =
√

d+1
d

conv{e1, . . . , ed+1}. By Ba1,...,ad
we

denote a d-dimensional box of the form
{

x ∈ Ed : −ai ≤ xi ≤ ai, i ∈ {1, . . . , d}
}

and the cube
√

1
d
B1,...,1 is denoted by Cd. Finally, a general cross-polytope

Xa1,...,ad
= conv{±a1e1, . . . ,±aded} is just the polar of B 1

a1
,..., 1

ad

and especially

the regular cross-polytope Xd = conv{±e1, . . . ,±ed} is the polar of
√

dCd.

3. Regular simplices

The following results about the rj’s and the R̄j’s of regular simplices are taken
from [1] and [9].

Proposition 3.1. For all 1 ≤ j ≤ d

(i) rj(T
d) =

√

d+1
j(j+1)d

,
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(ii) R̄j(T
d) =

√

j(d+1)
(j+1)d

, and

in both cases the extreme j-spaces are parallel to the j-faces of T d.

Definition 3.2. We call any set of orthonormal vectors {s1, . . . , sj} ⊂ Ed+1,
1 ≤ j ≤ d

(i) a valid subset basis ( vsb for short) if
∑d+1

k=1 slk = 0 for all l ∈ {1, . . . , j},
and

(ii) a good subset basis ( gsb for short) if it is a vsb and
∑j

l=1 s2
lk = j

d+1
for all

k ∈ {1, . . . , d + 1}.
Note that any set of orthonormal vectors {s1, . . . , sj} is called a vsb if it spans

a j-dimensional subspace of Ed
0 =

{

x ∈ Ed+1 :
∑d+1

k=1 xk = 0
}

, the d-dimensional

linear subspace of Ed+1 parallel to the hyperplane in which we have embedded
T d.

The projection of T d onto Ed
0 can be written as Id+1 − 1

d+1
1d+1, where Id+1

denotes the identity matrix in E(d+1)×(d+1) and 1d+1 the matrix in E(d+1)×(d+1)

consisting only of 1’s. Hence
∑d

l=1 sl ⊗ sl = Id+1 − 1
d+1

1d+1, for every vsb of d
elements. This implies the important fact that each vsb is a gsb if j = d, which
we use in Corollary 3.4.

Now we start computing the outer radii of regular simplices by giving a general
lower bound, which we prove to be tight in almost all cases further on. This
theorem will also show the reason why we call a vsb good if it fulfills the condition
(ii) in Definition 3.2.

Lemma 3.3. Rj(T
d) ≥

√

j
d

for all j ∈ {1, . . . , d} and equality holds if and only

if there exists a gsb {s1, . . . , sj} in Ed+1.

Proof. Let P denote the projection onto a subspace spanned by a vsb {s1, . . . , sj}.
It follows

||Pek||2 = 〈Pek, ek〉 =

〈

j
∑

l=1

slksl, ek

〉

=

j
∑

l=1

s2
lk.

Now assume there exists any x ∈ Ed+1 such that ||x − Pek||2 < j
d+1

for all k =
1, . . . , d + 1. Summing over the k’s it follows

j >
d+1
∑

k=1

||x − Pek||2

=

d+1
∑

k=1

(||x||2 − 2〈x, Pek〉 + ||Pek||2)

= (d + 1)||x||2 − 2

〈

x,

d+1
∑

k=1

j
∑

l=1

slksl

〉

+

d+1
∑

k=1

j
∑

l=1

s2
lk
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and since
∑d+1

k=1 slk = 0 and
∑d+1

k=1 s2
lk = 1

= (d + 1)||x||2 + j

≥ j

which is a contradiction. This proves the first part of the lemma. In order to
prove the other part we note that equality in ||x− Pek||2 ≤ j

d+1
for all k can only

be obtained if x = 0 and
∑j

l=1 s2
lk = j

d+1
for each k. �

As every vsb of d vectors is already a gsb we obtain the following corollary
from Lemma 3.3 by the basis extension property (used on Ed

0):

Corollary 3.4. For any dimension d and any j ∈ {1, . . . , d−1} it holds Rj(T
d) =

√

j
d

if and only if Rd−j(T
d) =

√

d−j
d

holds. Moreover, there always exists a pair

of corresponding optimal projections which take place in orthogonal subspaces.

Since Steinhagen [15] showed that

(1) R1(T
d) =







√

1
d
, if d odd

d+1
d

√

1
d+2

, if d even.

Corollary 3.4 implies for the outer (d− 1)-radius that the lower bound of Lemma
3.3 is attained for odd dimensions, but that the bound is not attained for even
dimensions. The following formula was claimed in [13] and first shown in [17].
The proof in that paper contained a crucial error, but the correctness of the
formula could be reestablished lately [5].

Proposition 3.5. For even d

Rd−1(T
d) =

2d − 1

2d
.

We will soon see that j ∈ {1, d − 1} for even d are the only cases where the
lower bound is not attained.

The following proposition is a polar version of John’s Theorem [10] (see also
[1]).

Proposition 3.6. Bj is the ellipsoid of minimal volume containing some body
K ⊂ Ej if and only if K ⊂ Bj and for some m ≥ j there are unit vectors
u1, . . . , um on the boundary of K, and positive numbers c1, . . . , cm summing to j
such that

(i)
∑m

i=1 ciui = 0, and

(ii)
∑m

i=1 ciui ⊗ ui = Ij.
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It is obvious that if K is a regular polytope all ci can be chosen as j
m

were m
is the number of vertices of K. But it is not obvious which other polytopes fulfill
this property. Nevertheless, according to [7] these polytopes are in an isotropic
position, corresponding to the discrete measure µ∗ on Sd−1 that gives mass j

m
to all vertices ui (see [7, Section 5] for more details). This is the source for the
following definition:

Definition 3.7. Let u1, . . . , ud+1 ∈ S
j−1 (not necessarily different) and K =

conv{u1, . . . , ud+1}. K is called (j, d + 1)-isotropic, if all the ci’s in Proposition
3.6 can be taken as j

d+1
.

Lemma 3.8. There exists a gsb s1, . . . , sj of Ed+1 if and only if there exists a
(j, d + 1)-isotropic polytope K = conv{u1, . . . , ud+1} ⊂ Ej, j ≤ d. Moreover, if
we project T d onto lin{s1, . . . , sj} the projection equals the corresponding K up
to rotation and dilatation.

Proof. If K = conv{u1, . . . , ud+1} is a (j, d + 1)-isotropic polytope then

(i) ||uk|| = 1,

(ii)
∑d+1

k=1 uk = 0, and

(iii)
∑d+1

k=1 uk ⊗ uk = d+1
j

Ij.

Now let sl =
√

j/(d + 1)(u1,l, . . . , ud+1,l)
T , l = 1, . . . , j. This defines a gsb. For

showing this it is necessary that the sl form an orthonormal set, but this is the
case because of (iii).

∑d+1
k=1 slk has to be 0, but this follows from (ii), and finally we

need
∑j

l=1 s2
lk = j

d+1
for all k, but this is true because of (i). The other direction

can be shown using a similar reasoning.
Now, if we project the vertices of T d onto lin{s1, . . . , sj} we get

P

(

√

d + 1

d
ek

)

=

j
∑

l=1

√

d + 1

d
slksl =

j
∑

l=1

√

j

d
uklsl.

Hence the values
√

j/d ukl are just the coordinates of the vertices of the projection
in terms of the basis s1, . . . , sj. �

Lemma 3.8 can be used in two ways:

(i) We know that Rj(T
d) =

√

j/d whenever we find a (j, d + 1)-isotropic poly-
tope and vice versa. Hence there cannot exist (1, d + 1)-isotropic polytopes
nor (d − 1, d + 1)-isotropic polytopes if d is even).

(ii) We know that Rk(K) ≥
√

k/j for any (j, d + 1)-isotropic polytope K and
any k ≤ j and equality holds if and only if the corresponding gsb {s1, . . . , sj}
can be split into two gsb’s {s1, . . . , sk} and {sk+1, . . . , sj}.

We will first concentrate our attention to (i) but come back to (ii) later.
The following lemma states a rule, how to construct higher dimensional isotropic

polytopes from lower dimensional ones. We call it the additive rule.
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Lemma 3.9. Let 0 ≤ ji < mi, i = 1, 2 such that m2j1 > m1j2. Let j = j1 + j2,
m = m1 + m2, α =

√

(m2j1 − m1j2)/m2j, and β =
√

mj2/m2j, and suppose
there exists a (j1, m1)-isotropic polytope K1 = conv{u1, . . . , um1

}, a (j1, m2)-
isotropic polytope K2 = conv{v1, . . . , vm2

}, and a (j2, m2)-isotropic polytope K3 =

conv{w1, . . . , wm2
}, such that K ′ = conv

{

√

1
2

(

v1

w1

)

, . . . ,
√

1
2

(

vm2

wm2

)}

is a

(j, m2)-isotropic polytope. Then there exists a (j, m)-isotropic polytope

K = conv

{(

u1

0

)

, . . . ,

(

um1

0

)

,

(

αv1

βw1

)

, . . . ,

(

αvm2

βwm2

)}

Proof. Since α2 + β2 = 1 all vertices of K are situated on Sj−1 and obviously
0 is the centroid of K. Hence we only have to show that condition (ii) from
Proposition 3.6 holds with ci = j/m, i = 1, . . . , m.

m1
∑

i=1

(

ui

0

)(

ui

0

)T

+

m2
∑

i=1

(

αvi

βwi

)(

αvi

βwi

)T

=

(

m1

j1
Ij1 0

0 0

)

+

( m2

j1
α2Ij1 0

0 m2

j2
β2Ij2

)

=

( m1j+m2j1−m1j2
j1j2

Ij1 0

0 m
j
Ij2

)

=
m

j
Ij .

�

The reader may convince himself that neither it is possible to construct a
(1, d + 1)-isotropic polytope by the additive rule if d is even, nor it is possible to
construct a (d − 1, d + 1)-isotropic polytope by the additive rule at all.

If m2 is even, a good choice for K ′ is often a prism

conv

{

√

1

2

(

v1

1

)

, . . . ,

√

1

2

(

vm2
2

1

)

,

√

1

2

(

v1

−1

)

, . . . ,

√

1

2

(

vm2
2

−1

)

}

or anti prism

conv

{

√

1

2

(

v1

1

)

, . . . ,

√

1

2

(

vm2
2

1

)

,

√

1

2

(

−v1

−1

)

, . . . ,

√

1

2

( −vm2
2

−1

)

}

built from an (j − 1, m2/2)-isotropic base K2 = conv{v1, . . . , vm2/2}.
Lemma 3.10. For every pair (j, d), with 1 ≤ j ≤ d and such that if d is even
j 6∈ {1, d − 1} there exists a (j, d + 1)-isotropic polytope.

Proof. We do an inductive proof over j and d. From Equation 1 and since every
regular (d+1)-gon with vertices on S1 is (2, d+1)-isotropic we see that the claim
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is true for pairs (j, d) with j ≤ 2. Moreover, the claim is true for j ≥ d − 2
because of Corollary 3.4.

Now, assume that the claim is true for every pair (j ′, d′) with j ′ < j, d′ ≤ d
or j ′ ≤ j, d′ < d. Regarding to the initial statements we can assume j ≥
3 and because of Corollary 3.4 that j < (d + 1)/2. We start with the case
(j, d + 1) = (3, 9). In this case we choose j1 = 2, j2 = 1, m1 = 3, m2 = 6. For sure
K1 = K2 = T 2 are (2, 3)-isotropic and also (2, 6)-isotropic by duplicating every
vertex. Now, K3 = T 1 = [−1, 1] is (1, 6)-isotropic (triplicating the two vertices)
and

K ′ = conv

{

√

1

2

(

v1

1

)

,

√

1

2

(

v2

1

)

,

√

1

2

(

v3

1

)

,

√

1

2

(

v1

−1

)

,

√

1

2

(

v2

−1

)

,

√

1

2

(

v3

−1

)

}

is (3, 6)-isotropic. Hence K1, K2 and K3 fulfill the conditions of the additive rule
and therefore there exist a (3, 9)-isotropic polytope.

Next we assume that j ≥ 5 is odd and that (as in the case before) m = d+1 =
2j + 3. Then we choose j1 = j − 2, j2 = 2, m1 = m − j − 1, m2 = j + 1. Since
j < m/2 it holds j1 < m1 and since j1 = j − 2 6= j = m − j − 3 = m1 − 2 there
exists a (j1, m1)-isotropic polytope K1. Completing the conditions of the additive
rule we choose an m2-gon for K3 and the projection of T j onto (lin K3)

⊥ as K2

(thus K ′ = T j). One should notice that m2j1 = j2 + j > 2m = m1j2 since j ≥ 5
Finally, let j be even or m 6= 2j +3. Then we set j1 = j, j2 = 0, m1 = j +1 and

m2 = m−j−1. Since j < m/2 it holds m2 > j and if j+2 is odd m2 6= j+2 since
m 6= 2j + 3. Hence there exists a (j, m2)-isotropic polytope K2 by the induction
hypothesis and K1 = T j+1 is a (j, m1)-isotropic polytope, which obviously fulfills
the conditions of the additive rule. �

The following Proposition is taken from [2]. It gives a lower bound for r̄j(T
d)

and a criterion when this lower bound is attained. For the purpose of the Propo-

sition let a1, . . . , ad+1 ∈ Sd−1 such that T d =
√

1
d(d+1)

{x ∈ Ed : 〈x, ai〉 ≤ 1, i =

1, . . . , d + 1}.

Proposition 3.11. r̄j(T
d) ≥

√

1
j(d+1)

for all 1 ≤ j ≤ d and equality holds if and

only if there exists an E ∈ Lj,d such that ||ai||E| =
√

j
d

for all i = 1, . . . , d + 1.

It follows from the self-duality of the regular-simplex

(T d)◦ =
√

d(d + 1)T d

that the criterion for equality in Proposition 3.11 is fulfilled if and only if Rj(T
d) =

√

j
d
.



10 R. BRANDENBERG

Theorem 3.12. For every 1 ≤ j ≤ d, such that d is odd or j 6∈ {1, d − 1}

(i) Rj(T
d) =

√

j
d
, and

(ii) r̄j(T
d) =

√

1
j(d+1)

.

Proof. Part (i) follows directly from Lemmas 3.3, 3.8, and 3.10. Part (ii) follows
from part (i) and Proposition 3.11. �

One should mention that for every pair (j, d) where Theorem 3.12 holds, we
have Rj(T

d)r̄j((T
d)◦) = 1. Hence, it follows from the self-duality of T d (if 0 is the

centroid and up to dilatation) that the result above combined with the results in
[2] show that the minimal j-balls of T d in the sense of r̄j are at the same time
the maximal j-balls with center 0 contained in T d.

For completeness we should state the two remaining inner radii of regular
simplices [2, Theorem 3].

Proposition 3.13. For even d

r̄1(T
d) = R1(T

d) =
d + 1

d

√

1

d + 2
, and

r̄d−1(T
d) =

2
√

d(d + 2) +
√

d(d − 2)
.

4. Boxes and cross-polytopes

As already mentioned in the introduction, for all symmetric bodies K it holds
r̄1(K) = · · · = r̄d(K) and R̄1(K) = R̄d(K). Hence, we can draw our attention in
this section to (rj, Rj).

A proof of the following proposition can be found in [8]:

Proposition 4.1. If K is a 0-symmetric body and 1 ≤ j ≤ d then rj(K)Rj(K
◦) =

1 and Rj(K)rj(K
◦) = 1.

Now, we come back to the second statement after Lemma 3.8, saying that
the k-radius of any (j, m)-isotropic polytope K is

√

k/j if the gsb {s1, . . . , sj}
corresponding to K can be split into a gsb {s1, . . . , sk} and a gsb {sk+1, . . . , sj}
– in other words, if K can be split into a (k, m)-isotropic polytope K1 and a
(j − k, m)-isotropic polytope K2. From applying this on cubes and regular cross-
polytopes we obtain the following corollary.

Corollary 4.2. For all 1 ≤ j ≤ d

(i) Rj(C
d) = Rj(X

d) =
√

j
d
, and

(ii) rj(C
d) = rj(X

d) =
√

1
j(d+1)

, and
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Proof. It suffices to show that for every 1 ≤ j ≤ d both Cd and Xd have (j, m)-
isotropic projections (up to dilatation), since then (i) follows from the argument
before the corollary and (ii) from Proposition 4.1.

For the cube every j-tuple of coordinate rows of its vertices describes an
isotropic j-face, which is a cube and therefore isotropic.

Now we turn to Xd. First, project T 2d−1 onto
√

d
2d−1

Xd by using the gsb
√

1

2

(

s1

−s1

)

, . . . ,

√

1

2

(

sd−1

−sd−1

)

,

√

1

2

(

1d−1

−1d−1

)

,

where s1, . . . , sd−1 is an arbitrary gsb for T d−1. It follows from Lemma 3.10 that
for every j 6∈ {1, d− 2} there exists a subset of size j of s1, . . . , sd−1 that is again
a gsb, without loss of generality s1, . . . , sj, or if j = d − 2, s1, . . . , sj−1 . Hence
the set

√

1

2

(

s1

−s1

)

, . . . ,

√

1

2

(

sj

−sj

)

or if j ∈ {1, d − 2} the set
√

1

2

(

s1

−s1

)

, . . . ,

√

1

2

(

sj−1

−sj−1

)

,

√

1

2

(

1d−1

−1d−1

)

is a gsb in E2d projecting T 2d−1 onto a (j, 2d)-isotropic polytope K. Since this

gsb is a subset of the one projecting T 2d−1 onto
√

d
2d−1

Xd, the (j, 2d)-isotropic

polytope K is a projection of Xd. �

Corollary 4.2 can be generalized to obtain the inner and outer radii of general
cross-polytopes and boxes.

The inner radii of boxes were computed in [6]. The part about outer radii of
cross-polytopes follows from Proposition 4.1.

Proposition 4.3. Let 0 < a1 ≤ · · · ≤ ad. Then

(i)

rj(Ba1,...,ad
) =

√

a2
1 + · · ·+ a2

d−k

j − k
,

where k is the smallest of the integers 0, . . . , j − 1 that satisfies

ad−k ≤
√

a2
1 + · · ·+ a2

d−k−1

j − k − 1
,

and
(ii)

Rj(Xa1,...,ad
) =

√

√

√

√

(j − k)
∏d

i=k a2
i

∑d
i=k

∏

l 6=i a
2
l

,
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where k is the smallest of the integers 0, . . . , j − 1 that satisfies

ak ≥

√

√

√

√

(j − k − 1)
∏d

i=k+1 a2
i

∑d
i=k+1

∏

l 6=i a
2
l

.

The corresponding result about the outer radii of boxes seems to be very in-
tuitive. It says that one should just project the box through one of its smallest
faces.

Theorem 4.4. Let 0 < a1 ≤ · · · ≤ ad. Then

(i) Rj(Ba1,...,ad
) =

√

a2
1 + · · ·+ a2

j , and

(ii) rj(Xa1,...,ad
) =

Qd
i=d−j+1

ai
q

Pd
i=d−j+1

Q

l6=i a2
l

.

Proof. It suffices to show part (i), since then part (ii) follows from Proposition
4.1. Moreover, as the result is obvious if d = 1 we can assume that d ≥ 2.

Any vertex v of Ba1,...,ad
can be written in the form v =

∑d
k=1 ±akek and

all possible choices of the plus and minuses in that formula lead to a vertex of
Ba1,...,ad

. Hence, for every projection P =
∑j

l=1 sl ⊗ sl with pairwise orthogonal

unit-vectors sl ∈ Ed, it holds that ||Pv||2 =
∑j

l=1〈v, sl〉2 =
∑j

l=1(
∑d

k=1 ±akslk)
2.

However, since the average value of ||Pv||2 over all vertices v is
∑d

k=1 a2
k

∑j
l=1 s2

lk,

there exists a vertex of Ba1 ,...,ad
such that ||Pv||2 ≥

∑d
k=1 a2

k

∑j
l=1 s2

lk.

Now extend the set {s1, . . . , sj} to an orthonormal basis of E
d. Since

∑d
l=1 sl ⊗

sl = I it follows that
∑d

k=1 s2
lk =

∑d
l=1 s2

lk = 1, for all k = 1, . . . , d and all

l = 1, . . . , d, respectively. Hence tk :=
∑j

l=1 s2
lk ∈ [0, 1] and since

∑d
k=1 tk =

∑j
l=1

∑d
k=1 s2

lk has to equal j, the minimum value of
∑d

k=1 tka
2
k is obtained for

t1 = · · · = tj = 1 and tj+1 = · · · = td = 0. Hence Rj(Ba1,...,ad
) ≥

√

a2
1 + · · ·+ a2

j .

The projection of Ba1,...,ad
through its j-face Ba1,...,aj

achieves this value and so
we get the desired result. �

Compared to the radii of boxes and general cross-polytopes very less can be
stated about general simplices. Since Gritzmann and Klee [8] showed that the
computation of Rj(S) is NP-hard for general simplices and many j a general
formula is not expectable. However, in [5] it could be shown that in ‘typical’
configurations all vertices of the simplex are projected onto the minimal enclosing
sphere in an optimal projection, and in [4] solution methods and a formula for a
special case are given for j = 2 and d = 3.
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16:127–137, 1983.
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