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a b s t r a c t

We characterize the maximum r-local index of a Schur algebra over an abelian number
field K in terms of global information determined by the field K for an arbitrary rational
prime, r . This completes and unifies previous results of Janusz in [G.J. Janusz, The Schur
group of an algebraic number field, Ann. of Math. (2) 103 (1976) 253–281] and Pendergrass
in [J.W. Pendergrass, The 2-part of the Schur group, J. Algebra 41 (1976) 422–438].
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1. Introduction and preliminaries

Let K be a field. A Schur algebra over K is a central simple K -algebra which is generated over K by a finite group of units.
The Schur group of K is the subgroup S(K) of the Brauer group of K formed by classes containing a Schur algebra. By the
Brauer–Witt theorem (see e.g. [8]), each class in S(K) can be represented by a cyclotomic algebra, i.e. a crossed product of
the form (L/K , α) in which L/K is a cyclotomic extension and the factor set α takes values in the group of roots of unity
W (L) of L.
In the case when K is an abelian number field, i.e. K is contained in a finite cyclotomic extension of Q, Benard–Schacher

theory [2] gives a partial characterization of the elements of S(K). According to this theory, if n is the Schur index of a Schur
algebra over K , thenW (K) contains an element of order n. This is known as the Benard–Schacher theorem. Furthermore, if
t
n (in lowest terms) is the local invariant of A at a primeR of K that lies over a rational prime r , then each of the fractions
c
n with 1 ≤ c ≤ n and c coprime to n will occur equally often among the local invariants corresponding to the primes of
K lying above r . In particular, these local invariants all have the same denominator n for all the primes of K lying above r ,
which we call the r-local index mr(A) of A. Only finitely many of themr(A) are greater than 1, and the Schur index of A is the
least common multiple of themr(A) as r runs over all rational primes.
The goal of this article is to characterize the maximum r-local index of a Schur algebra over an abelian number field K

in terms of global information determined by K . The existence of this maximum is a consequence of the Benard–Schacher
Theorem. Since S(K) is a torsion abelian group, it is enough to compute themaximumof the r-local indices of Schur algebras
over K with index a power of p for every prime p dividing the order ofW (K). We will refer to this number as pβp(r). In [3],
Janusz gave a formula for pβp(r) when either p is odd or K contains a primitive 4-th root of unity. The remaining cases were
considered by Pendergrass in [5]. However, some of the calculations involving factor sets in [5] are not correct, and as a
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consequence the formulas for 2β2(r) for odd primes r that appear there are inaccurate. This article was motivated in part
by the need to find a correct formula for pβp(r) in this remaining case, and also because of the need to apply the formula
in an upcoming work of the authors in [4], where the gap between the Schur subgroup of an abelian number field and its
subgroup generated by classes containing cyclic cyclotomic algebras is studied. Since the local index at∞will be 2 when K
is real and will be 1 otherwise, the only remaining case is that of r = 2. In this case, pmust be equal to 2 and we must have
ζ4 6∈ K . The characterization of fields K for which S(K2) is of order 2 is given in [5, Corollary 3.3].
The main result of the paper (Theorem 13) characterizes pβp(r) in terms of the position of K relative to an overlying

cyclotomic extension F that is determined by K and p. The formulas for pβp(r) are stated in terms of elements of certain
Galois groups in this setting. The main difference between our approach and that of Janusz and Pendergrass is that the field
F that we use is slightly larger, which allows us to present some of the somewhat artificial-looking calculations in [3] in a
more conceptual fashion. Another highlight of our approach is the treatment of calculations involving factor sets. In Section 2
we generalize a result from [1] which describes the factor sets for a given action of an abelian group G on another abelian
groupW in terms of some data. In particular, we give necessary and sufficient conditions that the data must satisfy in order
to be induced by a factor set. Because of the applications we have in mind, extra attention is paid to the case whenW is a
cyclic p-group.

2. Factor set calculations

In this sectionW and G are two abelian groups and Υ : G→ Aut(W ) is a group homomorphism. A group epimorphism
π : G → G with kernel W is said to induce Υ if, given ug ∈ G such that π(ug) = g , one has ugwu−1g = Υ (g)(w) for
each w ∈ W . If g 7→ ug is a crossed section of π (i.e. π(ug) = g for each g ∈ G) then the map α : G × G → W defined
by uguh = αg,hugh is a factor set (or 2-cocycle) α ∈ Z2(G,W ). We always assume that the crossed sections are normalized,
i.e. u1 = 1 and hence αg,1 = α1,g = 1. Since a different choice of crossed section for π would be a map g 7→ wgug where
w : G→ W , π determines a unique cohomology class in H2(G,W ), namely the one represented by α.
Given a list g1, . . . , gn of generating elements of G, a group epimorphism π : G→ G inducing Υ , and a crossed section

g 7→ ug of π , we associate the elements βij and γi ofW , for i, j ≤ n, by the equalities:

ugjugi = βijugiugj , and

uqigi = γiu
t(i)1
g1 · · · u

t(i)i−1
gi−1 ,

(1)

where the integers qi and t
(i)
j for 1 ≤ i ≤ n and 0 ≤ j < i are determined by

qi = order of gi modulo 〈g1, . . . , gi−1〉, gqii = g
t(i)1
1 · · · g

t(i)i−1
i−1 , and 0 ≤ t(i)j < qj. (2)

If α is the factor set associated to π and the crossed section g 7→ ug , then we say that α induces the data (βij, γi). The
following proposition gives necessary and sufficient conditions for a list (βij, γi) of elements ofW to be induced by a factor
set.
The order of an element g of a group is denoted by |g|.

Proposition 1. Let W and G = 〈g1, . . . , gn〉 be abelian groups and let Υ : G → Aut(W ) be an action of G on W. For every
1 ≤ i, j ≤ n, let qi and t

(i)
j be the integers determined by (2). For everyw ∈ W and 1 ≤ i ≤ n, let

Υi = Υ (gi), N ti (w) = wΥi(w)Υ
2
i (w) · · ·Υ

t−1
i (w), and Ni = N

qi
i .

For every 1 ≤ i, j ≤ n, let βij and γi be elements of W. Then the following conditions are equivalent:

(1) There is a factor set α ∈ Z2(G,W ) inducing the data (βij, γi).
(2) The following equalities hold for every 1 ≤ i, j, k ≤ n:
(C1) βii = βijβji = 1.
(C2) βijβjkβki = Υk(βij)Υi(βjk)Υj(βki).

(C3) Ni(βij)γi = Υj(γi)N
t(i)1
1 (β1j)Υ

t(i)1
1 (N

t(i)2
2 (β2j)) · · ·Υ

t(i)1
1 Υ

t(i)2
2 · · ·Υ

t(i)i−2
i−2 (N

t(i)i−1
i−1 (β(i−1)j)).

Proof. (1) implies (2). Assume that there is a factor set α ∈ Z2(G,W ) inducing the data (βij, γi). Then there is a surjective
homomorphism π : G → G and a crossed section g 7→ ug of π such that the βij and γi satisfy (1). Condition (C1) is clear.
Conjugating by ugk in ugjugi = βijugiugj yields

βjkΥj(βik)βijugiugj = βjkΥj(βik)ugjugi = βjkugjβikugi = ugkugjugiu
−1
gk

= ugkβijugiugju
−1
gk = Υk(βij)βikugiβjkugj = Υk(βij)βikΥi(βjk)ugiugj .

Therefore, we have βjkΥj(βik)βij = Υk(βij)βikΥi(βjk) and so (C2) follows from (C1).
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To prove (C3), we use the obvious relation (wugi)
t
= N ti (w)u

t
gi . Conjugating by ugj in u

qi
gi = γiu

t(i)1
g1 · · · u

t(i)i−1
gi−1 results in

Ni(βij)γiu
t(i)1
g1 · · · u

t(i)i−1
gi−1 = N

qi
i (βij)u

qi
gi = (βijugi)

qi = ugju
qi
giu
−1
gj = ugjγiu

t(i)1
g1 · · · u

t(i)i−1
gi−1u

−1
gj

= Υj(γi)(β1jug1)
t(i)1 · · · (β(i−1)jugi−1)

t(i)i−1 = Υj(γi)N
t(i)1
1 (β1j)u

t(i)1
g1 · · ·N

t(i)i−1
i−1 (β(i−1)j)u

t(i)i−1
gi−1

= Υj(γi)N
t(i)1
1 (β1j)Υ

t(i)1
1 (N

t(i)2
2 (β2j)) · · ·Υ

t(i)1
1 Υ

t(i)2
2 · · ·Υ

t(i)i−2
i−2 (N

t(i)i−1
i−1 (β(i−1)j))u

t(i)1
g1 · · · u

t(i)i−1
gi−1 .

Cancelling on both sides produces (C3). This finishes the proof of (1) implies (2).
Before proving (2) implies (1),we show that ifπ : G→ G is a grouphomomorphismwith kernelW inducingΥ , g 7→ ug is

a crossed section ofπ and βij and γi are given by (1), then G is isomorphic to the group Ĝ given by the following presentation:
the set of generators of Ĝ is {ŵ, ĝi : w ∈ W , i = 1, . . . , n}, and the relations are

ŵ1w2 = ŵ1 ŵ2, Υi(w) = ĝi ŵ ĝ −1i , ĝj ĝi = β̂ij ĝi ĝj and ĝ qii = γ̂i ĝ
t(i)1
1 · · · ĝ

t(i)i−1
i−1 , (3)

for each 1 ≤ i, j ≤ n and w,w1, w2 ∈ W . Since the relations obtained by replacing ŵ by w and ĝi by ugi in Eq. (3) for
each x ∈ W and each 1 ≤ i ≤ n, hold in G, there is a surjective group homomorphism φ : Ĝ → G, which associates ŵ
with w, for every w ∈ W , and ĝi with ugi , for every i = 1, . . . , n. Moreover, φ restricts to an isomorphism Ŵ → W and
|̂gi〈Ŵ , ĝ1, . . . , ĝi−1〉| = qi. Hence [̂G : Ŵ | = q1 · · · qn = [G : W ] and so |̂G| = |G|. We conclude that φ is an isomorphism.
(2) implies (1). Assume that the βij’s and γi’s satisfy conditions (C1), (C2) and (C3). We will recursively construct groups

G0,G1, . . . ,Gn. Start with G0 = W . Assume that Gk−1 = 〈W , ug1 , . . . , ugk−1〉 has been constructed with ug1 , . . . , ugk−1
satisfying the last three relations of (3), for 1 ≤ i, j < k, and that these relations, together with the relations inW , form a
complete list of relations for Gk−1. To define Gk we first construct a semidirect product Hk = Gk−1ock〈xk〉, where ck acts on
Gk−1 by

ck(w) = Υk(w), (w ∈ W ), ck(ugi) = βikugi .

In order to check that this defines an automorphism of Gk−1 we need to check that ck respects the defining relations of Gk−1.
This follows from the commutativity of G and conditions (C1), (C2) and (C3) by straightforward calculations which we leave
to the reader.
Notice that the defining relations of Hk are the defining relations of Gk−1 and the relations xkw = Υk(w)xk and

xkugi = βikugixk. Using (C3) one deduces ugix
qk
k u
−1
gi = ugiγku

t(k)1
g1 · · · u

t(k)k−1
gk−1u

−1
gi , for each i ≤ k − 1. This shows that

yk = x
−qk
k γku

t(k)1
g1 · · · u

t(k)k−1
gk−1 belongs to the center of Hk. Let Gk = Hk/〈yk〉 and ugk = xk〈yk〉. Now it is easy to see that the

defining relations of Gk are the relations ofW and the last three relations in (3), for 0 ≤ i, j ≤ k.
It is clear now that the assignment w 7→ 1 and ugi 7→ gi for each i = 1, . . . , n defines a group homomorphism

π : G = Gn → G with kernel W and inducing Υ . If α is the factor set associated to π and the crossed section g 7→ ug ,
then (βij, γi) is the list of data induced by α. �

Note that the group generated by the values of the factor set α coincides with the group generated by the data (βij, γi).
This observation will be used in the next section.
In the case G = 〈g1〉 × · · · × 〈gn〉we obtain the following corollary that one should compare with Theorem 1.3 of [1].

Corollary 2. If G = 〈g1〉 × · · · × 〈gn〉 then a list D = (βij, γi)1≤i,j≤n of elements of W is the list of data associated to a factor set
in Z2(G,W ) if and only if the elements of D satisfy (C1), (C2) and Ni(βij)γi = Υj(γi), for every 1 ≤ i, j ≤ n.

In the remainder of this section we assume thatW = 〈ζ 〉 is a cyclic p-group, for p a prime integer. Let pa and pa+b denote
the orders ofWG = {x ∈ W : Υ (g)(x) = x for each g ∈ G} andW , respectively. We assume that 0 < a, b. We also set

C = Ker(Υ ) and D = {g ∈ G : Υ (g)(ζ ) = ζ or Υ (g)(ζ ) = ζ−1}.

Note that D is subgroup of G containing C , G/D is cyclic, and [D : C] ≤ 2. Furthermore, the assumption a > 0 implies
that if C 6= D then pa = 2.

Lemma 3. There exists a ρ ∈ D and a subgroup B of C such that D = 〈ρ〉 × B and C = 〈ρ2〉 × B.

Proof. The lemma is obvious if C = D (just take ρ = 1). So assume that C 6= D and temporarily take ρ to be any element of
D\C . Since [D : C] = 2, onemay assumewithout loss of generality that |ρ| is a power of 2.Write C = C2×C2′ , where C2 and
C2′ denote the 2-primary and 2′-primary parts of C , and choose a decomposition C2 = 〈c1〉×· · ·×〈cn〉 of C2. By reordering the
ci’s if needed, one may assume that ρ2 = c

a1
1 · · · c

ak
k c
2ck+1
k+1 · · · c

2an
n with a1, . . . , ak odd. Then replacing ρ by ρc

−ak+1
k+1 · · · c

−an
n

one may assume that ρ2 = ca11 · · · c
ak
k , with a1, . . . , ak odd. Let H = 〈ρ, c1, . . . , ck〉. Then |ρ|/2 = |ρ

2
| = exp(H ∩ C),
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the exponent of H ∩ C , and so ρ is an element of maximal order in H . This implies that H = 〈ρ〉 × H1 for some H1 ≤ H .
Moreover, if h ∈ H1 \ C then 1 6= ρ|ρ|/2 = h|ρ|/2 ∈ 〈ρ〉 ∩ H1, a contradiction. This shows that H1 ⊆ C . Thus
C2 = (H ∩ C2) × 〈ck+1〉 × · · · × 〈cn〉 = 〈ρ2〉 × H1 × 〈ck+1〉 × · · · × 〈cn〉. Then ρ and B = H1 × 〈ck+1〉 × · · · × 〈cn〉 × C2′
satisfy the required conditions. �

By Lemma 3, there is a decomposition D = B × 〈ρ〉 with C = B × 〈ρ2〉, which will be fixed for the remainder of this
section. Moreover, if C = D then we assume ρ = 1. Since G/D is cyclic, G/C = 〈ρC〉× 〈σC〉 for some σ ∈ G. It is easy to see
that σ can be selected so that if D = G then σ = 1, and σ(ζ ) = ζ c for some integer c satisfying

vp(cqσ − 1) = a+ b, and vp(c − 1) =

{a if G/C is cyclic and G 6= D,
a+ b if G/C is cyclic and G = D, and
d ≥ 2 for some integer d, if G/C is not cyclic,

(4)

where qσ = |σC | and the map vp : Q→ Z is the classical p-adic valuation. In particular, if G/C is non-cyclic (equivalently
C 6= D 6= G) then pa = 2, b ≥ 2, ρ(ζ ) = ζ−1 and σ(ζ 2

b−1
) = ζ 2

b−1
.

For every positive integer t we set

V (t) = 1+ c + c2 + · · · + ct−1 =
ct − 1
c − 1

.

Nowwe choose a decomposition B = 〈c1〉 × · · · × 〈cn〉 and adapt the notation of Proposition 1 for a group epimorphism
f : G→ Gwith kernelW inducing Υ and elements uc1 , . . . , ucn , uσ , uρ ∈ Gwith f (uci) = ci, f (uρ) = ρ and f (uσ ) = σ , by
setting

βij = [ucj , uci ], βiρ = β
−1
ρi = [uρ, uci ], βiσ = β

−1
σ i = [uσ , uci ], and βσρ = β

−1
ρσ = [βρ, βσ ].

We also set

qi = |ci|, qρ = |ρ|, and σ qσ = ct11 · · · c
tn
n ρ

2tρ , where 0 ≤ ti < qi and 0 ≤ tρ < |ρ2|. (5)

With a slightly different notation than in Proposition 1, we have, for each 1 ≤ i ≤ n, t(i)j = 0 for each 0 ≤ j < i, t
(ρ)

i = 0,
t(σ )i = ti, and t

(σ )
ρ = 2tρ . Furthermore, qρ = 1 if C = D and qρ is even if C 6= D. Continuing with the adaptation of the

notation of Proposition 1 we set

γi = uqici , γρ = u
qρ
ρ , and γσ = uqσσ u

−t1
c1 · · · u

−tn
cn u

2tρ
ρ .

We refer to the list {βij, βiσ , βiρ, βσρ, γi, γρ, γσ : 0 ≤ i < j ≤ n}, which we abbreviate as (β, γ ), as the data associated
to the group epimorphism f : G → G and choice of crossed section uc1 , . . . , ucn , uσ , uρ , or as the data induced by the
corresponding factor set in Z2(G,W ).
Furthermore, for everyw ∈ W , 1 ≤ i ≤ n and t ≥ 0 one has

N ti (w) = w
t , N tσ (w) = w

V (t) and N tρ(w) =

{
wt , if ρ = 1;
1, if ρ 6= 1 and t is even;
w, if ρ 6= 1 and t is odd.

In particular, for everyw ∈ W one has

Ni(w) = wqi , Nσ (w) = wV (qσ ), and Nρ(w) = 1.

Rewriting Proposition 1 for this case we obtain the following.

Corollary 4. Let W be a finite cyclic p-group and let G be an abelian group acting on W with G = 〈c1, . . . , cn, σ , ρ〉,
B = 〈c1〉 × · · · × 〈cn〉, D = B× 〈ρ〉 and C = B× 〈ρ2〉 as above. Let qi, qρ, qσ and the ti’s be given by (5). Let βσρ, γρ, γσ ∈ W
and for every 1 ≤ i, j ≤ n let βij, βiσ , βiρ and γi be elements of W. Then the following conditions are equivalent:

(1) The given collection (β, γ ) = {βij, γi, βiσ , γσ , γρ, βσρ} is the list of data induced by some factor set in Z2(G,W ).
(2) The following equalities hold for every 1 ≤ i, j ≤ n:
(C1) βii = βijβji = 1.
(C2) (a) βij ∈ WG.

(b) If ρ 6= 1 then β2iσ = β
1−c
iρ .

(C3) (a) βqiij = 1.
(b) βqiiσ = γ

c−1
i .

(c) β−V (qσ )iσ = β
t1
1i · · ·β

tn
ni .

(d) γ c−1σ β
t1
1σ · · ·β

tn
nσ = 1.

(e) If ρ = 1 then βiρ = βσρ = γρ = 1.
(f) If ρ 6= 1 then βqiiργ

2
i = 1, β

V (qσ )
σρ γ 2σ = β

t1
1ρ · · ·β

tn
nρ and γρ ∈ W

G.
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Proof. By completing the data with βσ i = β−1iσ , βρi = β
−1
iρ and βσσ = βρρ = 1 we have that (C1) is a rewriting of condition

(C1) from Proposition 1.
(C2) is the rewriting of condition (C2) from Proposition 1 because this condition vanishes when 1 ≤ i, j, k ≤ n and when

two of the elements i, j, k are equal. Furthermore, permuting i, j, k in (C2) yields equivalent conditions. So we only have to
consider three cases: substituting i = i, j = j, and k = σ ; i = i, j = j, and k = ρ; and i = i, j = ρ, and k = σ . In the first
two cases one obtains σ(βij) = ρ(βij) = βij, or equivalently βij ∈ WG. For ρ = 1 the last case vanishes, and for ρ 6= 1 (C2)
yields β2iσ = β

1−c
iρ .

Rewriting (C3) from Proposition 1 we obtain: (a) for i = i, j = j; (b) for i = i and j = σ ; (c) for i = σ and j = i; and (d)
for i = σ and j = σ .
We consider separately the cases ρ = 1 and ρ 6= 1 for the remaining cases for rewriting (C3). Assume first that ρ = 1.

When i is replaced by ρ and j replaced by i (respectively, by σ ) we obtain βiρ = 1 (respectively βσρ = 1). On the other hand
the requirement of only using normalized crossed sections implies γρ = 1 in this case. When j = ρ the conditions obtained
are trivial.
Now assume that ρ 6= 1. For i = i and j = ρ one obtains βqiiργ

2
i = 1. For i = ρ and j = i one obtains a trivial condition

because Nρ(x) = 1. For i = σ and j = ρ, we obtain βV (qσ )σρ γ 2σ = β
t1
1ρ · · ·β

tn
nρ . For i = ρ and j = σ one has σ(γρ) = γρ , and

for i = ρ and j = ρ one obtains ρ(γρ) = γρ . The last two equalities are equivalent to γρ ∈ WG. �

Corollary 5. With the notation of Corollary 4, assume that G/C is non-cyclic and qk and tk are even for some k ≤ n. Let (β, γ )
be the list of data induced by a factor set in Z2(G,W ). Then the list obtained by replacing βkσ by−βkσ and keeping the remaining
data fixed is also induced by a factor set in Z2(G,W ).

Proof. It is enough to show that βkσ appears in all the conditions of Corollary 4 with an even exponent. Indeed, it only
appears in (C2.b) with exponent 2; in (C3.b) with exponent qk; in (C3.c) with exponent−V (qσ ); and in (C3.d) and (C3.f) with
exponent tk. By the assumption it only remains to show that V (qσ ) is even. Indeed, v2(V (qσ )) = v2(cqσ − 1)− v2(c − 1) =
1+ b− v2(c − 1) ≥ 1 because c 6≡ 1 mod 21+b. �

The data (β, γ ) induced by a factor set are not cohomologically invariant because they depend on the selection of π and
of the uci ’s, uσ and uρ . However, at least the βij are cohomologically invariant. For every α ∈ H

2(G,W )we associate amatrix
βα = (βij)1≤i,j≤n of elements ofWG as follows: First select a group epimorphism π : G→ G realizing α and uc1 , . . . , ucn ∈ G
such that π(uci) = ci, and then set βij = [ucj , uci ]. The definition of βα does not depend on the choice of π and the uci ’s
because ifw1, w2 ∈ W and u1, u2 ∈ G then [w1u1, w2u2] = [u1, u2].

Proposition 6. Let β = (βij)1≤i,j≤n be a matrix of elements of WG and for every 1 ≤ i, j ≤ n let aii = 0 and aij =
min(a, vp(qi), vp(qj)), if i 6= j.
Then there is an α ∈ H2(G,W ) such that β = βα if and only if the following conditions hold for every 1 ≤ i, j ≤ n:

βijβji = β
paij
ij = 1. (6)

Proof. Assume first that β = βα for some α ∈ Z2(G,W ). Then (6) is a consequence of conditions (C1), (C2.a) and (C3.a) of
Corollary 4.
Conversely, assume that β satisfies (6). The idea of the proof is that one can enlarge β to a list of data (β, γ ) that satisfies

conditions (C1)–(C3) of Corollary 4. Hence the desired conclusion follows from the corollary.
Condition (C1) follows automatically from (6). If i, j ≤ n then βij ∈ WG follows from the fact that a ≥ aij and so (6)

implies that βp
a

ij = 1. Hence (C2.a) holds. Also (C3.a) holds automatically from (6) because p
aij divides qi. Hence, we have to

select the βiσ ’s, βiρ ’s, γi’s, βσρ , γσ , and γρ for (C2.b) and (C3.b)–(C3.f) to hold.
Assume first that D = G. In this case we just take βiσ = βiρ = βσρ = γi = γσ = γρ = 1 for every i. Then (C2.b), (C3.b),

(C3.d) and (C3.f) hold trivially by our selection. Moreover, in this case σ = 1 and so ti = 0 for each i = 1, . . . , n, hence (C3.c)
also holds.
In the remainder of the proof we assume that D 6= G. First we show how one can assign values to βσ i and γi, for i ≤ n

for (C3.b)–(C3.d) to hold. Let d = vp(c − 1) and e = vp(V (qσ )) = a + b − d. (see (4)). Note that d = a if C = D and
a = 1 ≤ 2 ≤ d ≤ b if C 6= D (because we are assuming that D 6= G). Let X1, X2, Y1 and Y2 be integers such that c−1 = pdX1,
V (qσ ) = peX2, and X1Y1 ≡ X2Y2 ≡ 1 mod pa+b. By (6), β

paij
ij = 1 and so βij ∈ W

pa+b−aij . Therefore there are integers bij, for

1 ≤ i, j ≤ n such that bii = bij + bij = 0 and βij = ζ bijp
a+b−aij . For every i ≤ n set

xi = Y2
n∑
j=1

tjbjipa−aji , βσ i = ζ
xipd−a yi = Y1Y2

n∑
j=1

tjbji
qi
paij
, and γi = ζ

yi .
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Then V (qσ )pd−axi = peX2Y2
∑n
j=1 tjbjip

d−aji ≡
∑n
j=1 tjbjip

a+b−aji mod pa+b and therefore

β
V (qσ )
σ i = ζ

n∑
j=1
tjbjip

a+b−aji

=

n∏
i=1

β
tj
ji ,

that is (C3.c) holds. Moreover qipd−axi = pdY2
∑n
j=1 tjbji

qi
paij
≡ pdX1yi = (c − 1)yi and therefore β

qi
iσ = γ

c−1
i , that is (C3.b)

holds.
We now compute

n∑
i=1

tixi = Y2
∑
1≤i,j≤n

titjbijpa−aij = Y2
n+1∑
i=1

t2i biip
a−aii + Y2

∑
1≤i<j≤n

titj(bij + bji)pa−aij = 0. (7)

Then setting γσ = 1, one has

γ c−1σ

n∏
i=1

β
ti
iσ =

n∏
i=1

ζ−tixip
d−a
= ζ

−pd−a
n∑
i=1
tixi
= 1

and (C3.d) holds. This finishes the assignments of βiσ and γi for i ≤ n and of γσ .
If C = D then a quick end is obtained assigning βiρ = βσρ = γρ = 1.
So it only remains to assign values to βiρ, βσρ and γρ under the assumption that C 6= D. Set βiρ = ζ−Y1xi . In this case

pa = 2 and therefore 2pd−axi = pdxi ≡ (c − 1)Y1xi and qiY1xi = 2yi. Thus β2iσβ
c−1
iρ = ζ 2p

d−axiζ (1−c)Y1xi = 1, hence (C2.b)
holds, and βqiiργ

2
i = ζ

−qiY1xi+2yi = 1, hence the first relation of (C3.f) follows.
Finally, using (7) one has

β
t1
1ρ · · ·β

tn
nρ = (β

t1
1σ · · ·β

tn
nσ )
−Y1 = 1 = γ 2σ

and the last two relations of (C3.f) hold when βσρ = γρ = 1. �

Let β = (βij) be an n× nmatrix of elements ofWG satisfying (6). Then the map Ψ : B× B→ WG given by

Ψ ((cx11 · · · c
xn
n , c

y1
1 · · · c

yn
n )) =

∏
1≤i,j≤n

β
xiyj
ij

is a skew pairing of B overWG in the sense of [3]; that is, it satisfies the following conditions for every x, y, z ∈ B:

(Ψ 1) Ψ (x, x) = Ψ (x, y)Ψ (y, x) = 1, (Ψ 2) Ψ (x, yz) = Ψ (x, y)Ψ (x, z).

Conversely, every skew pairing of B over WG is given by a matrix β = (βij = Ψ (ci, cj))1≤i,j≤n satisfying (6). In particular,
every class in H2(G,W ) induces a skew pairing Ψ = Ψα of B overWG given by Ψ (x, y) = αx,yα−1y,x , for all x, y ∈ B, for any
cocycle α representing the given cohomology class.
In terms of skew pairings, Proposition 6 takes the following form.

Corollary 7. If Ψ is a skew pairing of B over WG then there is an α ∈ H2(G,W ) such that Ψ = Ψα .

Corollary 7 was obtained in [3, Proposition 2.5] for pa 6= 2. The remaining cases were considered in [5, Corollary 1.3],
where it is stated that for every skew pairingΨ of C overWG there is a factor set α ∈ Z2(G,W ) such thatΨ (x, y) = αx,yα−1y,x ,
for all x, y ∈ C . However, this is false if ρ2 6= 1 and B has nontrivial elements of order 2. Indeed, if Ψ is the skew pairing
of B overWG given by the factor set α then Ψ (x, ρ2) = 1 for each x ∈ C . To see this we introduce a new set of generators
of G, namely G = 〈c1, . . . , cn, cn+1, ρ, σ 〉 with cn+1 = ρ2. Then condition (C3) of Proposition 1, for i = ρ and j = i reads
β(n+1)i = 1 which is equivalent to Ψ (ci, ρ2) = 1 for all 1 ≤ i ≤ n. Using this it is easy to give a counterexample to
[5, Corollary 1.3].
Before finishing this section we mention two lemmas that will be needed in next section. The first is elementary and so

the proof has been omitted.

Lemma 8. Let S be the set of skew pairings of B with values in WG. If B = B′ × B′′ and b1, b2 ∈ B′ and b3 ∈ B′′ then

max{Ψ (b1 · b3, b2) : Ψ ∈ S} = max{Ψ (b1, b2) : Ψ ∈ S} ·max{Ψ (b3, b2) : Ψ ∈ S}.

Lemma 9. Let B̂ = B× 〈g〉 be an abelian group and let h ∈ B. If k = gcd{pa, |g|} and t = |hBk| then t is the maximum possible
value of Ψ (h, g) as Ψ runs over all skew pairings of B̂ over 〈ζpa〉.

Proof. Since k divides pa, the hypothesis t = |hBk| implies that there is a group homomorphism χ : B → 〈ζpa〉 such that
χ(Bk) = 1 and χ(h) has order t . Let Ψ : B̂ × B̂ → 〈ζpa〉 be given by Ψ (xg i, yg j) = χ(xjy−i) = χ(x)iχ(y)−j, for x, y ∈ B.
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If g i = g i
′

, then i ≡ i′ mod |g| and hence i ≡ i′ mod k. Therefore, xiBk = xi
′

Bk, which implies that χ(x)i = χ(x)i
′

. This shows
that Ψ is well defined. Now it is easy to see that Ψ is a skew pairing and Ψ (h, g) = χ(h) has order t .
Conversely, if Ψ is any skew pairing of B̂ over 〈ζpa〉, then Ψ (x, g)p

a
= 1 and Ψ (x, g)|x| = Ψ (1, g) = 1 for all x ∈ B. This

implies that Ψ (xk, g) = Ψ (x, g)k = 1 for all x ∈ B, and so Ψ (Bk, g) = 1. Therefore Ψ (h, g)t = Ψ (ht , g) ∈ Ψ (Bk, g) = 1, so
the order of Ψ (h, g) divides t . �

3. Local index computations

In this section K denotes an abelian number field, p a prime, and r an odd prime. Our goal is to find a global formula for
β(r) = βp(r), the maximum nonnegative integer for which pβ(r) is the r-local index of a Schur algebra over K .
We are going to abuse the notation and denote by Kr the completion of K at a (any) prime of K dividing r . If E/K is a finite

Galois extension, one may assume that the prime of E dividing r , used to compute Er , divides the prime of K over r , used to
compute Kr . We use the classical notation:

e(E/K , r) = e(Er/Kr) = ramification index of Er/Kr .
f (E/K , r) = f (Er/Kr) = residue degree of Er/Kr .
mr(A) = Index of Kr ⊗K A, for a Schur algebra A over K .

By Benard–Schacher Theory and because E/K is a finite Galois extension, e(E/K , r), f (E/K , r) and mr(A) do not depend on
the selection of the prime of K dividing r (see [7,2]). By the Benard–Schacher Theorem and because |S(Kr)| divides r − 1 [8],
if either ζp 6∈ K or r 6≡ 1 mod p then β(r) = 0. So to avoid trivialities we assume that ζp ∈ K and r ≡ 1 mod p.
Suppose K ⊆ F = Q(ζn) for some positive integer n and let n = rvr (n)n′. Then Gal(F/Q) contains a canonical Frobenius

automorphism at r which is defined by ψr(ζrvr (n)) = ζrvr (n) and ψr(ζn′) = ζ rn′ . We can then define the canonical Frobenius
automorphism at r in Gal(F/K) as φr = ψ

f (K/Q,r)
r . On the other hand, the inertia subgroup at r in Gal(F/K) is by definition

the subgroup of Gal(F/K) that acts as Gal(Fr/Kr(ζn′)) in the completion at r .
We use the following notations.

Notation 10. First we define some positive integers:
m =minimum even positive integer with K ⊆ Q(ζm),
a =minimum positive integer with ζpa ∈ K,
s = vp(m) and

b =

{s, if p is odd or ζ4 ∈ K ,
s+ vp([K ∩ Q(ζps) : Q])+ 2, if Gal(K(ζp2a+s)/K) is not cyclic, and
s+ 1, otherwise.

We also define

L = Q(ζm), ζ = ζpa+b , W = 〈ζ 〉, F = L(ζ ),

G = Gal(F/K), C = Gal(F/K(ζ )), and D = Gal(F/K(ζ + ζ−1)).

Since ζp ∈ K, the automorphism Υ : G → Aut(W ) induced by the Galois action satisfies the conditions of Section 2 and
the notation is consistent. As in that section we fix elements ρ and σ in G and a subgroup B = 〈c1〉 × · · · × 〈cn〉 of C such that
D = B × 〈ρ〉, C = B × 〈ρ2〉 and G/C = 〈ρC〉 × 〈σC〉. Furthermore, σ(ζ ) = ζ c for some integer c chosen according to (4).
Notice that by the choice of b, G 6= B.
We also fix an odd prime r and set

e = e(K(ζr)/K , r), f = f (K/Q, r) and ν(r) = max{0, a+ vp(e)− vp(r f − 1)}.

Let φ ∈ G be the canonical Frobenius automorphism at r in G, and write

φ = ρ j
′

σ jη, with η ∈ B, 0 ≤ j′ < |ρ| and 0 ≤ j < |σC |.

Let q be an odd prime not dividing m. Let Gq = Gal(F(ζq)/K), Cq = Gal(F(ζq)/K(ζ )) and let c0 denote a generator of
Gal(F(ζq)/F). Finally we fix
θ = θq, a generator of the inertia group of r in Gq and
φq = c

s0
0 φ = c

s0
0 ηρ

j′σ j = ηqρ
j′σ j, the canonical Frobenius automorphism at r in Gq.

Observe that we are considering G as a subgroup of Gq by identifying G with Gal(F(ζq)/K(ζq)). Again the Galois action
induces a homomorphism Υq : Gq → Aut(W ) andWGq = 〈ζpa〉. So this action satisfies the conditions of Section 2 and we
adapt the notation by settting

Bq = 〈c0〉 × B, Cq = Gal(F(ζq)/K(ζ )) = Ker(Υq) and Dq = Gal(F(ζq)/K(ζ + ζ−1)).

Notice that Cq = 〈c0〉 × C = Bq × 〈ρ2〉 and Dq = D× 〈c0〉. Hence G/C ' Gq/Cq.
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If Ψ is a skew pairing of B over WG then Ψ has a unique extension to a skew pairing Ψ of C over WG which satisfies
Ψ (B, ρ2) = Ψ (ρ2, B) = 1. So we are going to apply skew pairings of B to pairs of elements in C under the assumption that
we are using this extension.
Since p 6= r , θ ∈ Cq. Moreover, if r = q then θ is a generator of Gal(F(ζr)/F) and otherwise θ ∈ C . Notice also that if G/C

is non-cyclic then pa = 2 and K ∩ Q(ζ2s) = Q(ζ2d + ζ
−1
2d
), where d = vp(c − 1), and so b = s+ d.

It follows from results of Janusz [3, Proposition 3.2] and Pendergrass [6, Theorem 1] that pβ(r) always occurs as the r-local
index of a cyclotomic algebra of the form (L(ζq)/L, α) where q is either 4 or a prime not dividing m and α takes values in
W (L(ζq))p, with the possibility of q = 4 occurring only in the case when ps = 2. By inflating the factor set α to F(ζq) (which
will be equal to F when ps = 2), we have that pβ(r) = mr(A), where

A = (F(ζq)/K , α) (we also write α for the inflation),
q is an odd prime not dividingm, and
α takes values in 〈ζp4〉 if p

s
= 2 and in 〈ζps〉 otherwise.

(8)

So it suffices to find a formula for the maximum r-local index of a Schur algebra over K of this form.
Write A =

⊕
g∈Gq F(ζq)ug , with u

−1
g xug = g(x) and uguh = αg,hugh, for each x ∈ F(ζq) and g, h ∈ Gq. After a

diagonal change of basis one may assume that if g = cs00 c
s1
1 · · · c

sn
n ρ

sρσ sσ with 0 ≤ si < qi = |ci|, 0 ≤ sρ < |ρ| and
0 ≤ sσ < qσ = |σC | then ug = u

s0
c0u
s1
c1 · · · u

sn
cnu
sρ
ρ usσσ .

It is well known (see [8] and [3, Theorem 1]) that

mr(A) = |ξ |, where ξ = ξα =
(
αθ,φq

αφq,θ

)rvr (e)
ur
vr (e)(r f−1)
θ . (9)

This can be slightly simplified as follows. If r|e then 〈θ〉 has an element θ k of order r . Since θ fixes every root of unity of
order coprime with r , necessarily r2 dividesm and the fixed field of θ k in L is Q(ζm/r). Then K ⊆ Q(ζm/r), contradicting the
minimality ofm. Thus r - e and so

ξ =
αθ,φq

αφq,θ
ur
f
−1

θ =
αθ,φq

αφq,θ
γ
rf −1
e

θ = [uθ , uφq ]γ
rf −1
e

θ , where γθ = ueθ . (10)

With our choice of the {ug : g ∈ Gq}, we have

[uθ , uφq ] = [uθ , uηqu
j′
ρu
j
σ ] = Ψ (θ, ηq)[uθ , u

j′
ρu
j
σ ],

where Ψ = Ψα is the skew pairing associated to α. Therefore,

ξ = ξ0Ψ (θ, ηq) with ξ0 = ξ0,α = [uθ , uj
′

ρu
j
σ ]γ

rf −1
e

θ .

Let (β, γ ) be the data associated to the factor set α (relative to the set of generators c1, . . . , cn, ρ, σ ).

Lemma 11. Let A = (F(ζq)/K , α) be a cyclotomic algebra satisfying the conditions of (8) and use the above notation. Let
θ = cs00 c

s1
1 · · · c

sn
n ρ

2sn+1 , with 0 ≤ si < qi for 0 ≤ i ≤ n, and 0 ≤ sn+1 ≤ |ρ2|.

(1) If G/C is cyclic then ξ p
ν(r)

0 = 1.

(2) Assume that G/C is non cyclic and let µi = β
1−c
2
iρ β−1iσ . Then µi = ±1 and ξ

pν(r)
0 =

∏n
i=0 µ

2ν(r)(j+j′)si
i .

Proof. For the sake of regularity we write cn+1 = ρ2. Since e = |θ |, we have that qi divides esi for each i. Furthermore, vp(e)
is the maximum of the vp

(
qi

gcd(qi,si)

)
for i = 1, . . . , n. Then

vp(e)− vp(r f − 1) = max
{
vp

(
qi

gcd(qi, si)(r f − 1)

)
, i = 1, . . . , n

}
.

Hence

ν(r) = max{0, vp(e)+ a− vp(r f − 1)}

= min
{
x ≥ 0 : pa divides px ·

si(r f − 1)
qi

, for each i = 1, . . . , n
}
. (11)

Now we compute γθ in terms of the previous expression of θ . Set v = u
sn+1
cn+1 and y = u

s0
c0u
s1
c1 · · · u

sn
cn . Then

uθ = yv = γ vy, with γ = Ψ (csn+1n+1 , c
s0
0 c
s1
1 . . . , c

sn
n ).
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Thus γ e = Ψ (cesn+1n+1 , c
s0
0 c
s1
1 . . . , c

sn
n ) = 1. Using that [y, γ ] = 1, one easily proves by induction onm that

(yv)m = γ (
m
2 )ymvm.

Hence

(yv)e = γ (
e
2 )yeve = γ (

e
2 )yeuesn+1cn+1 = γ

( e2 )yeγ
esn+1
qn+1
ρ ,

and γ (
e
2 ) = ±1. (If p or e is odd then necessarily γ (

e
2 ) = 1.) Now an easy induction argument shows

γθ = µγ

es0
q0
0 γ

es1
q1
1 · · · γ

esn
qn
n γ

esn+1
qn+1
ρ , for some µ = ±1.

Note that ν(r) + vp(r f − 1) − vp(e) ≥ a ≥ 1, by (11). Then µp
ν(r) rf −1

e = γ
pν(r) r

f
−1
e

ρ = 1, because both µ and γρ are±1,
and they are 1 if p is odd (see (C3.e) and (C3.f)). Thus

γ
pν(r) r

f
−1
e

θ =

n∏
i=0

γ
pν(r) (r

f
−1)si
qi

i . (12)

(1) Assume that G/C is cyclic. We have that ρ = 1 and vp(c − 1) = a. Note that the β ’s and γ ’s are pb-th roots of unity
by (8).
Let Y be an integer satisfying Y c−1pa ≡ 1 mod p

b. Since φq = σ jηq with ηq ∈ Cq, we have r f ≡ c j mod pa+b and so

Y r
f
−1
pa = Y

c−1
pa
cj−1
c−1 ≡ V (j) mod p

b. Then β
Y r
f
−1
pa

iσ = β
V (j)
iσ .

Using that pa divides pν(r) si(r
f
−1)
qi

(see (11)) and Y (c−1)pa ≡ 1 mod p
b we obtain

γ
pν(r) si(r

f
−1)
qi

i = (γ c−1i )
Y p
ν(r)si(r

f
−1)

paqi .

Combining this with (C3.b) we have

[usici , u
j
σ ]
pν(r)γ

pν(r) si(r
f
−1)
qi

i = [uci , uσ ]
siV (j)pν(r)(γ c−1i )

Y p
ν(r)si(r

f
−1)

paqi

= [uci , uσ ]
siV (j)pν(r)β

Y p
ν(r)si(r

f
−1)

pa

iσ

= ([uci , uσ ]βiσ )
pν(r)siV (j) = 1, (13)

because βiσ = [uσ , uci ] = [uci , uσ ]
−1. Using (12) and (13) we have

ξ
pν(r)
0 = [uθ , ujσ ]

pν(r)γ
pν(r) r

f
−1
e

θ =

n∏
i=0

[usici , u
j
σ ]
pν(r)γ

pν(r) si(r
f
−1)
qi

i = 1

and the lemma is proved in this case.
(2). Assume now that G/C is non-cyclic. Then pa = 2 and if d = v2(c − 1) then d ≥ 2 and b = s+ d. The data for α lie in

〈ζ2s+1〉 ⊆ 〈ζ2b〉 ⊆ 〈ζ21+s+d〉 = W (F)2. (C2.b) implies µi = ±1 and using (C3.b) and (C3.f) one has γ
c+1
i = β

qi
iσβ
−qi
iρ . Let X and

Y be integers satisfying X c−1
2d
≡ Y c+12 ≡ 1 mod 2

1+s+d and set Z = Y r
f
−1
2 .

Recall that 2a = 2 divides 2ν(r) si(r
f
−1)
qi
, by (11). Therefore,

γ
2ν(r) si(r

f
−1)
qi

i =
(
γ c+1i

)Y 2ν(r)si(rf −1)2qi =

(
β
si
iσβ
−si
iρ

)2ν(r)Z
. (14)

Let j′′ ≡ j′ mod 2 with j′′ ∈ {0, 1}. Then Υ (ρ j
′′

) = Υ (ρ j
′

) and N j
′

ρ (w) = w
j′′ . Therefore,

[uθ , uj
′

ρu
j
σ ] = [uθ , u

j′
ρ]u

j′
ρ[uθ , u

j
σ ]u
−j′
ρ =

n∏
i=0

(β
−si
iρ )

j′′(β
−si
iσ )

V (j)(−1)j
′′

=

n∏
i=0

(β
−si
iρ )

j′′(β
−si
iσ )

X c−1
2d
V (j)(−1)j

′′

=

n∏
i=0

(β
−si
iρ )

j′′(β
−si
iσ )

X c
j
−1
2d

(−1)j
′′

. (15)
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Using (12), (14) and (15) we obtain

ξ 2
ν(r)

0 = [uθ , uj
′

ρu
j
σ ]
2ν(r)γ

2ν(r) r
f
−1
e

θ =

(
n∏
i=0

β
−si
iρ

)2ν(r)(Z+j′′) ( n∏
i=0

β
si
iσ

)2ν(r)(Z−X cj−1
2d

(−1)j
′′
)
. (16)

We claim that Z + j′′ ≡ 0 mod 2d−1. On the one hand Y ≡ 1 mod 2d−1. On the other hand, φq = ρ j
′

σ jηq, with
ηq ∈ Cq and so r f ≡ (−1)j

′

c j mod 21+s+d. Hence r f ≡ (−1)j
′

= (−1)j
′′

mod 2d and therefore Z + j′′ = Y r
f
−1
2 + j

′′
≡

(−1)j
′′
−1

2 + j′′ mod 2d−1. Considering the two possible values of j′′ ∈ {0, 1}we have (−1)
j′′
−1

2 + j′′ = 0 and the claim follows.
From d = v2(c − 1) one has c ≡ 1 + 2d−1 mod 2d and hence Y ≡ 1 + 2d−1 mod 2d and r f ≡ (−1)j

′

c j ≡
(−1)j

′

(1+ j2d) mod 21+s+d. Then

Z + j′′

2d−1
=
Y (r f − 1)+ 2j′′

2d
≡
Y ((−1)j

′′

(1+ j2d)− 1)+ 2j′′

2d
=
Y ( (−1)

j′′
−1

2 + (−1)j
′′

j2d−1)+ j′′

2d−1

≡
(1+ 2d−1)(−j′′ + (−1)j

′′

j2d−1)+ j′′

2d−1
=
−j′′ − j′′2d−1 + (−1)j

′′

j2d−1 + (−1)j
′′

j22(d−1) + j′′

2d−1

≡ −j′′ + (−1)j
′′

j ≡ j+ j′′ ≡ j+ j′ mod 2.

Using this, the equality β
1−c
2
iρ = µiβiσ and the fact that µi = ±1 we obtain

β
−(Z+j′′)
iρ = β

−X c−1
2d
(Z+j′′)

iρ = β
−X c−12

Z+j′′

2d−1
iρ = µ

X Z+j
′′

2d−1
i β

X Z+j
′′

2d−1
iσ = µ

j+j′
i β

X Z+j
′′

2d−1
iσ .

Combining this with (16) we have

ξ 2
ν(r)

0 =

n∏
i=0

µ
2ν(r)(j+j′)si
i

n∏
i=0

(β
si
iσ )
2ν(r)

[
Z−X c

j
−1
2d

(−1)j
′′
+
X(Z+j′′)
2d−1

]

=

n∏
i=0

µ
2ν(r)(j+j′)si
i

n∏
i=0

(β
si
iσ )
2ν(r)

[
2dZ+X(cj−1)(−1)j

′′
+2X(Z+j′′)

2d

]
.

To finish the proof it is enough to show that the exponent of each βiσ in the previous expression is amultiple of 21+s. Indeed,
2d ≡ X(c − 1) mod 21+s+d and so

2dZ + X(c j − 1)(−1)j
′′

+ 2X(Z + j′′) ≡ ZX(c − 1)− X(c j − 1)(−1)j
′′

+ 2X(Z + j′′)

= X
(
Y
r f − 1
2

(c + 1)+ (c j − 1)(−1)j
′′

+ 2j′′
)

= X((r f − 1)Y
c + 1
2
− c j(−1)j

′′

+ (−1)j
′′

+ 2j′′)

≡ X(r f − 1− c j(−1)j
′′

+ 1) ≡ 0 mod 21+s+d

as required. This finishes the proof of the lemma in Case 2. �

We need the following Proposition from [3].

Proposition 12. For every odd prime q 6= r not dividing m let d(q) = min{a, vp(q− 1)}. Then

(1) |ckq0 C/C
pd(q)
| ≤ |θ

f
qC/Cp

a
|, and

(2) the equality holds if q ≡ 1 mod pa and r is not congruent with a p-th power modulo q. There are infinitely many primes q
satisfying these conditions.

Proof. See Proposition 4.1 and Lemma 4.2 of [3]. �

We are ready to prove the main result of the paper.

Theorem 13. Let K be an abelian number field, p a prime and r an odd prime. If either ζp 6∈ K or r 6≡ 1 mod p then βp(r) = 0.
Assume otherwise that ζp ∈ K and r ≡ 1 mod p, and use Notation 10 including the decomposition φ = ηρ j

′

σ j with η ∈ B.

(1) Assume that r does not divide m.
(a) If G/C is non-cyclic and j 6≡ j′ mod 2 then βp(r) = 1.
(b) Otherwise βp(r) = max{ν(r), vp(|ηBp

d(r)
|)}, where d(r) = min{a, vp(r − 1)}.
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(2) Assume that r divides m and let q0 be an odd prime not dividing m such that q0 ≡ 1 mod pa and r is not a p-th power
modulo q0. Let θ = θq0 be a generator of the inertia group of Gq0 at r.
(a) If G/C is non-cyclic, j 6≡ j′ mod 2 and θ is not a square in D then βp(r) = 1.
(b) Otherwise βp(r) = max{ν(r), h, vp(|θ f Cp

a
|)}, where h = maxΨ {vp(|Ψ (θ, η)|)} as Ψ runs over all skew pairings of B

over 〈ζpa〉.
Proof. For simplicity we write β(r) = βp(r). We already explained why if either ζp 6∈ K or r 6≡ 1 mod p then βp(r) = 0. So
in the remainder of the proof we assume that ζp ∈ K and r ≡ 1 mod p, and so K , p, and r satisfy the condition mentioned at
the beginning of the section. It was also pointed out earlier in this section that pβ(r) is the r-local index of a crossed product
algebra A of the form A = (F(ζq)/K , α)with q and α taking values in 〈ζps〉 or in 〈ζ4〉. Moreover, since pν(r) is the r-local index
of the cyclic Schur algebra (K(ζr)/K , c0, ζpa) [3], we always have ν(r) ≤ β(r).
In Case 1 one may assume that q = r , because (F(ζq)/K , α) has r-local index 1 for every q 6= r . Since Gal(F(ζr)/F)

is the inertia group at r in Gr , in this case one may assume that θ = θr = c0. On the contrary, in Case 2, q 6= r , and
θ = cs11 · · · c

sn
n ρ

2sn+1 , for some s1, . . . , sn+1.
In cases (1.a) and (2.a), G/C is non-cyclic and hence pa = 2. Then β(r) ≤ 1, by the Benard–Schacher theorem, and hence

if ν(r) = 1 then β(r) = 1. So assume that ν(r) = 0. Furthermore, in case (2.a), si is odd for some i ≤ n, because θ 6∈ D2.
Now we can use Corollary 5 to produce a cyclotomic algebra A′ = (F(ζq)/K , α′) so that ξα = −ξα′ . Indeed, there is such
an algebra such that all the data associated to α are equal to the data for A, except for β0σ , in case (1.a), and βkσ , case (2.a).
Using Lemma 11 and the assumptions ν(r) = 0 and j 6≡ j′ mod 2, one has ξ0,α = −ξ0,α′ and Ψα = Ψα′ . Thus ξα = −ξα′ , as
claimed. This shows that β(r) = 1 in cases (1.a) and (2.a).
In case (1.b), ξ = ξ0Ψ (c0, η). By Lemma 11, ξ0 has order dividing pν(r) in this case and, by Lemma 9, max{|Ψ (θ, η)| :

Ψ ∈ S} = |ηBp
d(r)
|, where S is the set of skew pairings of Br with values in 〈pa〉. Using this and ν(r) ≤ β(r) one deduces that

β(r) = max{ν(r), vp(|ηBp
d(r)
|)}.

The formula for case (2.b) is obtained in a similar way using the equality ξ = ξ0Ψ (θ, η)Ψ (θ, c
s0
0 ) and Lemmas 8 and 9.

�

4. Examples

As we indicated in the introduction, the authors’ mainmotivation for Theorem 13 is the study the gap between the Schur
group of an abelian number field K and its subgroup generated by classes containing cyclic cyclotomic algebras over K , a
problem which reduces to studying the gaps between the integers νp(r) and βp(r) for all finite primes p and odd primes r .
(For details, see [4].) What Theorem 13 really allows one to do is to compute βp(r) in terms of the number of p-th power
roots of unity in K and the embedding of Gal(F/K) in Gal(F/Q). In this section, we will provide some examples of abelian
number fields K to illustrate the computations involved in the various cases of Theorem 13. We use the notation of the
previous sections in all of these examples.

Example 14. Let K = Q(ζm), with m minimal. Let p be a prime for which ζp ∈ K , and let r be an odd prime which is
≡ 1 mod p. Let a be the maximal integer for which ζpa ∈ K , and let s = vp(m). If we are not in the case when b = s, then
p = 2, s = 0, and K(ζp2a+s) = K(ζ4), so we will be in the case where b = s+ 1 = 1. Since K = L, we have that F = K(ζpa+b),
so C is trivial. Also, G = Gal(K(ζpa+b)/K)will be cyclic for either case of b. Therefore, either case (1b) or (2b) of Theorem 13
applies, and it is immediate from C = B = 1 that βp(r) = νp(r) for each choice of p and r .

Example 15. Let p and r be odd primes with vp(r − 1) = 2. Let K be the extension ofQ(ζp)with index p in L = Q(ζpr), and
consider βp(r). We have a = s = b = 1, and F = Q(ζp2r). We have that G = 〈θ〉 × C is elementary abelian of order p2,
so we are in case (2b) of Theorem 13. Since Gal(F/Q) has an element ψ such that ψp generates C , letting q0 and θ be as in
Theorem 13(2), we find that vp(|ψG|) = 1. It follows that pf = p, so νp(r) = 0 and vp(|θ f Cp

a
|) = 1. Since φ generates C , we

have that φ = η and so h = 1 by Lemma 9. So βp(r) = 1 in this case.

Example 16. Let q be a prime greater than 5, and let K = Q(ζq,
√
2). Let p = 2, and let r be any prime for which

r2 ≡ 1 mod q and r ≡ 5 mod 26. In computing β2(r), one sees that a = 1 and L = Q(ζ8q), so s = 3. Since Gal(K(ζ25)/K)
is not cyclic, we set b = 5 + v2([Q(

√
2) : Q]) = 6, so F = Q(ζ64q). Since Q(ζq) ⊂ K , we have C = Gal(F/K(ζ64)) = 1.

For our generators of Gal(F/K), we may choose ρ, σ such that ρ(ζq) = ζq, ρ(ζ64) = ζ−164 , σ(ζq) = ζq, and σ(ζ64) = ζ
9
64. By

our choice of r , we have that ψr 6∈ G, but 52 ≡ 93 mod 64 implies that ψ2r = σ 3. This means that we are in case (1a) of
Theorem 13 with νp(r) = 0 and j 6≡ j′ mod 2, so β2(r) = 1.

Example 17. Let r be a prime for which r ≡ 5 mod 64. Let K ′ be the unique subfield of index 2 inQ(ζr), and let K = K ′(
√
2).

Consider β2(r) for the field K . As in the previous example, we have L = Q(ζ8r), F = Q(ζ64r) and we choose ρ, σ ∈ G
satisfying ρ(ζ64) = ζ−164 and σ(ζ64) = ζ

9
64. Using Proposition 12, choose an odd prime q0 for which r in not a square modulo

q0. If ψr is the Frobenius automorphism in Gal(F(ζq0)/Q), then ψr 6∈ Gq0 , and φr = ψ
2
r sends ζ64 to ζ

52
64 = ζ

93
64 . Therefore,

φr = σ
3ηq0 , where ηq0 ∈ Cq0 fixes ζ64r . Since ζr 6∈ K , θ = θq0 generates a direct factor of Gq0 and so it cannot be a square in

D. It follows that the conditions of case (2a) of Theorem 13 hold, and so we can conclude β2(r) = 1.
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Example 18. Let p be an odd prime and let q and r be primes for which vp(q − 1) = vp(r − 1) = 2, vq(rp − 1) = 0, and
vq(rp

2
−1) = 1. The existence of such primes q and r for each odd prime p is a consequence of Dirichlet’s Theorem on primes

in arithmetic progression. Indeed, given p and q primes with vp(q− 1) = 2, there is an integer k, coprime to q such that the
order of kmodulo q2 is p2. Choose a prime r for which r ≡ k+ q mod q2 and r ≡ 1+ p2 mod p3. Then p, q and r satisfy the
given conditions.
Let K be the compositum of K ′ and K ′′, the unique subextensions of index p in Q(ζp2q)/Q(ζp2) and Q(ζp2r)/Q(ζp2)

respectively. Then m = p2rq, a = 2 and L = Q(ζm) = K(ζq)⊗K K(ζr). Therefore, F = Q(ζp4qr), and G = Gal(F/K(ζqr)) ×
Gal(F/K(ζp4q))× Gal(F/K(ζp4r)). We may choose σ so that 〈σ 〉 = Gal(F/K(ζqr)) ∼= G/C has order p

2. The inertia subgroup
of r in G is Gal(F/K(ζp4q)), which is generated by an element θ of order p.
Since K = K ′⊗Q(ζp2 )

K ′′ and K ′′/Q(ζp2) is totally ramified at r , we have that K ′r is the maximal unramified extension of

Kr/Qr . It follows from vq(rp
2
− 1) = 1 and vq(rp − 1) = 0 that [Qr(ζq) : Qr ] = p2, and so [K ′r : Qr ] = p = f (K/Q, r).

Therefore vp(|W (Kr)|) = vp(|W (Qr)|)+ f (r) = vp(r−1)+1 = 3, and sowe have ν(r) = max{0, a+vp(|θ |)−vp(|W (Kr)|)}
= 0. Since |C | = p and θ has order p, we also see that θ f (r)Cp

2
is trivial, so vp(|θ f (r)Cp

2
|) = 0.

Let ψr be the Frobenius automorphism of r in Gal(F/Q). Then ψ
p
r = σ

pη, where η ∈ B generates Gal(F/K(ζp4r)). Since
〈θ〉∩〈η〉 = 1, it follows from Lemma 9 that h = vp(|θ |) = 1. So case (2b) of Theorem 13 applies to show that βp(r) = h = 1.
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