Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

journal homepage: www.elsevier.com/locate/jpaa

The Schur group of an abelian number field

Allen Herman^a, Gabriela Olteanu^{b,c}, Ángel del Río^{d,*}

^a Department of Mathematics, University of Regina, Regina, Canada

^b Department of Mathematics and Computer Science, North University of Baia Mare, Victoriei 76, 430122 Baia Mare, Romania

^c Faculty of Mathematics and Computer Science, Babeş-Bolyai University, M. Kogalniceanu 1, 400084 Cluj-Napoca, Romania

^d Departamento de Matemáticas, Universidad de Murcia, 30100 Murcia, Spain

ARTICLE INFO

Article history: Received 23 November 2007 Received in revised form 16 March 2008 Available online 2 July 2008 Communicated by C. Kassel

MSC: Primary: 20C05 secondary: 12A60 16A26 16S35

ABSTRACT

We characterize the maximum r-local index of a Schur algebra over an abelian number field K in terms of global information determined by the field K for an arbitrary rational prime, r. This completes and unifies previous results of Janusz in [G.J. Janusz, The Schur group of an algebraic number field, Ann. of Math. (2) 103 (1976) 253–281] and Pendergrass in [J.W. Pendergrass, The 2-part of the Schur group, J. Algebra 41 (1976) 422–438].

© 2008 Elsevier B.V. All rights reserved.

OURNAL OF URE AND

1. Introduction and preliminaries

Let *K* be a field. A *Schur algebra* over *K* is a central simple *K*-algebra which is generated over *K* by a finite group of units. The *Schur group* of *K* is the subgroup S(K) of the Brauer group of *K* formed by classes containing a Schur algebra. By the Brauer–Witt theorem (see e.g. [8]), each class in S(K) can be represented by a cyclotomic algebra, i.e. a crossed product of the form $(L/K, \alpha)$ in which L/K is a cyclotomic extension and the factor set α takes values in the group of roots of unity W(L) of *L*.

In the case when *K* is an abelian number field, i.e. *K* is contained in a finite cyclotomic extension of \mathbb{Q} , Benard–Schacher theory [2] gives a partial characterization of the elements of *S*(*K*). According to this theory, if *n* is the Schur index of a Schur algebra over *K*, then *W*(*K*) contains an element of order *n*. This is known as the Benard–Schacher theorem. Furthermore, if $\frac{t}{n}$ (in lowest terms) is the local invariant of *A* at a prime \mathcal{R} of *K* that lies over a rational prime *r*, then each of the fractions $\frac{c}{n}$ with $1 \le c \le n$ and *c* coprime to *n* will occur equally often among the local invariants corresponding to the primes of *K* lying above *r*. In particular, these local invariants all have the same denominator *n* for all the primes of *K* lying above *r*, which we call the *r*-local index $m_r(A)$ of *A*. Only finitely many of the $m_r(A)$ are greater than 1, and the Schur index of *A* is the least common multiple of the $m_r(A)$ as *r* runs over all rational primes.

The goal of this article is to characterize the maximum *r*-local index of a Schur algebra over an abelian number field *K* in terms of global information determined by *K*. The existence of this maximum is a consequence of the Benard–Schacher Theorem. Since *S*(*K*) is a torsion abelian group, it is enough to compute the maximum of the *r*-local indices of Schur algebras over *K* with index a power of *p* for every prime *p* dividing the order of *W*(*K*). We will refer to this number as $p^{\beta_p(r)}$. In [3], Janusz gave a formula for $p^{\beta_p(r)}$ when either *p* is odd or *K* contains a primitive 4-th root of unity. The remaining cases were considered by Pendergrass in [5]. However, some of the calculations involving factor sets in [5] are not correct, and as a

* Corresponding author. Tel.: +34 968 36 35 37; fax: +34 968 36 41 82. E-mail addresses: aherman@math.uregina.ca (A. Herman), olteanu@math.ubbcluj.ro, golteanu@um.es (G. Olteanu), adelrio@um.es (Á. del Río).

^{0022-4049/\$ –} see front matter s 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.jpaa.2008.05.002

consequence the formulas for $2^{\beta_2(r)}$ for odd primes r that appear there are inaccurate. This article was motivated in part by the need to find a correct formula for $p^{\beta_p(r)}$ in this remaining case, and also because of the need to apply the formula in an upcoming work of the authors in [4], where the gap between the Schur subgroup of an abelian number field and its subgroup generated by classes containing cyclic cyclotomic algebras is studied. Since the local index at ∞ will be 2 when Kis real and will be 1 otherwise, the only remaining case is that of r = 2. In this case, p must be equal to 2 and we must have $\zeta_4 \notin K$. The characterization of fields K for which $S(K_2)$ is of order 2 is given in [5, Corollary 3.3].

The main result of the paper (Theorem 13) characterizes $p^{\beta_p(r)}$ in terms of the position of *K* relative to an overlying cyclotomic extension *F* that is determined by *K* and *p*. The formulas for $p^{\beta_p(r)}$ are stated in terms of elements of certain Galois groups in this setting. The main difference between our approach and that of Janusz and Pendergrass is that the field *F* that we use is slightly larger, which allows us to present some of the somewhat artificial-looking calculations in [3] in a more conceptual fashion. Another highlight of our approach is the treatment of calculations involving factor sets. In Section 2 we generalize a result from [1] which describes the factor sets for a given action of an abelian group *G* on another abelian group *W* in terms of some data. In particular, we give necessary and sufficient conditions that the data must satisfy in order to be induced by a factor set. Because of the applications we have in mind, extra attention is paid to the case when *W* is a cyclic *p*-group.

2. Factor set calculations

In this section W and G are two abelian groups and $\Upsilon: G \to \operatorname{Aut}(W)$ is a group homomorphism. A group epimorphism $\pi: \overline{G} \to G$ with kernel W is said to induce Υ if, given $u_g \in \overline{G}$ such that $\pi(u_g) = g$, one has $u_g w u_g^{-1} = \Upsilon(g)(w)$ for each $w \in W$. If $g \mapsto u_g$ is a crossed section of π (i.e. $\pi(u_g) = g$ for each $g \in G$) then the map $\alpha: G \times G \to W$ defined by $u_g u_h = \alpha_{g,h} u_{gh}$ is a factor set (or 2-cocycle) $\alpha \in Z^2(G, W)$. We always assume that the crossed sections are normalized, i.e. $u_1 = 1$ and hence $\alpha_{g,1} = \alpha_{1,g} = 1$. Since a different choice of crossed section for π would be a map $g \mapsto w_g u_g$ where $w: G \to W$, π determines a unique cohomology class in $H^2(G, W)$, namely the one represented by α .

Given a list g_1, \ldots, g_n of generating elements of G, a group epimorphism $\pi : \overline{G} \to G$ inducing Υ , and a crossed section $g \mapsto u_g$ of π , we associate the elements β_{ij} and γ_i of W, for $i, j \leq n$, by the equalities:

$$u_{g_{j}}u_{g_{i}} = \beta_{ij}u_{g_{i}}u_{g_{j}}, \text{ and}$$

$$u_{g_{i}}^{q_{i}} = \gamma_{i}u_{g_{1}}^{t_{1}^{(i)}} \cdots u_{g_{i-1}}^{t_{i-1}^{(i)}},$$
(1)

where the integers q_i and $t_i^{(i)}$ for $1 \le i \le n$ and $0 \le j < i$ are determined by

$$q_i = \text{ order of } g_i \text{ modulo } \langle g_1, \dots, g_{i-1} \rangle, \qquad g_i^{q_i} = g_1^{t_1^{(i)}} \cdots g_{i-1}^{t_{i-1}^{(i)}}, \quad \text{and} \quad 0 \le t_j^{(i)} < q_j.$$
(2)

If α is the factor set associated to π and the crossed section $g \mapsto u_g$, then we say that α induces the data (β_{ij}, γ_i) . The following proposition gives necessary and sufficient conditions for a list (β_{ij}, γ_i) of elements of W to be induced by a factor set.

The order of an element g of a group is denoted by |g|.

Proposition 1. Let *W* and $G = \langle g_1, \ldots, g_n \rangle$ be abelian groups and let $\Upsilon : G \to Aut(W)$ be an action of *G* on *W*. For every $1 \le i, j \le n$, let q_i and $t_i^{(i)}$ be the integers determined by (2). For every $w \in W$ and $1 \le i \le n$, let

$$\Upsilon_i = \Upsilon(g_i), \qquad N_i^t(w) = w \Upsilon_i(w) \Upsilon_i^2(w) \cdots \Upsilon_i^{t-1}(w), \quad and \quad N_i = N_i^{q_i}.$$

For every $1 \le i, j \le n$, let β_{ii} and γ_i be elements of W. Then the following conditions are equivalent:

- (1) There is a factor set $\alpha \in Z^2(G, W)$ inducing the data (β_{ii}, γ_i) .
- (2) The following equalities hold for every $1 \le i, j, k \le n$:
 - $\begin{array}{l} \text{(C1)} \quad \beta_{ii} = \beta_{ij}\beta_{ji} = 1. \\ \text{(C2)} \quad \beta_{ij}\beta_{jk}\beta_{ki} = \Upsilon_{k}(\beta_{ij})\Upsilon_{i}(\beta_{jk})\Upsilon_{j}(\beta_{ki}). \\ \text{(C3)} \quad N_{i}(\beta_{ij})\gamma_{i} = \Upsilon_{j}(\gamma_{i})N_{1}^{t_{1}^{(i)}}(\beta_{1j})\Upsilon_{1}^{t_{1}^{(i)}}(N_{2}^{t_{2}^{(i)}}(\beta_{2j}))\cdots\Upsilon_{1}^{t_{1}^{(i)}}\Upsilon_{2}^{t_{2}^{(i)}}\cdots\Upsilon_{i-2}^{t_{i-2}^{(i)}}(N_{i-1}^{t_{i-1}^{(i)}}(\beta_{(i-1)j})). \end{array}$

Proof. (1) implies (2). Assume that there is a factor set $\alpha \in Z^2(G, W)$ inducing the data (β_{ij}, γ_i) . Then there is a surjective homomorphism $\pi : \overline{G} \to G$ and a crossed section $g \mapsto u_g$ of π such that the β_{ij} and γ_i satisfy (1). Condition (C1) is clear. Conjugating by u_{g_k} in $u_{g_i}u_{g_i} = \beta_{ij}u_{g_i}u_{g_i}$ yields

$$\begin{split} \beta_{jk} \Upsilon_j(\beta_{ik}) \beta_{ij} u_{g_i} u_{g_j} &= \beta_{jk} \Upsilon_j(\beta_{ik}) u_{g_j} u_{g_i} = \beta_{jk} u_{g_j} \beta_{ik} u_{g_i} = u_{g_k} u_{g_j} u_{g_i} u_{g_k}^{-1} \\ &= u_{g_k} \beta_{ij} u_{g_i} u_{g_j}^{-1} = \Upsilon_k(\beta_{ij}) \beta_{ik} u_{g_i} \beta_{jk} u_{g_j} = \Upsilon_k(\beta_{ij}) \beta_{ik} \Upsilon_i(\beta_{jk}) u_{g_i} u_{g_j}. \end{split}$$

Therefore, we have $\beta_{jk} \gamma_j(\beta_{ik}) \beta_{ij} = \gamma_k(\beta_{ij}) \beta_{ik} \gamma_i(\beta_{jk})$ and so (C2) follows from (C1).

To prove (C3), we use the obvious relation $(wu_{g_i})^t = N_i^t(w)u_{g_i}^t$. Conjugating by u_{g_j} in $u_{g_i}^{q_i} = \gamma_i u_{g_1}^{t_1^{(i)}} \cdots u_{g_{i-1}}^{t_{i-1}^{(i)}}$ results in

$$\begin{split} N_{i}(\beta_{ij})\gamma_{i}u_{g_{1}}^{t_{1}^{(i)}}\cdots u_{g_{i-1}}^{t_{i-1}^{(i)}} &= N_{i}^{q_{i}}(\beta_{ij})u_{g_{i}}^{q_{i}} = (\beta_{ij}u_{g_{i}})^{q_{i}} = u_{g_{j}}u_{g_{i}}^{q_{i}}u_{g_{j}}^{-1} = u_{g_{j}}\gamma_{i}u_{g_{1}}^{t_{1}^{(i)}}\cdots u_{g_{i-1}}^{t_{i-1}^{(i)}}u_{g_{j}}^{-1} \\ &= \gamma_{j}(\gamma_{i})(\beta_{1j}u_{g_{1}})^{t_{1}^{(i)}}\cdots (\beta_{(i-1)j}u_{g_{i-1}})^{t_{i-1}^{(i)}} = \gamma_{j}(\gamma_{i})N_{1}^{t_{1}^{(i)}}(\beta_{1j})u_{g_{1}}^{t_{1}^{(i)}}\cdots N_{i-1}^{t_{i-1}^{(i)}}(\beta_{(i-1)j})u_{g_{i-1}}^{t_{i-1}^{(i)}} \\ &= \gamma_{j}(\gamma_{i})N_{1}^{t_{1}^{(i)}}(\beta_{1j})\gamma_{1}^{t_{1}^{(i)}}(N_{2}^{t_{2}^{(i)}}(\beta_{2j}))\cdots \gamma_{1}^{t_{1}^{(i)}}\gamma_{2}^{t_{2}^{(i)}}\cdots \gamma_{i-2}^{t_{i-2}^{(i)}}(N_{i-1}^{t_{i-1}^{(i)}}(\beta_{(i-1)j}))u_{g_{1}}^{t_{1}^{(i)}}\cdots u_{g_{i-1}}^{t_{i-1}^{(i)}}. \end{split}$$

Cancelling on both sides produces (C3). This finishes the proof of (1) implies (2).

Before proving (2) implies (1), we show that if $\pi : \overline{G} \to G$ is a group homomorphism with kernel W inducing $\Upsilon, g \mapsto u_g$ is a crossed section of π and β_{ij} and γ_i are given by (1), then \overline{G} is isomorphic to the group \widehat{G} given by the following presentation: the set of generators of \widehat{G} is $\{\widehat{w}, \widehat{g}_i : w \in W, i = 1, ..., n\}$, and the relations are

$$\widehat{w_1w_2} = \widehat{w_1}\,\widehat{w_2}, \qquad \Upsilon_i(w) = \widehat{g_i}\,\widehat{w}\,\widehat{g_i}^{-1}, \qquad \widehat{g_j}\,\widehat{g_i} = \widehat{\beta_{ij}}\,\widehat{g_i}\,\widehat{g_j} \quad \text{and} \quad \widehat{g_i}^{q_i} = \widehat{\gamma_i}\,\widehat{g_1}^{t_1^{(i)}}_1 \cdots \widehat{g_{i-1}}^{t_{i-1}^{(i)}}, \tag{3}$$

for each $1 \leq i, j \leq n$ and $w, w_1, w_2 \in W$. Since the relations obtained by replacing \widehat{w} by w and \widehat{g}_i by u_{g_i} in Eq. (3) for each $x \in W$ and each $1 \leq i \leq n$, hold in \overline{G} , there is a surjective group homomorphism $\phi : \widehat{G} \to \overline{G}$, which associates \widehat{w} with w, for every $w \in W$, and \widehat{g}_i with u_{g_i} , for every i = 1, ..., n. Moreover, ϕ restricts to an isomorphism $\widehat{W} \to W$ and $|\widehat{g}_i \langle \widehat{W}, \widehat{g}_1, ..., \widehat{g}_{i-1} \rangle| = q_i$. Hence $[\widehat{G} : \widehat{W}] = q_1 \cdots q_n = [\overline{G} : W]$ and so $|\widehat{G}| = |\overline{G}|$. We conclude that ϕ is an isomorphism.

(2) implies (1). Assume that the β_{ij} 's and γ_i 's satisfy conditions (C1), (C2) and (C3). We will recursively construct groups $\overline{G}_0, \overline{G}_1, \ldots, \overline{G}_n$. Start with $\overline{G}_0 = W$. Assume that $\overline{G}_{k-1} = \langle W, u_{g_1}, \ldots, u_{g_{k-1}} \rangle$ has been constructed with $u_{g_1}, \ldots, u_{g_{k-1}}$ satisfying the last three relations of (3), for $1 \leq i, j < k$, and that these relations, together with the relations in W, form a complete list of relations for \overline{G}_{k-1} . To define \overline{G}_k we first construct a semidirect product $H_k = \overline{G}_{k-1} \rtimes_{c_k} \langle x_k \rangle$, where c_k acts on \overline{G}_{k-1} by

$$c_k(w) = \Upsilon_k(w), \quad (w \in W), \qquad c_k(u_{g_i}) = \beta_{ik}u_{g_i}.$$

In order to check that this defines an automorphism of \overline{G}_{k-1} we need to check that c_k respects the defining relations of \overline{G}_{k-1} . This follows from the commutativity of *G* and conditions (C1), (C2) and (C3) by straightforward calculations which we leave to the reader.

to the reader. Notice that the defining relations of H_k are the defining relations of \overline{G}_{k-1} and the relations $x_k w = \Upsilon_k(w)x_k$ and $x_k u_{g_i} = \beta_{ik} u_{g_i} x_k$. Using (C3) one deduces $u_{g_i} x_k^{q_k} u_{g_i}^{-1} = u_{g_i} \gamma_k u_{g_1}^{t_1^{(k)}} \cdots u_{g_{k-1}}^{t_{k-1}^{(k)}} u_{g_i}^{-1}$, for each $i \le k - 1$. This shows that $y_k = x_k^{-q_k} \gamma_k u_{g_1}^{t_1^{(k)}} \cdots u_{g_{k-1}}^{t_{k-1}^{(k)}}$ belongs to the center of H_k . Let $\overline{G}_k = H_k / \langle y_k \rangle$ and $u_{g_k} = x_k \langle y_k \rangle$. Now it is easy to see that the defining relations of G_k are the relations of W and the last three relations in (3), for $0 \le i, j \le k$. It is clear now that the assignment $w \mapsto 1$ and $u_{g_i} \mapsto g_i$ for each $i = 1, \ldots, n$ defines a group homomorphism $\overline{Z} = \overline{Z}$ or C with the unit W and inducing \widetilde{Z} . If wis the forter set associated to \overline{Z} and the crossed section $g \to w$

It is clear now that the assignment $w \mapsto 1$ and $u_{g_i} \mapsto g_i$ for each i = 1, ..., n defines a group homomorphism $\pi : \overline{G} = \overline{G}_n \to G$ with kernel W and inducing Υ . If α is the factor set associated to π and the crossed section $g \mapsto u_g$, then (β_{ij}, γ_i) is the list of data induced by α . \Box

Note that the group generated by the values of the factor set α coincides with the group generated by the data (β_{ij} , γ_i). This observation will be used in the next section.

In the case $G = \langle g_1 \rangle \times \cdots \times \langle g_n \rangle$ we obtain the following corollary that one should compare with Theorem 1.3 of [1].

Corollary 2. If $G = \langle g_1 \rangle \times \cdots \times \langle g_n \rangle$ then a list $D = (\beta_{ij}, \gamma_i)_{1 \le i,j \le n}$ of elements of W is the list of data associated to a factor set in $Z^2(G, W)$ if and only if the elements of D satisfy (C1), (C2) and $N_i(\beta_{ij})\gamma_i = \gamma_j(\gamma_i)$, for every $1 \le i, j \le n$.

In the remainder of this section we assume that $W = \langle \zeta \rangle$ is a cyclic *p*-group, for *p* a prime integer. Let p^a and p^{a+b} denote the orders of $W^G = \{x \in W : \Upsilon(g)(x) = x \text{ for each } g \in G\}$ and *W*, respectively. We assume that 0 < a, b. We also set

$$C = \operatorname{Ker}(\Upsilon)$$
 and $D = \{g \in G : \Upsilon(g)(\zeta) = \zeta \text{ or } \Upsilon(g)(\zeta) = \zeta^{-1}\}.$

Note that *D* is subgroup of *G* containing *C*, *G*/*D* is cyclic, and $[D : C] \le 2$. Furthermore, the assumption a > 0 implies that if $C \ne D$ then $p^a = 2$.

Lemma 3. There exists a $\rho \in D$ and a subgroup B of C such that $D = \langle \rho \rangle \times B$ and $C = \langle \rho^2 \rangle \times B$.

Proof. The lemma is obvious if C = D (just take $\rho = 1$). So assume that $C \neq D$ and temporarily take ρ to be any element of $D \setminus C$. Since [D : C] = 2, one may assume without loss of generality that $|\rho|$ is a power of 2. Write $C = C_2 \times C_{2'}$, where C_2 and $C_{2'}$ denote the 2-primary and 2'-primary parts of C, and choose a decomposition $C_2 = \langle c_1 \rangle \times \cdots \times \langle c_n \rangle$ of C_2 . By reordering the c_i 's if needed, one may assume that $\rho^2 = c_1^{a_1} \cdots c_k^{a_k} c_{k+1}^{2c_{k+1}} \cdots c_n^{2a_n}$ with a_1, \ldots, a_k odd. Then replacing ρ by $\rho c_{k+1}^{-a_{k+1}} \cdots c_n^{-a_n}$ one may assume that $\rho^2 = c_1^{a_1} \cdots c_k^{a_k}$, with a_1, \ldots, a_k odd. Let $H = \langle \rho, c_1, \ldots, c_k \rangle$. Then $|\rho|/2 = |\rho^2| = \exp(H \cap C)$,

the exponent of $H \cap C$, and so ρ is an element of maximal order in H. This implies that $H = \langle \rho \rangle \times H_1$ for some $H_1 \leq H$. Moreover, if $h \in H_1 \setminus C$ then $1 \neq \rho^{|\rho|/2} = h^{|\rho|/2} \in \langle \rho \rangle \cap H_1$, a contradiction. This shows that $H_1 \subseteq C$. Thus $C_2 = (H \cap C_2) \times \langle c_{k+1} \rangle \times \cdots \times \langle c_n \rangle = \langle \rho^2 \rangle \times H_1 \times \langle c_{k+1} \rangle \times \cdots \times \langle c_n \rangle$. Then ρ and $B = H_1 \times \langle c_{k+1} \rangle \times \cdots \times \langle c_n \rangle \times C_{2'}$ satisfy the required conditions. \Box

By Lemma 3, there is a decomposition $D = B \times \langle \rho \rangle$ with $C = B \times \langle \rho^2 \rangle$, which will be fixed for the remainder of this section. Moreover, if C = D then we assume $\rho = 1$. Since G/D is cyclic, $G/C = \langle \rho C \rangle \times \langle \sigma C \rangle$ for some $\sigma \in G$. It is easy to see that σ can be selected so that if D = G then $\sigma = 1$, and $\sigma(\zeta) = \zeta^c$ for some integer c satisfying

$$v_p(c^{q_{\sigma}}-1) = a+b, \quad \text{and} \quad v_p(c-1) = \begin{cases} a & \text{if } G/C \text{ is cyclic and } G \neq D, \\ a+b & \text{if } G/C \text{ is cyclic and } G = D, \text{ and} \\ d > 2 & \text{for some integer } d, \text{ if } G/C \text{ is not cyclic,} \end{cases}$$
(4)

where $q_{\sigma} = |\sigma C|$ and the map $v_p : \mathbb{Q} \to \mathbb{Z}$ is the classical *p*-adic valuation. In particular, if *G*/*C* is non-cyclic (equivalently $C \neq D \neq G$) then $p^a = 2, b \ge 2, \rho(\zeta) = \zeta^{-1}$ and $\sigma(\zeta^{2^{b-1}}) = \zeta^{2^{b-1}}$.

For every positive integer *t* we set

$$V(t) = 1 + c + c^{2} + \dots + c^{t-1} = \frac{c^{t} - 1}{c - 1}.$$

Now we choose a decomposition $B = \langle c_1 \rangle \times \cdots \times \langle c_n \rangle$ and adapt the notation of Proposition 1 for a group epimorphism $f: \overline{G} \to G$ with kernel W inducing Υ and elements $u_{c_1}, \ldots, u_{c_n}, u_{\sigma}, u_{\rho} \in \overline{G}$ with $f(u_{c_i}) = c_i, f(u_{\rho}) = \rho$ and $f(u_{\sigma}) = \sigma$, by setting

$$\beta_{ij} = [u_{c_j}, u_{c_i}], \qquad \beta_{i\rho} = \beta_{\rho i}^{-1} = [u_{\rho}, u_{c_i}], \qquad \beta_{i\sigma} = \beta_{\sigma i}^{-1} = [u_{\sigma}, u_{c_i}], \quad \text{and} \quad \beta_{\sigma\rho} = \beta_{\rho\sigma}^{-1} = [\beta_{\rho}, \beta_{\sigma}].$$

We also set

$$q_i = |c_i|, \qquad q_\rho = |\rho|, \text{ and } \sigma^{q_\sigma} = c_1^{t_1} \cdots c_n^{t_n} \rho^{2t_\rho}, \text{ where } 0 \le t_i < q_i \text{ and } 0 \le t_\rho < |\rho^2|.$$
 (5)

With a slightly different notation than in Proposition 1, we have, for each $1 \le i \le n$, $t_j^{(i)} = 0$ for each $0 \le j < i$, $t_i^{(\rho)} = 0$, $t_i^{(\sigma)} = t_i$, and $t_{\rho}^{(\sigma)} = 2t_{\rho}$. Furthermore, $q_{\rho} = 1$ if C = D and q_{ρ} is even if $C \ne D$. Continuing with the adaptation of the notation of Proposition 1 we set

$$\gamma_i = u_{c_i}^{q_i}, \qquad \gamma_\rho = u_\rho^{q_\rho}, \quad \text{and} \quad \gamma_\sigma = u_\sigma^{q_\sigma} u_{c_1}^{-t_1} \cdots u_{c_n}^{-t_n} u_\rho^{2t_\rho}.$$

We refer to the list { β_{ij} , $\beta_{i\sigma}$, $\beta_{i\rho}$, $\beta_{\sigma\rho}$, γ_i , γ_{ρ} , γ_{σ} : $0 \le i < j \le n$ }, which we abbreviate as (β, γ) , as the data associated to the group epimorphism $f : \overline{G} \to G$ and choice of crossed section $u_{c_1}, \ldots, u_{c_n}, u_{\sigma}, u_{\rho}$, or as the data induced by the corresponding factor set in $Z^2(G, W)$.

Furthermore, for every $w \in W$, $1 \le i \le n$ and $t \ge 0$ one has

$$N_i^t(w) = w^t, \qquad N_{\sigma}^t(w) = w^{V(t)} \text{ and } N_{\rho}^t(w) = \begin{cases} w^t, & \text{if } \rho = 1;\\ 1, & \text{if } \rho \neq 1 \text{ and } t \text{ is even};\\ w, & \text{if } \rho \neq 1 \text{ and } t \text{ is odd.} \end{cases}$$

In particular, for every $w \in W$ one has

$$N_i(w) = w^{q_i}, \qquad N_\sigma(w) = w^{V(q_\sigma)}, \quad \text{and} \quad N_\rho(w) = 1$$

Rewriting Proposition 1 for this case we obtain the following.

Corollary 4. Let *W* be a finite cyclic *p*-group and let *G* be an abelian group acting on *W* with $G = \langle c_1, \ldots, c_n, \sigma, \rho \rangle$, $B = \langle c_1 \rangle \times \cdots \times \langle c_n \rangle$, $D = B \times \langle \rho \rangle$ and $C = B \times \langle \rho^2 \rangle$ as above. Let q_i, q_ρ, q_σ and the t_i 's be given by (5). Let $\beta_{\sigma\rho}, \gamma_\rho, \gamma_\sigma \in W$ and for every $1 \le i, j \le n$ let $\beta_{ij}, \beta_{i\sigma}, \beta_{i\rho}$ and γ_i be elements of *W*. Then the following conditions are equivalent:

(1) The given collection $(\beta, \gamma) = \{\beta_{ij}, \gamma_i, \beta_{i\sigma}, \gamma_{\sigma}, \gamma_{\rho}, \beta_{\sigma\rho}\}$ is the list of data induced by some factor set in $Z^2(G, W)$.

(2) The following equalities hold for every $1 \le i, j \le n$:

Proof. By completing the data with $\beta_{\sigma i} = \beta_{i\sigma}^{-1}$, $\beta_{\rho i} = \beta_{i\rho}^{-1}$ and $\beta_{\sigma\sigma} = \beta_{\rho\rho} = 1$ we have that (C1) is a rewriting of condition (C1) from Proposition 1.

(C2) is the rewriting of condition (C2) from Proposition 1 because this condition vanishes when $1 \le i, j, k \le n$ and when two of the elements i, j, k are equal. Furthermore, permuting i, j, k in (C2) yields equivalent conditions. So we only have to consider three cases: substituting i = i, j = j, and $k = \sigma$; i = i, j = j, and $k = \rho$; and $i = i, j = \rho$, and $k = \sigma$. In the first two cases one obtains $\sigma(\beta_{ij}) = \rho(\beta_{ij}) = \beta_{ij}$, or equivalently $\beta_{ij} \in W^G$. For $\rho = 1$ the last case vanishes, and for $\rho \neq 1$ (C2) yields $\beta_{i\sigma}^2 = \beta_{i\rho}^{1-c}$.

Rewriting (C3) from Proposition 1 we obtain: (a) for i = i, j = j; (b) for i = i and $j = \sigma$; (c) for $i = \sigma$ and j = i; and (d) for $i = \sigma$ and $j = \sigma$.

We consider separately the cases $\rho = 1$ and $\rho \neq 1$ for the remaining cases for rewriting (C3). Assume first that $\rho = 1$. When *i* is replaced by ρ and *j* replaced by *i* (respectively, by σ) we obtain $\beta_{i\rho} = 1$ (respectively $\beta_{\sigma\rho} = 1$). On the other hand the requirement of only using normalized crossed sections implies $\gamma_{\rho} = 1$ in this case. When $j = \rho$ the conditions obtained are trivial.

Now assume that $\rho \neq 1$. For i = i and $j = \rho$ one obtains $\beta_{i\rho}^{q_i} \gamma_i^2 = 1$. For $i = \rho$ and j = i one obtains a trivial condition because $N_{\rho}(x) = 1$. For $i = \sigma$ and $j = \rho$, we obtain $\beta_{\sigma\rho}^{V(q\sigma)} \gamma_{\sigma}^2 = \beta_{1\rho}^{t_1} \cdots \beta_{n\rho}^{t_n}$. For $i = \rho$ and $j = \sigma$ one has $\sigma(\gamma_{\rho}) = \gamma_{\rho}$, and for $i = \rho$ and $j = \rho$ one obtains $\rho(\gamma_{\rho}) = \gamma_{\rho}$. The last two equalities are equivalent to $\gamma_{\rho} \in W^G$. \Box

Corollary 5. With the notation of Corollary 4, assume that G/C is non-cyclic and q_k and t_k are even for some $k \le n$. Let (β, γ) be the list of data induced by a factor set in $Z^2(G, W)$. Then the list obtained by replacing $\beta_{k\sigma}$ by $-\beta_{k\sigma}$ and keeping the remaining data fixed is also induced by a factor set in $Z^2(G, W)$.

Proof. It is enough to show that $\beta_{k\sigma}$ appears in all the conditions of Corollary 4 with an even exponent. Indeed, it only appears in (C2.b) with exponent 2; in (C3.b) with exponent q_k ; in (C3.c) with exponent $-V(q_{\sigma})$; and in (C3.d) and (C3.f) with exponent t_k . By the assumption it only remains to show that $V(q_{\sigma})$ is even. Indeed, $v_2(V(q_{\sigma})) = v_2(c^{q_{\sigma}} - 1) - v_2(c - 1) = 1 + b - v_2(c - 1) \ge 1$ because $c \ne 1 \mod 2^{1+b}$. \Box

The data (β, γ) induced by a factor set are not cohomologically invariant because they depend on the selection of π and of the u_{c_i} 's, u_{σ} and u_{ρ} . However, at least the β_{ij} are cohomologically invariant. For every $\alpha \in H^2(G, W)$ we associate a matrix $\beta_{\alpha} = (\beta_{ij})_{1 \le i,j \le n}$ of elements of W^G as follows: First select a group epimorphism $\pi : \overline{G} \to G$ realizing α and $u_{c_1}, \ldots, u_{c_n} \in \overline{G}$ such that $\pi(u_{c_i}) = c_i$, and then set $\beta_{ij} = [u_{c_j}, u_{c_i}]$. The definition of β_{α} does not depend on the choice of π and the u_{c_i} 's because if $w_1, w_2 \in W$ and $u_1, u_2 \in \overline{G}$ then $[w_1u_1, w_2u_2] = [u_1, u_2]$.

Proposition 6. Let $\beta = (\beta_{ij})_{1 \le i,j \le n}$ be a matrix of elements of W^G and for every $1 \le i,j \le n$ let $a_{ii} = 0$ and $a_{ij} = \min(a, v_p(q_i), v_p(q_j))$, if $i \ne j$.

Then there is an $\alpha \in H^2(G, W)$ such that $\beta = \beta_\alpha$ if and only if the following conditions hold for every $1 \le i, j \le n$:

$$\beta_{ij}\beta_{ji} = \beta_{ij}^{p^{a_{ij}}} = 1.$$
(6)

Proof. Assume first that $\beta = \beta_{\alpha}$ for some $\alpha \in Z^2(G, W)$. Then (6) is a consequence of conditions (C1), (C2.a) and (C3.a) of Corollary 4.

Conversely, assume that β satisfies (6). The idea of the proof is that one can enlarge β to a list of data (β , γ) that satisfies conditions (C1)–(C3) of Corollary 4. Hence the desired conclusion follows from the corollary.

Condition (C1) follows automatically from (6). If $i, j \leq n$ then $\beta_{ij} \in W^G$ follows from the fact that $a \geq a_{ij}$ and so (6) implies that $\beta_{ij}^{p^a} = 1$. Hence (C2.a) holds. Also (C3.a) holds automatically from (6) because $p^{a_{ij}}$ divides q_i . Hence, we have to select the $\beta_{i\sigma}$'s, $\beta_{i\rho}$'s, γ_i 's, $\beta_{\sigma\rho}$, γ_{σ} , and γ_{ρ} for (C2.b) and (C3.b)–(C3.f) to hold.

Assume first that D = G. In this case we just take $\beta_{i\sigma} = \beta_{i\rho} = \beta_{\sigma\rho} = \gamma_i = \gamma_{\sigma} = \gamma_{\rho} = 1$ for every *i*. Then (C2.b), (C3.b), (C3.d) and (C3.f) hold trivially by our selection. Moreover, in this case $\sigma = 1$ and so $t_i = 0$ for each i = 1, ..., n, hence (C3.c) also holds.

In the remainder of the proof we assume that $D \neq G$. First we show how one can assign values to $\beta_{\sigma i}$ and γ_i , for $i \leq n$ for (C3.b)–(C3.d) to hold. Let $d = v_p(c - 1)$ and $e = v_p(V(q_{\sigma})) = a + b - d$. (see (4)). Note that d = a if C = D and $a = 1 \leq 2 \leq d \leq b$ if $C \neq D$ (because we are assuming that $D \neq G$). Let X_1, X_2, Y_1 and Y_2 be integers such that $c - 1 = p^d X_1$, $V(q_{\sigma}) = p^e X_2$, and $X_1 Y_1 \equiv X_2 Y_2 \equiv 1 \mod p^{a+b}$. By (6), $\beta_{ij}^{p^{a_{ij}}} = 1$ and so $\beta_{ij} \in W^{p^{a+b-a_{ij}}}$. Therefore there are integers b_{ij} , for $1 \leq i, j \leq n$ such that $b_{ii} = b_{ij} + b_{ij} = 0$ and $\beta_{ij} = \zeta^{b_{ij}p^{a+b-a_{ij}}}$. For every $i \leq n$ set

$$x_i = Y_2 \sum_{j=1}^n t_j b_{ji} p^{a-a_{ji}}, \qquad \beta_{\sigma i} = \zeta^{x_i p^{d-a}} \qquad y_i = Y_1 Y_2 \sum_{j=1}^n t_j b_{ji} \frac{q_i}{p^{a_{ij}}}, \quad \text{and} \quad \gamma_i = \zeta^{y_i}.$$

Then $V(q_{\sigma})p^{d-a}x_i = p^e X_2 Y_2 \sum_{j=1}^n t_j b_{ji} p^{d-a_{ji}} \equiv \sum_{j=1}^n t_j b_{ji} p^{a+b-a_{ji}} \mod p^{a+b}$ and therefore

$$\beta_{\sigma i}^{V(q_{\sigma})} = \zeta_{j=1}^{\sum \atop j=1}^{n} t_{j} b_{ji} p^{a+b-a_{ji}} = \prod_{i=1}^{n} \beta_{ji}^{t_{j}}$$

that is (C3.c) holds. Moreover $q_i p^{d-a} x_i = p^d Y_2 \sum_{j=1}^n t_j b_{ji} \frac{q_i}{p^{a_{ij}}} \equiv p^d X_1 y_i = (c-1)y_i$ and therefore $\beta_{i\sigma}^{q_i} = \gamma_i^{c-1}$, that is (C3.b) holds.

We now compute

$$\sum_{i=1}^{n} t_i x_i = Y_2 \sum_{1 \le i, j \le n} t_i t_j b_{ij} p^{a-a_{ij}} = Y_2 \sum_{i=1}^{n+1} t_i^2 b_{ii} p^{a-a_{ii}} + Y_2 \sum_{1 \le i < j \le n} t_i t_j (b_{ij} + b_{ji}) p^{a-a_{ij}} = 0.$$
(7)

Then setting $\gamma_{\sigma} = 1$, one has

$$\gamma_{\sigma}^{c-1} \prod_{i=1}^{n} \beta_{i\sigma}^{t_{i}} = \prod_{i=1}^{n} \zeta^{-t_{i}x_{i}p^{d-a}} = \zeta^{-p^{d-a}\sum_{i=1}^{n} t_{i}x_{i}} = 1$$

and (C3.d) holds. This finishes the assignments of $\beta_{i\sigma}$ and γ_i for $i \leq n$ and of γ_{σ} .

If *C* = *D* then a quick end is obtained assigning $\beta_{i\rho} = \beta_{\sigma\rho} = \gamma_{\rho} = 1$.

So it only remains to assign values to $\beta_{i\rho}$, $\beta_{\sigma\rho}$ and γ_{ρ} under the assumption that $C \neq D$. Set $\beta_{i\rho} = \zeta^{-Y_1x_i}$. In this case $p^a = 2$ and therefore $2p^{d-a}x_i = p^dx_i \equiv (c-1)Y_1x_i$ and $q_iY_1x_i = 2y_i$. Thus $\beta_{i\sigma}^2 \beta_{i\rho}^{c-1} = \zeta^{2p^{d-a}x_i} \zeta^{(1-c)Y_1x_i} = 1$, hence (C2.b) holds, and $\beta_{i\rho}^{q_i} \gamma_i^2 = \zeta^{-q_iY_1x_i+2y_i} = 1$, hence the first relation of (C3.f) follows.

Finally, using (7) one has

$$\beta_{1\rho}^{t_1}\cdots\beta_{n\rho}^{t_n}=(\beta_{1\sigma}^{t_1}\cdots\beta_{n\sigma}^{t_n})^{-Y_1}=1=\gamma_{\sigma}^2$$

and the last two relations of (C3.f) hold when $\beta_{\sigma\rho} = \gamma_{\rho} = 1$. \Box

Let $\beta = (\beta_{ij})$ be an $n \times n$ matrix of elements of W^G satisfying (6). Then the map $\Psi : B \times B \to W^G$ given by

$$\Psi((c_1^{x_1}\cdots c_n^{x_n}, c_1^{y_1}\cdots c_n^{y_n})) = \prod_{1 \le i,j \le n} \beta_{ij}^{x_i y_j}$$

is a *skew pairing* of *B* over W^G in the sense of [3]; that is, it satisfies the following conditions for every $x, y, z \in B$:

$$(\Psi 1) \quad \Psi(x, x) = \Psi(x, y)\Psi(y, x) = 1, \qquad (\Psi 2) \quad \Psi(x, yz) = \Psi(x, y)\Psi(x, z).$$

Conversely, every skew pairing of *B* over W^G is given by a matrix $\beta = (\beta_{ij} = \Psi(c_i, c_j))_{1 \le i,j \le n}$ satisfying (6). In particular, every class in $H^2(G, W)$ induces a skew pairing $\Psi = \Psi_\alpha$ of *B* over W^G given by $\Psi(x, y) = \alpha_{x,y} \alpha_{y,x}^{-1}$, for all $x, y \in B$, for any cocycle α representing the given cohomology class.

In terms of skew pairings, Proposition 6 takes the following form.

Corollary 7. If Ψ is a skew pairing of B over W^G then there is an $\alpha \in H^2(G, W)$ such that $\Psi = \Psi_{\alpha}$.

Corollary 7 was obtained in [3, Proposition 2.5] for $p^a \neq 2$. The remaining cases were considered in [5, Corollary 1.3], where it is stated that for every skew pairing Ψ of *C* over W^G there is a factor set $\alpha \in Z^2(G, W)$ such that $\Psi(x, y) = \alpha_{x,y}\alpha_{y,x}^{-1}$, for all $x, y \in C$. However, this is false if $\rho^2 \neq 1$ and *B* has nontrivial elements of order 2. Indeed, if Ψ is the skew pairing of *B* over W^G given by the factor set α then $\Psi(x, \rho^2) = 1$ for each $x \in C$. To see this we introduce a new set of generators of *G*, namely $G = \langle c_1, \ldots, c_n, c_{n+1}, \rho, \sigma \rangle$ with $c_{n+1} = \rho^2$. Then condition (C3) of Proposition 1, for $i = \rho$ and j = i reads $\beta_{(n+1)i} = 1$ which is equivalent to $\Psi(c_i, \rho^2) = 1$ for all $1 \leq i \leq n$. Using this it is easy to give a counterexample to [5, Corollary 1.3].

Before finishing this section we mention two lemmas that will be needed in next section. The first is elementary and so the proof has been omitted.

Lemma 8. Let *S* be the set of skew pairings of *B* with values in W^G . If $B = B' \times B''$ and $b_1, b_2 \in B'$ and $b_3 \in B''$ then $\max\{\Psi(b_1 \cdot b_3, b_2) : \Psi \in S\} = \max\{\Psi(b_1, b_2) : \Psi \in S\} \cdot \max\{\Psi(b_3, b_2) : \Psi \in S\}.$

Lemma 9. Let $\widehat{B} = B \times \langle g \rangle$ be an abelian group and let $h \in B$. If $k = \gcd\{p^a, |g|\}$ and $t = |hB^k|$ then t is the maximum possible value of $\Psi(h, g)$ as Ψ runs over all skew pairings of \widehat{B} over $\langle \zeta_{p^a} \rangle$.

Proof. Since *k* divides p^a , the hypothesis $t = |hB^k|$ implies that there is a group homomorphism $\chi : B \to \langle \zeta_{p^a} \rangle$ such that $\chi(B^k) = 1$ and $\chi(h)$ has order *t*. Let $\Psi : \widehat{B} \times \widehat{B} \to \langle \zeta_{p^a} \rangle$ be given by $\Psi(xg^i, yg^j) = \chi(x^jy^{-i}) = \chi(x)^i\chi(y)^{-j}$, for $x, y \in B$.

If $g^i = g^{i'}$, then $i \equiv i' \mod |g|$ and hence $i \equiv i' \mod k$. Therefore, $x^i B^k = x^{i'} B^k$, which implies that $\chi(x)^i = \chi(x)^{i'}$. This shows that Ψ is well defined. Now it is easy to see that Ψ is a skew pairing and $\Psi(h, g) = \chi(h)$ has order t.

Conversely, if Ψ is any skew pairing of \widehat{B} over $\langle \zeta_{p^a} \rangle$, then $\Psi(x, g)^{p^a} = 1$ and $\Psi(x, g)^{|x|} = \Psi(1, g) = 1$ for all $x \in B$. This implies that $\Psi(x^k, g) = \Psi(x, g)^k = 1$ for all $x \in B$, and so $\Psi(B^k, g) = 1$. Therefore $\Psi(h, g)^t = \Psi(h^t, g) \in \Psi(B^k, g) = 1$, so the order of $\Psi(h, g)$ divides t. \Box

3. Local index computations

In this section *K* denotes an abelian number field, *p* a prime, and *r* an odd prime. Our goal is to find a global formula for $\beta(r) = \beta_p(r)$, the maximum nonnegative integer for which $p^{\beta(r)}$ is the *r*-local index of a Schur algebra over *K*.

We are going to abuse the notation and denote by K_r the completion of K at a (any) prime of K dividing r. If E/K is a finite Galois extension, one may assume that the prime of E dividing r, used to compute E_r , divides the prime of K over r, used to compute K_r . We use the classical notation:

 $e(E/K, r) = e(E_r/K_r) =$ ramification index of E_r/K_r .

 $f(E/K, r) = f(E_r/K_r)$ = residue degree of E_r/K_r .

 $m_r(A) = \text{Index of } K_r \otimes_K A$, for a Schur algebra A over K.

By Benard–Schacher Theory and because E/K is a finite Galois extension, e(E/K, r), f(E/K, r) and $m_r(A)$ do not depend on the selection of the prime of K dividing r (see [7,2]). By the Benard–Schacher Theorem and because $|S(K_r)|$ divides r - 1 [8], if either $\zeta_p \notin K$ or $r \neq 1 \mod p$ then $\beta(r) = 0$. So to avoid trivialities we assume that $\zeta_p \in K$ and $r \equiv 1 \mod p$.

Suppose $K \subseteq F = \mathbb{Q}(\zeta_n)$ for some positive integer *n* and let $n = r^{v_r(n)}n'$. Then $Gal(F/\mathbb{Q})$ contains a *canonical Frobenius* automorphism at *r* which is defined by $\psi_r(\zeta_{r^{v_r(n)}}) = \zeta_{r^{v_r(n)}}$ and $\psi_r(\zeta_{n'}) = \zeta_{n'}^r$. We can then define the *canonical Frobenius* automorphism at *r* in Gal(F/K) as $\phi_r = \psi_r^{r(K)}(R)$. On the other hand, the *inertia subgroup at r* in Gal(F/K) is by definition the subgroup of Gal(F/K) that acts as $Gal(F_r/K_r(\zeta_{n'}))$ in the completion at *r*.

We use the following notations.

Notation 10. First we define some positive integers:

- $m = minimum even positive integer with K \subseteq \mathbb{Q}(\zeta_m)$,
- $a = minimum positive integer with <math>\zeta_{p^a} \in K$,

 $s = v_p(m)$ and

 $b = \begin{cases} s, & \text{if } p \text{ is odd or } \zeta_4 \in K, \\ s + v_p([K \cap \mathbb{Q}(\zeta_{p^s}) : \mathbb{Q}]) + 2, & \text{if } \text{Gal}(K(\zeta_{p^{2a+s}})/K) \text{ is not cyclic, and} \\ s + 1, & \text{otherwise.} \end{cases}$

We also define

$$L = \mathbb{Q}(\zeta_m), \quad \zeta = \zeta_{p^{a+b}}, \quad W = \langle \zeta \rangle, \quad F = L(\zeta),$$

$$G = \operatorname{Gal}(F/K), \quad C = \operatorname{Gal}(F/K(\zeta)), \quad and \quad D = \operatorname{Gal}(F/K(\zeta + \zeta^{-1})).$$

Since $\zeta_p \in K$, the automorphism $\Upsilon : G \to \operatorname{Aut}(W)$ induced by the Galois action satisfies the conditions of Section 2 and the notation is consistent. As in that section we fix elements ρ and σ in G and a subgroup $B = \langle c_1 \rangle \times \cdots \times \langle c_n \rangle$ of C such that $D = B \times \langle \rho \rangle$, $C = B \times \langle \rho^2 \rangle$ and $G/C = \langle \rho C \rangle \times \langle \sigma C \rangle$. Furthermore, $\sigma(\zeta) = \zeta^c$ for some integer c chosen according to (4). Notice that by the choice of b, $G \neq B$.

We also fix an odd prime r and set

$$e = e(K(\zeta_r)/K, r), \quad f = f(K/\mathbb{Q}, r) \text{ and } v(r) = \max\{0, a + v_p(e) - v_p(r^f - 1)\}.$$

Let $\phi \in G$ be the canonical Frobenius automorphism at r in G, and write

 $\phi = \rho^{j'} \sigma^j \eta$, with $\eta \in B$, $0 \le j' < |\rho|$ and $0 \le j < |\sigma C|$.

Let q be an odd prime not dividing m. Let $G_q = \text{Gal}(F(\zeta_q)/K)$, $C_q = \text{Gal}(F(\zeta_q)/K(\zeta))$ and let c_0 denote a generator of $\text{Gal}(F(\zeta_q)/F)$. Finally we fix

 $\theta = \theta_q$, a generator of the inertia group of r in G_q and

 $\phi_q = c_0^{s_0} \phi = c_0^{s_0} \eta \rho^{j'} \sigma^j = \eta_q \rho^{j'} \sigma^j$, the canonical Frobenius automorphism at r in G_q .

Observe that we are considering *G* as a subgroup of G_q by identifying *G* with $Gal(F(\zeta_q)/K(\zeta_q))$. Again the Galois action induces a homomorphism $\Upsilon_q : G_q \to Aut(W)$ and $W^{G_q} = \langle \zeta_{p^q} \rangle$. So this action satisfies the conditions of Section 2 and we adapt the notation by setting

$$B_q = \langle c_0 \rangle \times B,$$
 $C_q = \operatorname{Gal}(F(\zeta_q)/K(\zeta)) = \operatorname{Ker}(\Upsilon_q)$ and $D_q = \operatorname{Gal}(F(\zeta_q)/K(\zeta + \zeta^{-1})).$

Notice that $C_q = \langle c_0 \rangle \times C = B_q \times \langle \rho^2 \rangle$ and $D_q = D \times \langle c_0 \rangle$. Hence $G/C \simeq G_q/C_q$.

If Ψ is a skew pairing of B over W^G then Ψ has a unique extension to a skew pairing Ψ of C over W^G which satisfies $\Psi(B, \rho^2) = \Psi(\rho^2, B) = 1$. So we are going to apply skew pairings of B to pairs of elements in C under the assumption that we are using this extension.

Since $p \neq r, \theta \in C_q$. Moreover, if r = q then θ is a generator of $Gal(F(\zeta_r)/F)$ and otherwise $\theta \in C$. Notice also that if G/Cis non-cyclic then $p^a = 2$ and $K \cap \mathbb{Q}(\zeta_{2^s}) = \mathbb{Q}(\zeta_{2^d} + \zeta_{2^d}^{-1})$, where $d = v_p(c-1)$, and so b = s + d.

It follows from results of Janusz [3, Proposition 3.2] and Pendergrass [6, Theorem 1] that $p^{\beta(r)}$ always occurs as the *r*-local index of a cyclotomic algebra of the form $(L(\zeta_q)/L, \alpha)$ where q is either 4 or a prime not dividing m and α takes values in $W(L(\zeta_q))_p$, with the possibility of q = 4 occurring only in the case when $p^s = 2$. By inflating the factor set α to $F(\zeta_q)$ (which will be equal to F when $p^s = 2$), we have that $p^{\beta(r)} = m_r(A)$, where

 $A = (F(\zeta_a)/K, \alpha)$ (we also write α for the inflation),

q is an odd prime not dividing *m*, and

 α takes values in $\langle \zeta_{p^4} \rangle$ if $p^s = 2$ and in $\langle \zeta_{n^s} \rangle$ otherwise.

So it suffices to find a formula for the maximum *r*-local index of a Schur algebra over *K* of this form.

Write $A = \bigoplus_{g \in G_a} F(\zeta_q) u_g$, with $u_g^{-1} x u_g = g(x)$ and $u_g u_h = \alpha_{g,h} u_{gh}$, for each $x \in F(\zeta_q)$ and $g, h \in G_q$. After a diagonal change of basis one may assume that if $g = c_0^{s_0} c_1^{s_1} \cdots c_n^{s_n} \rho^{s_\rho} \sigma^{s_\sigma}$ with $0 \le s_i < q_i = |c_i|, 0 \le s_\rho < |\rho|$ and $0 \leq s_{\sigma} < q_{\sigma} = |\sigma C|$ then $u_g = u_{c_0}^{s_0} u_{c_1}^{s_1} \cdots u_{c_n}^{s_n} u_{\rho}^{s_{\rho}} u_{\sigma}^{s_{\sigma}}$. It is well known (see [8] and [3, Theorem 1]) that

$$m_r(A) = |\xi|, \quad \text{where } \xi = \xi_\alpha = \left(\frac{\alpha_{\theta,\phi_q}}{\alpha_{\phi_q,\theta}}\right)^{r^{\nu_r(e)}} u_\theta^{r^{\nu_r(e)}(r^f-1)}.$$
(9)

This can be slightly simplified as follows. If r|e then $\langle \theta \rangle$ has an element θ^k of order r. Since θ fixes every root of unity of order coprime with r, necessarily r^2 divides m and the fixed field of θ^k in L is $\mathbb{Q}(\zeta_{m/r})$. Then $K \subseteq \mathbb{Q}(\zeta_{m/r})$, contradicting the minimality of *m*. Thus $r \nmid e$ and so

$$\xi = \frac{\alpha_{\theta,\phi_q}}{\alpha_{\phi_q,\theta}} u_{\theta}^{r^f-1} = \frac{\alpha_{\theta,\phi_q}}{\alpha_{\phi_q,\theta}} \gamma_{\theta}^{\frac{r^f-1}{e}} = [u_{\theta}, u_{\phi_q}] \gamma_{\theta}^{\frac{r^f-1}{e}}, \quad \text{where } \gamma_{\theta} = u_{\theta}^{e}.$$
(10)

With our choice of the $\{u_g : g \in G_q\}$, we have

$$[u_{\theta}, u_{\phi_a}] = [u_{\theta}, u_{\eta_a} u_{\sigma}^{j} u_{\sigma}^{j}] = \Psi(\theta, \eta_q) [u_{\theta}, u_{\sigma}^{j} u_{\sigma}^{j}],$$

where $\Psi = \Psi_{\alpha}$ is the skew pairing associated to α . Therefore,

$$\xi = \xi_0 \Psi(\theta, \eta_q) \quad \text{with} \quad \xi_0 = \xi_{0,\alpha} = [u_\theta, u_\rho^{j'} u_\sigma^{j}] \gamma_\theta^{\frac{p'-1}{e}}.$$

Let (β, γ) be the data associated to the factor set α (relative to the set of generators $c_1, \ldots, c_n, \rho, \sigma$).

Lemma 11. Let $A = (F(\zeta_q)/K, \alpha)$ be a cyclotomic algebra satisfying the conditions of (8) and use the above notation. Let $\theta = c_0^{s_0} c_1^{s_1} \cdots c_n^{s_n} \rho^{2s_{n+1}}$, with $0 \le s_i < q_i$ for $0 \le i \le n$, and $0 \le s_{n+1} \le |\rho^2|$.

(1) If G/C is cyclic then $\xi_0^{p^{\nu(r)}} = 1$.

(2) Assume that G/C is non cyclic and let $\mu_i = \beta_{io}^{\frac{1-c}{2}} \beta_{i\sigma}^{-1}$. Then $\mu_i = \pm 1$ and $\xi_0^{p^{\nu(r)}} = \prod_{i=0}^n \mu_i^{2^{\nu(r)}(j+j')s_i}$.

Proof. For the sake of regularity we write $c_{n+1} = \rho^2$. Since $e = |\theta|$, we have that q_i divides es_i for each *i*. Furthermore, $v_p(e)$ is the maximum of the $v_p\left(\frac{q_i}{\gcd(q_i,s_i)}\right)$ for i = 1, ..., n. Then

$$v_p(e) - v_p(r^f - 1) = \max\left\{v_p\left(\frac{q_i}{\gcd(q_i, s_i)(r^f - 1)}\right), i = 1, \dots, n\right\}.$$

Hence

l

$$\begin{aligned}
\psi(r) &= \max\{0, v_p(e) + a - v_p(r^f - 1)\} \\
&= \min\left\{x \ge 0 : p^a \text{ divides } p^x \cdot \frac{s_i(r^f - 1)}{q_i}, \text{ for each } i = 1, \dots, n\right\}.
\end{aligned}$$
(11)

Now we compute γ_{θ} in terms of the previous expression of θ . Set $v = u_{c_{n+1}}^{s_{n+1}}$ and $y = u_{c_0}^{s_0} u_{c_1}^{s_1} \cdots u_{c_n}^{s_n}$. Then

 $u_{\theta} = yv = \gamma vy$, with $\gamma = \Psi(c_{n+1}^{s_{n+1}}, c_0^{s_0}c_1^{s_1}\dots, c_n^{s_n})$.

(8)

Thus $\gamma^e = \Psi(c_{n+1}^{es_{n+1}}, c_0^{s_0}c_1^{s_1}, \dots, c_n^{s_n}) = 1$. Using that $[y, \gamma] = 1$, one easily proves by induction on *m* that

$$(yv)^m = \gamma^{\binom{m}{2}} y^m v^m.$$

Hence

$$(yv)^{e} = \gamma^{\binom{e}{2}} y^{e} v^{e} = \gamma^{\binom{e}{2}} y^{e} u_{c_{n+1}}^{es_{n+1}} = \gamma^{\binom{e}{2}} y^{e} \gamma_{\rho}^{\frac{es_{n+1}}{q_{n+1}}},$$

and $\gamma^{\binom{e}{2}} = \pm 1$. (If *p* or *e* is odd then necessarily $\gamma^{\binom{e}{2}} = 1$.) Now an easy induction argument shows

$$\gamma_{\theta} = \mu \gamma_0^{\frac{es_0}{q_0}} \gamma_1^{\frac{es_1}{q_1}} \cdots \gamma_n^{\frac{es_n}{q_n}} \gamma_{\rho}^{\frac{es_{n+1}}{q_{n+1}}}, \quad \text{for some } \mu = \pm 1.$$

Note that $\nu(r) + v_p(r^f - 1) - v_p(e) \ge a \ge 1$, by (11). Then $\mu^{p^{\nu(r)}\frac{r^f - 1}{e}} = \gamma_{\rho}^{p^{\nu(r)}\frac{r^f - 1}{e}} = 1$, because both μ and γ_{ρ} are ± 1 , and they are 1 if p is odd (see (C3.e) and (C3.f)). Thus

$$\gamma_{\theta}^{p^{\nu(r)}\frac{r^{f}-1}{e}} = \prod_{i=0}^{n} \gamma_{i}^{p^{\nu(r)}\frac{(r^{f}-1)s_{i}}{q_{i}}}.$$
(12)

(1) Assume that G/C is cyclic. We have that $\rho = 1$ and $v_p(c - 1) = a$. Note that the β 's and γ 's are p^b -th roots of unity by (8).

Let Y be an integer satisfying $Y \frac{c-1}{p^a} \equiv 1 \mod p^b$. Since $\phi_q = \sigma^j \eta_q$ with $\eta_q \in C_q$, we have $r^f \equiv c^j \mod p^{a+b}$ and so $Y \frac{r^f-1}{p^a} = Y \frac{c-1}{p^a} \frac{c^j-1}{c-1} \equiv V(j) \mod p^b$. Then $\beta_{i\sigma}^{Y \frac{r^f-1}{p^a}} = \beta_{i\sigma}^{V(j)}$.

Using that p^a divides $p^{\nu(r)} \frac{s_i(r^f-1)}{q_i}$ (see (11)) and $Y \frac{(c-1)}{p^a} \equiv 1 \mod p^b$ we obtain

$$\gamma_{i}^{p^{\nu(r)}\frac{s_{i}(r^{f}-1)}{q_{i}}} = (\gamma_{i}^{c-1})^{Y\frac{p^{\nu(r)}s_{i}(r^{f}-1)}{p^{a}q_{i}}}$$

Combining this with (C3.b) we have

$$[u_{c_{i}}^{s_{i}}, u_{\sigma}^{j}]^{p^{\nu(r)}} \gamma_{i}^{p^{\nu(r)} \frac{s_{i}(r^{f}-1)}{q_{i}}} = [u_{c_{i}}, u_{\sigma}]^{s_{i}V(j)p^{\nu(r)}} (\gamma_{i}^{c-1})^{Y \frac{p^{\nu(r)}s_{i}(r^{f}-1)}{p^{d}q_{i}}}$$

$$= [u_{c_{i}}, u_{\sigma}]^{s_{i}V(j)p^{\nu(r)}} \beta_{i\sigma}^{Y \frac{p^{\nu(r)}s_{i}(r^{f}-1)}{p^{d}}}$$

$$= ([u_{c_{i}}, u_{\sigma}]\beta_{i\sigma})^{p^{\nu(r)}s_{i}V(j)} = 1,$$

$$(13)$$

because $\beta_{i\sigma} = [u_{\sigma}, u_{c_i}] = [u_{c_i}, u_{\sigma}]^{-1}$. Using (12) and (13) we have

$$\xi_0^{p^{\nu(r)}} = [u_\theta, u_\sigma^j]^{p^{\nu(r)}} \gamma_\theta^{p^{\nu(r)} \frac{r^f - 1}{e}} = \prod_{i=0}^n [u_{c_i}^{s_i}, u_\sigma^j]^{p^{\nu(r)}} \gamma_i^{p^{\nu(r)} \frac{s_i(r^f - 1)}{q_i}} = 1$$

and the lemma is proved in this case.

(2). Assume now that G/C is non-cyclic. Then $p^a = 2$ and if $d = v_2(c-1)$ then $d \ge 2$ and b = s + d. The data for α lie in $\langle \zeta_{2^{s+1}} \rangle \subseteq \langle \zeta_{2^b} \rangle \subseteq \langle \zeta_{2^{1+s+d}} \rangle = W(F)_2$. (C2.b) implies $\mu_i = \pm 1$ and using (C3.b) and (C3.f) one has $\gamma_i^{c+1} = \beta_{i\sigma}^{q_i} \beta_{i\rho}^{-q_i}$. Let X and Y be integers satisfying $X \frac{c-1}{2^d} \equiv Y \frac{c+1}{2} \equiv 1 \mod 2^{1+s+d}$ and set $Z = Y \frac{p^f-1}{2}$.

Recall that $2^a = 2$ divides $2^{\nu(r)} \frac{s_i(r^f - 1)}{q_i}$, by (11). Therefore,

$$\gamma_{i}^{2^{\nu(r)}\frac{s_{i}(r^{f}-1)}{q_{i}}} = \left(\gamma_{i}^{c+1}\right)^{\gamma\frac{2^{\nu(r)}s_{i}(r^{f}-1)}{2q_{i}}} = \left(\beta_{i\sigma}^{s_{i}}\beta_{i\rho}^{-s_{i}}\right)^{2^{\nu(r)}Z}.$$
(14)

Let $j'' \equiv j' \mod 2$ with $j'' \in \{0, 1\}$. Then $\Upsilon(\rho^{j''}) = \Upsilon(\rho^{j'})$ and $N_{\rho}^{j'}(w) = w^{j''}$. Therefore,

$$[u_{\theta}, u_{\rho}^{j'} u_{\sigma}^{j}] = [u_{\theta}, u_{\rho}^{j'}] u_{\rho}^{j'} [u_{\theta}, u_{\sigma}^{j}] u_{\rho}^{-j'} = \prod_{i=0}^{n} (\beta_{i\rho}^{-s_{i}})^{j''} (\beta_{i\sigma}^{-s_{i}})^{V(j)(-1)^{j''}}$$

$$= \prod_{i=0}^{n} (\beta_{i\rho}^{-s_{i}})^{j''} (\beta_{i\sigma}^{-s_{i}})^{X \frac{c-1}{2^{d}} V(j)(-1)^{j''}} = \prod_{i=0}^{n} (\beta_{i\rho}^{-s_{i}})^{j''} (\beta_{i\sigma}^{-s_{i}})^{X \frac{c^{j-1}}{2^{d}}(-1)^{j''}}.$$

$$(15)$$

Using (12), (14) and (15) we obtain

$$\xi_{0}^{2^{\nu(r)}} = [u_{\theta}, u_{\rho}^{j'} u_{\sigma}^{j}]^{2^{\nu(r)}} \gamma_{\theta}^{2^{\nu(r)}} \frac{t^{f}-1}{e} = \left(\prod_{i=0}^{n} \beta_{i\rho}^{-s_{i}}\right)^{2^{\nu(r)}(Z+j'')} \left(\prod_{i=0}^{n} \beta_{i\sigma}^{s_{i}}\right)^{2^{\nu(r)}\left(Z-X\frac{d^{j}-1}{2^{d}}(-1)^{j''}\right)}.$$
(16)

We claim that $Z + j'' \equiv 0 \mod 2^{d-1}$. On the one hand $Y \equiv 1 \mod 2^{d-1}$. On the other hand, $\phi_q = \rho^{j'} \sigma^j \eta_q$, with $\eta_q \in C_q$ and so $r^f \equiv (-1)^{j'} c^j \mod 2^{1+s+d}$. Hence $r^f \equiv (-1)^{j'} = (-1)^{j''} \mod 2^d$ and therefore $Z + j'' = Y \frac{r^{f-1}}{2} + j'' \equiv \frac{(-1)^{j''-1}}{2} + j'' \mod 2^{d-1}$. Considering the two possible values of $j'' \in \{0, 1\}$ we have $\frac{(-1)^{j''-1}}{2} + j'' = 0$ and the claim follows. From $d = v_2(c-1)$ one has $c \equiv 1 + 2^{d-1} \mod 2^d$ and hence $Y \equiv 1 + 2^{d-1} \mod 2^d$ and $r^f \equiv (-1)^{j'} c^j \equiv (-1)^{j'} (1+j2^d) \mod 2^{1+s+d}$. Then

$$\begin{aligned} \frac{Z+j''}{2^{d-1}} &= \frac{Y(r^f-1)+2j''}{2^d} \equiv \frac{Y((-1)^{j''}(1+j2^d)-1)+2j''}{2^d} = \frac{Y(\frac{(-1)^{j''}-1}{2}+(-1)^{j''}j2^{d-1})+j''}{2^{d-1}} \\ &\equiv \frac{(1+2^{d-1})(-j''+(-1)^{j''}j2^{d-1})+j''}{2^{d-1}} = \frac{-j''-j''2^{d-1}+(-1)^{j''}j2^{d-1}+(-1)^{j''}j2^{2(d-1)}+j''}{2^{d-1}} \\ &\equiv -j''+(-1)^{j''}j \equiv j+j'' \equiv j+j' \text{ mod } 2. \end{aligned}$$

Using this, the equality $\beta_{i\rho}^{\frac{1-\epsilon}{2}} = \mu_i \beta_{i\sigma}$ and the fact that $\mu_i = \pm 1$ we obtain

$$\beta_{i\rho}^{-(Z+j'')} = \beta_{i\rho}^{-X\frac{c-1}{2^d}(Z+j'')} = \beta_{i\rho}^{-X\frac{c-1}{2}\frac{Z+j''}{2^{d-1}}} = \mu_i^{X\frac{Z+j''}{2^{d-1}}} \beta_{i\sigma}^{X\frac{Z+j''}{2^{d-1}}} = \mu_i^{j+j'} \beta_{i\sigma}^{X\frac{Z+j''}{2^{d-1}}}$$

Combining this with (16) we have

$$\begin{split} \xi_0^{2^{\nu(r)}} &= \prod_{i=0}^n \mu_i^{2^{\nu(r)}(j+j')s_i} \prod_{i=0}^n (\beta_{i\sigma}^{s_i})^{2^{\nu(r)} \left[Z - X \frac{c^{j-1}}{2^d} (-1)^{j''} + \frac{X(Z+j'')}{2^{d-1}} \right]} \\ &= \prod_{i=0}^n \mu_i^{2^{\nu(r)}(j+j')s_i} \prod_{i=0}^n (\beta_{i\sigma}^{s_i})^{2^{\nu(r)} \left[\frac{2^d Z + X(c^j-1)(-1)^{j''} + 2X(Z+j'')}{2^d} \right]} \end{split}$$

To finish the proof it is enough to show that the exponent of each $\beta_{i\sigma}$ in the previous expression is a multiple of 2^{1+s} . Indeed, $2^d \equiv X(c-1) \mod 2^{1+s+d}$ and so

$$2^{d}Z + X(c^{j} - 1)(-1)^{j''} + 2X(Z + j'') \equiv ZX(c - 1) - X(c^{j} - 1)(-1)^{j''} + 2X(Z + j'')$$

= $X\left(Y\frac{r^{f} - 1}{2}(c + 1) + (c^{j} - 1)(-1)^{j''} + 2j''\right)$
= $X((r^{f} - 1)Y\frac{c + 1}{2} - c^{j}(-1)^{j''} + (-1)^{j''} + 2j'')$
 $\equiv X(r^{f} - 1 - c^{j}(-1)^{j''} + 1) \equiv 0 \mod 2^{1+s+d}$

as required. This finishes the proof of the lemma in Case 2. $\hfill \Box$

We need the following Proposition from [3].

Proposition 12. For every odd prime $q \neq r$ not dividing $m \text{ let } d(q) = \min\{a, v_p(q-1)\}$. Then

- (1) $|c_0^{k_q}C/C^{p^{d(q)}}| \le |\theta_q^fC/C^{p^a}|$, and
- (2) the equality holds if $q \equiv 1 \mod p^a$ and r is not congruent with a p-th power modulo q. There are infinitely many primes q satisfying these conditions.

Proof. See Proposition 4.1 and Lemma 4.2 of [3].

We are ready to prove the main result of the paper.

Theorem 13. Let *K* be an abelian number field, *p* a prime and *r* an odd prime. If either $\zeta_p \notin K$ or $r \neq 1 \mod p$ then $\beta_p(r) = 0$. Assume otherwise that $\zeta_p \in K$ and $r \equiv 1 \mod p$, and use Notation 10 including the decomposition $\phi = \eta \rho^{j'} \sigma^{j}$ with $\eta \in B$.

- (1) Assume that r does not divide m.
 - (a) If *G*/*C* is non-cyclic and $j \not\equiv j' \mod 2$ then $\beta_p(r) = 1$.
 - (b) Otherwise $\beta_p(r) = \max\{v(r), v_p(|\eta B^{p^{d(r)}}|)\}$, where $d(r) = \min\{a, v_p(r-1)\}$.

- (2) Assume that r divides m and let q_0 be an odd prime not dividing m such that $q_0 \equiv 1 \mod p^a$ and r is not a p-th power modulo q_0 . Let $\theta = \theta_{q_0}$ be a generator of the inertia group of G_{q_0} at r. (a) If G/C is non-cyclic, $j \neq j' \mod 2$ and θ is not a square in D then $\beta_p(r) = 1$.

 - (b) Otherwise $\beta_p(r) = \max\{v(r), h, v_p(|\theta^f C^{p^a}|)\}$, where $h = \max_{\Psi}\{v_p(|\Psi(\theta, \eta)|)\}$ as Ψ runs over all skew pairings of B over $\langle \zeta_{p^a} \rangle$.

Proof. For simplicity we write $\beta(r) = \beta_p(r)$. We already explained why if either $\zeta_p \notin K$ or $r \neq 1 \mod p$ then $\beta_p(r) = 0$. So in the remainder of the proof we assume that $\zeta_p \in K$ and $r \equiv 1 \mod p$, and so K, p, and r satisfy the condition mentioned at the beginning of the section. It was also pointed out earlier in this section that $p^{\beta(r)}$ is the r-local index of a crossed product algebra A of the form $A = (F(\zeta_q)/K, \alpha)$ with q and α taking values in $\langle \zeta_{p^s} \rangle$ or in $\langle \zeta_4 \rangle$. Moreover, since $p^{\nu(r)}$ is the r-local index of the cyclic Schur algebra $(K(\zeta_r)/K, c_0, \zeta_{p^a})$ [3], we always have $\nu(r) \leq \beta(r)$.

In Case 1 one may assume that q = r, because $(F(\zeta_q)/K, \alpha)$ has r-local index 1 for every $q \neq r$. Since $Gal(F(\zeta_r)/F)$ is the inertia group at r in G_r , in this case one may assume that $\theta = \theta_r = c_0$. On the contrary, in Case 2, $q \neq r$, and $\theta = c_1^{s_1} \cdots c_n^{s_n} \rho^{2s_{n+1}}$, for some s_1, \dots, s_{n+1} .

In cases (1.a) and (2.a), G/C is non-cyclic and hence $p^a = 2$. Then $\beta(r) \leq 1$, by the Benard–Schacher theorem, and hence if v(r) = 1 then $\beta(r) = 1$. So assume that v(r) = 0. Furthermore, in case (2.a), s_i is odd for some $i \leq n$, because $\theta \notin D^2$. Now we can use Corollary 5 to produce a cyclotomic algebra $A' = (F(\zeta_q)/K, \alpha')$ so that $\xi_{\alpha} = -\xi_{\alpha'}$. Indeed, there is such an algebra such that all the data associated to α are equal to the data for A, except for $\beta_{0\sigma}$, in case (1.a), and $\beta_{k\sigma}$, case (2.a). Using Lemma 11 and the assumptions v(r) = 0 and $j \neq j' \mod 2$, one has $\xi_{0,\alpha} = -\xi_{0,\alpha'}$ and $\Psi_{\alpha} = \Psi_{\alpha'}$. Thus $\xi_{\alpha} = -\xi_{\alpha'}$, as claimed. This shows that $\beta(r) = 1$ in cases (1.a) and (2.a).

In case (1.b), $\xi = \xi_0 \Psi(c_0, \eta)$. By Lemma 11, ξ_0 has order dividing $p^{\nu(r)}$ in this case and, by Lemma 9, max{ $|\Psi(\theta, \eta)|$: $\Psi \in S$ = $|\eta B^{p^{d(r)}}|$, where S is the set of skew pairings of B_r with values in $\langle p^a \rangle$. Using this and $\nu(r) \leq \beta(r)$ one deduces that $\beta(r) = \max\{\nu(r), v_p(|\eta B^{p^{d(r)}}|)\}.$

The formula for case (2.b) is obtained in a similar way using the equality $\xi = \xi_0 \Psi(\theta, \eta) \Psi(\theta, c_0^0)$ and Lemmas 8 and 9.

4. Examples

As we indicated in the introduction, the authors' main motivation for Theorem 13 is the study the gap between the Schur group of an abelian number field K and its subgroup generated by classes containing cyclic cyclotomic algebras over K, a problem which reduces to studying the gaps between the integers $v_p(r)$ and $\beta_p(r)$ for all finite primes p and odd primes r. (For details, see [4].) What Theorem 13 really allows one to do is to compute $\beta_p(r)$ in terms of the number of *p*-th power roots of unity in K and the embedding of Gal(F/K) in Gal(F/Q). In this section, we will provide some examples of abelian number fields K to illustrate the computations involved in the various cases of Theorem 13. We use the notation of the previous sections in all of these examples.

Example 14. Let $K = \mathbb{Q}(\zeta_m)$, with *m* minimal. Let *p* be a prime for which $\zeta_p \in K$, and let *r* be an odd prime which is \equiv 1 mod *p*. Let *a* be the maximal integer for which $\zeta_{p^a} \in K$, and let $s = v_p(m)$. If we are not in the case when b = s, then p = 2, s = 0, and $K(\zeta_{n^{2a+s}}) = K(\zeta_4)$, so we will be in the case where b = s + 1 = 1. Since K = L, we have that $F = K(\zeta_{n^{a+b}})$, so *C* is trivial. Also, $G = \text{Gal}(K(\zeta_{p^{a+b}})/K)$ will be cyclic for either case of *b*. Therefore, either case (1b) or (2b) of Theorem 13 applies, and it is immediate from C = B = 1 that $\beta_p(r) = \nu_p(r)$ for each choice of p and r.

Example 15. Let *p* and *r* be odd primes with $v_p(r-1) = 2$. Let *K* be the extension of $\mathbb{Q}(\zeta_p)$ with index *p* in $L = \mathbb{Q}(\zeta_{pr})$, and consider $\beta_p(r)$. We have a = s = b = 1, and $F = \mathbb{Q}(\zeta_{p^2r})$. We have that $G = \langle \theta \rangle \times C$ is elementary abelian of order p^2 , so we are in case (2b) of Theorem 13. Since $Gal(F/\mathbb{Q})$ has an element ψ such that ψ^p generates *C*, letting q_0 and θ be as in Theorem 13(2), we find that $v_p(|\psi G|) = 1$. It follows that $p^f = p$, so $v_p(r) = 0$ and $v_p(|\theta^f C^{p^a}|) = 1$. Since ϕ generates C, we have that $\phi = \eta$ and so h = 1 by Lemma 9. So $\beta_p(r) = 1$ in this case.

Example 16. Let q be a prime greater than 5, and let $K = \mathbb{Q}(\zeta_q, \sqrt{2})$. Let p = 2, and let r be any prime for which $r^2 \equiv 1 \mod q$ and $r \equiv 5 \mod 2^6$. In computing $\beta_2(r)$, one sees that a = 1 and $L = \mathbb{Q}(\zeta_{8q})$, so s = 3. Since $\text{Gal}(K(\zeta_{2^5})/K)$ is not cyclic, we set $b = 5 + v_2([\mathbb{Q}(\sqrt{2}) : \mathbb{Q}]) = 6$, so $F = \mathbb{Q}(\zeta_{64q})$. Since $\mathbb{Q}(\zeta_q) \subset K$, we have $C = \text{Gal}(F/K(\zeta_{64})) = 1$. For our generators of Gal(*F*/*K*), we may choose ρ , σ such that $\rho(\zeta_q) = \zeta_q$, $\rho(\zeta_{64}) = \zeta_{64}^{-1}$, $\sigma(\zeta_q) = \zeta_q$, and $\sigma(\zeta_{64}) = \zeta_{64}^9$. By our choice of *r*, we have that $\psi_r \notin G$, but $5^2 \equiv 9^3 \mod 64$ implies that $\psi_r^2 = \sigma^3$. This means that we are in case (1a) of Theorem 13 with $v_p(r) = 0$ and $j \neq j' \mod 2$, so $\beta_2(r) = 1$.

Example 17. Let r be a prime for which $r \equiv 5 \mod 64$. Let K' be the unique subfield of index 2 in $\mathbb{Q}(\zeta_r)$, and let $K = K'(\sqrt{2})$. Consider $\beta_2(r)$ for the field *K*. As in the previous example, we have $L = \mathbb{Q}(\zeta_{8r})$, $F = \mathbb{Q}(\zeta_{64r})$ and we choose $\rho, \sigma \in G$ satisfying $\rho(\zeta_{64}) = \zeta_{64}^{-1}$ and $\sigma(\zeta_{64}) = \zeta_{64}^{9}$. Using Proposition 12, choose an odd prime q_0 for which *r* in not a square modulo q_0 . If ψ_r is the Frobenius automorphism in $\text{Gal}(F(\zeta_{q_0})/\mathbb{Q})$, then $\psi_r \notin G_{q_0}$, and $\phi_r = \psi_r^2$ sends ζ_{64} to $\zeta_{64}^{5^2} = \zeta_{64}^{9^3}$. Therefore, $\phi_r = \sigma^3 \eta_{q_0}$, where $\eta_{q_0} \in C_{q_0}$ fixes ζ_{64r} . Since $\zeta_r \notin K$, $\theta = \theta_{q_0}$ generates a direct factor of G_{q_0} and so it cannot be a square in D. It follows that the conditions of case (2a) of Theorem 13 hold, and so we can conclude $\beta_2(r) = 1$. **Example 18.** Let *p* be an odd prime and let *q* and *r* be primes for which $v_p(q-1) = v_p(r-1) = 2$, $v_q(r^p - 1) = 0$, and $v_q(r^{p^2} - 1) = 1$. The existence of such primes *q* and *r* for each odd prime *p* is a consequence of Dirichlet's Theorem on primes in arithmetic progression. Indeed, given *p* and *q* primes with $v_p(q-1) = 2$, there is an integer *k*, coprime to *q* such that the order of *k* modulo q^2 is p^2 . Choose a prime *r* for which $r \equiv k + q \mod q^2$ and $r \equiv 1 + p^2 \mod p^3$. Then *p*, *q* and *r* satisfy the given conditions.

Let *K* be the compositum of *K'* and *K''*, the unique subextensions of index *p* in $\mathbb{Q}(\zeta_{p^2q})/\mathbb{Q}(\zeta_{p^2})$ and $\mathbb{Q}(\zeta_{p^2r})/\mathbb{Q}(\zeta_{p^2})$ respectively. Then $m = p^2 rq$, a = 2 and $L = \mathbb{Q}(\zeta_m) = K(\zeta_q) \otimes_K K(\zeta_r)$. Therefore, $F = \mathbb{Q}(\zeta_{p^4qr})$, and $G = \text{Gal}(F/K(\zeta_{qr})) \times \text{Gal}(F/K(\zeta_{p^4q})) \times \text{Gal}(F/K(\zeta_{p^4q}))$. We may choose σ so that $\langle \sigma \rangle = \text{Gal}(F/K(\zeta_{qr})) \cong G/C$ has order p^2 . The inertia subgroup of *r* in *G* is $\text{Gal}(F/K(\zeta_{p^4q}))$, which is generated by an element θ of order *p*.

Since $K = K' \otimes_{\mathbb{Q}(\zeta_{p^2})} K''$ and $K''/\mathbb{Q}(\zeta_{p^2})$ is totally ramified at *r*, we have that K'_r is the maximal unramified extension of

 K_r/\mathbb{Q}_r . It follows from $v_q(r^{p^2} - 1) = 1$ and $v_q(r^p - 1) = 0$ that $[\mathbb{Q}_r(\zeta_q) : \mathbb{Q}_r] = p^2$, and so $[K'_r : \mathbb{Q}_r] = p = f(K/\mathbb{Q}, r)$. Therefore $v_p(|W(K_r)|) = v_p(|W(\mathbb{Q}_r)|) + f(r) = v_p(r-1) + 1 = 3$, and so we have $v(r) = \max\{0, a + v_p(|\theta|) - v_p(|W(K_r)|)\}$ = 0. Since |C| = p and θ has order p, we also see that $\theta^{f(r)}C^{p^2}$ is trivial, so $v_p(|\theta^{f(r)}C^{p^2}|) = 0$.

Let ψ_r be the Frobenius automorphism of r in $\text{Gal}(F/\mathbb{Q})$. Then $\psi_r^p = \sigma^p \eta$, where $\eta \in B$ generates $\text{Gal}(F/K(\zeta_{p^4r}))$. Since $\langle \theta \rangle \cap \langle \eta \rangle = 1$, it follows from Lemma 9 that $h = v_p(|\theta|) = 1$. So case (2b) of Theorem 13 applies to show that $\beta_p(r) = h = 1$.

Acknowledgements

Research supported by the National Science and Engineering Research Council of Canada, UEFISCSU project ID 532, contract no. 29/28.09.2007, D.G.I. of Spain and Fundación Séneca of Murcia.

References

- [1] S.A. Amitsur, D. Saltman, Generic abelian crossed products and *p*-algebras, J. Algebra 51 (1978) 76–87.
- [2] M. Benard, M. Schacher, The Schur subgroup II, J. Algebra 22 (1972) 378-385.
- [3] G.J. Janusz, The Schur group of an algebraic number field, Ann. of Math. (2) 103 (1976) 253–281.
- [4] A. Herman, G. Olteanu, Á. del Río, The gap between the Schur group and the subgroup generated by cyclic cyclotomic algebras, preprint.
- [5] J.W. Pendergrass, The 2-part of the Schur group, J. Algebra 41 (1976) 422–438.
- [6] J.W. Pendergrass, The Schur subgroup of the Brauer group, Pacific J. Math. 69 (1977) 477-499.
- [7] J.-P. Serre, Local Fields, Springer, 1979.
- [8] T. Yamada, The Schur Subgroup of the Brauer Group, in: Lecture Notes in Mathematics, vol. 397, Springer-Verlag, 1974.