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COMPUTATION AND APPLICATIONS
OF SCHUR INDICES

GABRIELA OLTEANU

Abstract. We review some methods for the computation of the Schur
indices of Schur algebras. We also give some applications that Schur
indices may have in studying other problems, such as providing useful
information for the computation of the Wedderburn decomposition of
rational group algebras and for the study of the automorphism group of
semisimple group algebras.

1. Introduction

The Schur index of a Schur algebra is an invariant of the algebra that
results to be a useful tool for the study of different problems. It can be seen
as complementary information to be added to data previously obtained.
For instance, in the case of the description of the simple components of
the Wedderburn decomposition of rational group algebras, the knowledge
of the local Schur indices of such algebras provides sometimes the missing
information of the description obtained with different methods. We will give
an example in the last section to illustrate this situation.

The interest for the computation of the Schur index and related topics
can be illustrated by classical references from which we mention only a few
of them related with our connection with the subject (see e.g. [2, 4, 5, 16,
17, 20]). We do not pretend to make a complete survey of the results related
with the Schur index computation, but rather to review the results from the
above references that provide algorithmic methods for the computation of
the Schur indices of Schur algebras.

We would like to mention some articles that are related to this topic and
some of its applications. Hence, we start with the articles that deal with
the characterization of the maximum r-local index of a Schur algebra over
an abelian number field K. Since the Schur group S(K) of K is a torsion
abelian group, it is enough to compute the maximum of the r-local indices
of Schur algebras over K with index a power of p for every prime p dividing
the order of the group of roots of unity W (K) of K. In [11] this number
was referred as pβp(r) and G.J. Janusz gave a formula for pβp(r) when either
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p is odd or K contains a primitive 4-th root of unity. The remaining cases
were studied by J.W. Pendergrass and then completed and unified in [7].

In the study of the automorphism group of a rational group algebra, it
has been proved that one important step is the classification of the simple
components of the group algebra into isomorphism classes. In [6] it was
proved that the ring isomorphism between simple components of the rational
group algebras of finite metacyclic groups is determined by the center, the
dimension over Q, and the list of local Schur indices at rational primes.
More generally, the ring isomorphism between cyclic cyclotomic algebras
over cyclotomic number fields is essentially determined by the list of local
Schur indices at all rational primes.

The Schur index seems to be very useful also when studying the gap
between the groups S(K) and CC(K), that is the Schur group of the field
K and the group generated by classes containing cyclic cyclotomic algebras
over K, for K an abelian extension of the rationals [8].

Many results related with Schur index computation, including the com-
putation of the Brauer group, were obtained for number fields in connection
with the development of class field theory. Therefore, the fields that we
consider will be mainly number fields or even abelian number fields.

2. Computation of the Schur index

We start by collecting some notions about Schur algebras and the Brauer
group of a field as principal tool for the study of central simple algebras.
Then we define the Schur index of a Schur algebra and we present some
methods to compute it. Some results of this section are classical, mainly
from [17, 16].

For the beginning, we assume that K is a arbitrary field and all alge-
bras are finite dimensional K-algebras. Let A and B be central simple
K-algebras. We introduce an equivalence relation on the class of central
simple K-algebras. We say that A and B are Brauer equivalent, or simply
equivalent and write A ∼ B, if there is a division algebra D and positive
integers n and m such that A ' Mn(D) and B ' Mm(D) as K-algebras.
All the isomorphisms here are K-algebra homomorphisms. The equivalence
class of a central simple K-algebra A is denoted by [A].

The Brauer group of a field K, denoted by Br(K), is the set of equivalence
classes of central simple K-algebras under the Brauer equivalence, with the
tensor product acting as the group operation and the equivalence class of K
acting as the identity element. The inverse of [A] is [Aop], where Aop is the
opposite algebra of A. The Brauer group is torsion, that is, every element
of Br(K) has finite order. The exponent of a central simple K-algebra A,
denoted exp(A), is the order of [A] in the Brauer group Br(K). That is,
exp(A) is the smallest number m such that A⊗m ∼= Mr(K) for some r,
where A⊗m denotes the tensor product of m copies of A.
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For a central simple K-algebra A, the dimension dimK(A) of the algebra
as a vector space over K is a square and the degree is deg(A) = (dimK A)1/2.
The degree mapping is clearly not invariant under the Brauer equivalence.
Because of this fact, and for other reasons, it is useful to define a different
numerical function on central simple algebras. This is given by the Schur
index. Let A be a central simple K-algebra, so that A ∼= Mm(D) for some
unique division K-algebra D. Then the Schur index of A, denoted by ind(A),
is the degree of D, that is, the square root of the dimension of D as a vector
space over K. If χ is an irreducible complex character of a finite group
G and K is a field of characteristic zero, then the Schur index of χ over
K, denoted by mK(χ), is the Schur index of the simple component of the
group algebra KG corresponding to the character χ, denoted by A(χ,K).
An alternative way of defining the Schur index of an irreducible complex
character with respect to a field K is related to the question:

“For which fields K ≤ C is the character χ ∈ Irr(G) afforded
by a K-representation?”

If K ≤ C is not one of these fields, we wish to measure the extent to which
χ fails to be afforded over K. This suggests the following definition from
[9]. Let K ≤ L, where L is any splitting field for the finite group G. Choose
an irreducible L-representation ρ which affords χ and an irreducible K-
representation ϕ such that ρ is a constituent of ϕL. Then the multiplicity of
ρ as a constituent of ϕL is the Schur index of χ over K denoted by mK(χ).

Now we would like to define the local index of a central simple algebra.
Throughout K denotes a number field. A prime of K is an equivalence class
of valuations of K. There are the archimedean or infinite primes, arising
from embeddings of K into the complex field C and the non-archimedean
or finite primes of K, arising from discrete P -adic valuations of K, with P
ranging over the distinct maximal ideals in the ring of all algebraic integers
of K. Let A be a central simple K-algebra and let P range over the primes
of K. We use KP to denote the P -adic completion of K. Let AP = KP⊗K A
the P -adic completion of A. Then AP is a central simple KP -algebra and
the local Schur index of A at P is defined as mP (A) = ind[AP ].

Clearly AP ∼ KP if and only if mP (A) = 1. We say that P is ramified in
A if mP (A) > 1. An infinite prime P of K corresponds to an archimedean
valuation on K which extends the ordinary absolute value on the rational
field Q. The P -adic completion KP is either the real field R (and P is called
a real prime), or else the complex field C (and P is a complex prime).

Theorem 2.1. Let A be a central simple K-algebra, and let mP be the local
index of A at an infinite prime P of K.

(i) If P is a complex prime, then AP ∼ KP and mP = 1.
(ii) If P is a real prime, then either AP ∼ KP and mP = 1, or else

AP ∼ H and mP = 2, where H is the division algebra of real quaternions.
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If P is any finite prime of K, then KP is a complete field relative to a
discrete valuation, and has a finite residue class field. Considering the Hasse
invariant inv[AP ] of a central simple KP -algebra, we obtain an isomorphism
inv : Br(KP ) ' Q/Z. We know that inv[AP ] = sP /mP and exp[AP ] = mP ,
where mP = ind[AP ] and (sP ,mP ) = 1. The following result is also known
as the “Local–Global Principle” for algebras.

Theorem 2.2 (Hasse–Brauer–Noether–Albert). Let A be a central simple
K-algebra. Then A ∼ K ⇐⇒ AP ∼ KP for each prime P of K.

Remark 2.3. (i) For each prime P of K, there is a homomorphism Br(K) →
Br(KP ) defined by KP ⊗K −. Let [A] ∈ Br(K) and mP be the local index
of A at P . Then mP = 1 almost everywhere, which means that [AP ] = 1
almost everywhere. Hence there is a well defined homomorphism

Br(K) →
⊕

P

Br(KP ).

The Hasse–Brauer–Noether–Albert Theorem is precisely the assertion that
this map is monic.

(ii) A stronger result, due to Hasse, describes the image of Br(K) in⊕
P Br(KP ) by means of Hasse invariants. Hence, the following sequence is

exact:

(1) 1 → Br(K) →
⊕

P

Br(KP ) inv→ Q/Z→ 0,

where inv denotes the Hasse invariant map, computed locally on each com-
ponent: inv =

⊕
invKp . From the exactness of the previous sequence (1)

it follows the next relation which is considered many times a formulation of
the Hasse–Brauer–Noether–Albert Theorem in terms of Hasse invariants:

(2)
∑

P

inv[AP ] = 0, [A] ∈ Br(K).

Of course, inv[AP ] = 0 if P is a complex prime, while inv[AP ] = 0 or 1/2
if P is a real prime. The exactness of (1) also tells us that, other than
(2), these are the only conditions which the set of local invariants {inv[AP ]}
must satisfy. In other words, suppose that we are given in advance any set of
fractions {xP } from Q/Z, such that xP = 0 almost everywhere,

∑
xP = 0,

xP = 0 if P is complex, xP = 0 or 1/2 if P is real. Then there is a unique
[A] ∈ Br(K) such that

inv[AP ] = xP for all P .

Two of the major consequences of the Brauer–Hasse–Noether–Albert The-
orem are the following theorems.

Theorem 2.4. Let [A] ∈ Br(K) having local indices {mP }. Then ind[A] =
exp[A] = lcm {mP }, the least common multiple of the mP ’s.

Theorem 2.5. Every central simple K-algebra is isomorphic to a cyclic
algebra.
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The theorem asserts that every central division algebra over a number
field K is isomorphic to (L/K, σ, a) for a suitable cyclic extension L/K with
generating automorphism σ and suitable a ∈ K∗. Equivalently, A contains
a maximal commutative subfield L which is a cyclic field extension of K.

The Schur group of a field K is the answer to the following question:
“What are the classes in the Brauer group Br(K) occurring
in the Wedderburn decomposition of the group algebra KG,
for G a finite group?”

Let A be a central simple algebra over K. If A is spanned as a K-vector
space by a finite subgroup of its group of units, then A is called a Schur
algebra over K. Equivalently, A is a Schur algebra over K if and only if A is
a simple component central over K of the group algebra KG for some finite
group G. The Schur subgroup of the Brauer group Br(K), denoted by S(K),
consists of those classes that contain a Schur algebra over K. The fact that
S(K) is a subgroup of Br(K) is a direct consequence of the isomorphism
KG⊗K KH ∼= K(G×H).

The Brauer–Witt Theorem has been the corner stone result for the study
of the Schur group of a field. It asserts that in order to calculate S(K),
one may restrict to the classes in Br(K) containing cyclotomic algebras
A = (K(ζ)/K, τ), that is, crossed products

K(ζ) ∗α
τ Gal(K(ζ)/K) =

⊕

σ∈Gal(K(ζ)/K)

K(ζ)σ,

where ζ is a root of unity, the action α is the natural action of Gal(K(ζ)/K)
on K(ζ) and all the values of the 2-cocycle τ are roots of unity in K(ζ).

Theorem 2.6 (Brauer–Witt). A Schur algebra over K, that is, a simple
component of a group algebra KG with center K, is Brauer equivalent to a
cyclotomic algebra over K.

The elements of the Brauer group are characterized by invariants, hence
it is reasonable to ask whether the elements of S(K) are distinguished in
Br(K) by behavior of invariants. M. Benard [1] had shown the following.

Theorem 2.7. If [A] ∈ S(K), for K an abelian number field, p is a rational
prime and P1, P2 are primes of K over the prime p, then A ⊗K KP1 and
A⊗K KP2 have the same index.

Furthermore, M. Benard and M. Schacher [2] have shown the following.

Theorem 2.8. Let [A] ∈ S(K). Then:
(1) If the index of A is m then ζm is in K, where ζm is a primitive m-th

root of unity.
(2) If P is a prime of K lying over the rational prime p and σ ∈

Gal(K/Q) with ζσ
m = ζb

m then the p-invariant of A satisfies the rela-
tion invP (A) ≡ b invP σ(A) mod 1.
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If a central simple algebra A over K satisfies (1) and (2) above then
A is said to have uniformly distributed invariants. Based on this result,
R.A. Mollin defined the group U(K) as the subgroup of Br(K) consisting
of those algebra classes which contain an algebra with uniformly distributed
invariants [12]. It follows from the Benard-Schacher result that S(K) is a
subgroup of U(K). General properties of U(K) and the relationship between
S(K) and U(K) are investigated in [12].

There are additional restrictions on the collection of local indices of central
simple algebras that lie in the Schur subgroup of an abelian number field.
The following is a useful consequence of results of Witt ([19], Satz 10 and
11). It also holds in the more general setting of central simple algebras over
K that have uniformly distributed invariants [12].

Theorem 2.9. Let K be an abelian number field and A ∈ S(K). If p is an
odd prime, then p ≡ 1 mod mp(A). If p = 2 then m2(A) ≤ 2.

The previous result is also a consequence of a result from [10] and [20]
describing the Schur group of a subextension of a cyclotomic extension of
the local field Qp, for p an odd prime number.

Theorem 2.10. Let k be a subfield of the cyclotomic extension Qp(ζm),
e = e(k/Qp) the ramification index and e0 the largest factor of e coprime to
p. Then S(k) is a cyclic group of order (p− 1)/e0 and it is generated by the
class of the cyclic algebra (k(ζp)/k, σ, ζ), where ζ is a generator of the group
of roots of unity in k with order coprime to p.

Let q be a prime integer, Qq the complete q-adic rationals, and k a subfield
of Qq(ζm) for some positive integer m. The following lemma from [10] is
helpful to compute the index of cyclic algebras over the local field k.

Proposition 2.11. Let E/k be a Galois extension with ramification index
e = e(E/k) and ζ be a root of unity in k having order relatively prime to q.
Then ζ = NE/k(x) for some x ∈ E ⇐⇒ ζ = ξe for ξ a root of unity in k.

Notice that having A = (E/k, σ, a) a cyclic algebra, exp[A] is the least
positive integer t such that at ∈ NE/k(E∗), where NE/k : E → k denotes the
norm map of the extension E/k. Moreover, if exp[A] = [E : k], then A is
a division algebra. This is a consequence of the property of cyclic algebras
saying that (E/k, σ, a) ∼ k if and only if a ∈ NE/k(E∗). Proposition 2.11
gives then a criterion to decide when at ∈ NE/k(E∗), for a a root of 1, that
is, exactly when at = ξe(E/k), for ξ a root of 1 in k.

By the Brauer–Witt Theorem, every Schur algebra is Brauer equivalent to
a cyclotomic algebra and, if the center is a number field, then it is isomorphic
to a cyclic algebra. Algebras with these two features were called cyclic
cyclotomic and were studied in [8]. Hence, cyclic cyclotomic algebra over a
number field K is a cyclic algebra (K(ζ)/K, σ, ξ), where ζ and ξ are roots
of unity.
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A Schur algebra over K is cyclic cyclotomic if and only if it is generated
over K by a metacyclic group if and only if it is a simple component of a
group algebra KG for G a metacyclic group (see [13]). The next proposition
gives useful information on the local indices of cyclic cyclotomic algebras.
First we need the following lemma from [17].

Lemma 2.12. Let K be a local field, W an unramified extension of K of
degree f and v be the P -adic valuation on K. Given any α ∈ K, the equation
NW/K(x) = α, with x ∈ W is solvable for x if and only if f divides v(α).

Proposition 2.13. Let A = (K(ζn)/K, σ, ζm) for K a number field and ζn,
ζm roots of unity of orders n and m respectively. If p is a prime of K, then
mp(A) divides m. If mP (A) 6= 1 and p is a finite prime then p divides n.

Proof. [A]m = [(K(ζn)/K, σ, 1)] = 1, hence mp(A) divides m(A) which di-
vides m. Furthermore, if p - n, then K(ζn)/K is unramified at p and
vp(ζm) = 0 since ζm is a unit in the ring of integers of K. By Lemma 2.12, the
equation NKp(ζn)/Kp

(x) = ζm has a solution in K(ζn) and so mp(A) = 1. ¤
The results presented in this section provide the algorithmic methods that

one could follow in order to compute the (local) Schur indices of a Schur
algebra. In the next section we give an example of such a computation.

3. Applications: An example

We present an example where the knowledge of the (local) Schur indices
of a Wedderburn component of a rational group algebra is essential in order
to obtain a precise description of it as Brauer equivalent to a cyclotomic
algebra by completing the information obtained with other methods.

In [14] a theoretical algorithm was given for the computation of the Wed-
derburn decomposition of semisimple group algebras KG, for finite groups
G and fields K of characteristic zero, based on a computational approach of
the Brauer–Witt Theorem. In [15], the theoretical algorithm was improved
and a working algorithm was presented, which was the support for the im-
plementation of this method in a computer package called wedderga for the
computer system GAP. The theoretical algorithm has as input a group alge-
bra KG and as output the Wedderburn components Aχ, parameterized by
representatives of the K-equivalence classes of the irreducible characters of
the finite group G. The components Aχ are described as Md1/d2

(B), where
d1 is the degree of the character χ, d2 is the degree of a computed cyclo-
tomic algebra B. Notice that the size of the matrix Aχ is a rational number
rather than an integer. Although this does not make literal sense, still the
algorithm provides a lot of information on the Wedderburn decomposition.

The group of smallest order for which this phenomenon occurs is the group
[240, 89] in the library of the GAP system. In an example presented in the
last remark from [14], it was shown a limitation of the method proposed
to describe the Wedderburn components as matrices over divison algebras
when wanting to precise determine these division algebras, using this group.
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In the following example we compute the local Schur indices of the simple
component from that example and we provide the desired description of the
simple algebra.

Example 3.1. Let G be the group [240, 89] in the library of the GAP sys-
tem. Then the output of one of the implemented functions of a previous
version of wedderga applied to QG provided the following numerical infor-
mation for one of the simple factors of QG:

[ 3/4, 40, [ [ 4, 17, 20 ] , [ 2, 31, 0 ] ] ].
Notice that the first entry of this 4-tuple which gives us the size of the
matrix is not an integer and a formal presentation of the corresponding
simple algebra is given by

A 'M3/4

(
Q(ζ40)(g, h|ζg

4 = ζ17
40 , ζh

4 = ζ31
40 , g4 = −1, h2 = 1, gh = hg)

)
.

Denote A = M3/4 (B). The center of the algebra B is Q(
√

2) and the
algebrasQ(ζ8)(h|ζh

8 = ζ−1
8 , h2 = 1) andQ(ζ5)(g|ζg

5 = ζ2
5 , g4 = −1) are simple

algebras in B. Furthermore, Q(ζ8)(h|ζh
8 = ζ−1

8 , h2 = 1) ' M2(Q(
√

2)) and

B = M2(Q(
√

2))⊗Q(
√

2) (Q(
√

2)⊗Q Q(ζ5)(g|ζg
5 = ζ2

5 , g4 = −1))

= M2(Q(
√

2)⊗Q Q(ζ5)(g|ζg
5 = ζ2

5 , g4 = −1))

Hence, we can formally describe the algebra A as isomorphic to

M3/2(Q(
√

2)⊗Q Q(ζ5)(g|ζg
5 = ζ2

5 , g4 = −1))

and we conclude that the algebra A is isomorphic to either M3(D) for some
division quaternion algebra over Q(

√
2) or to M6(Q(

√
2)). In fact, in order

to decide which one of these options is the correct one, one should compute
the local Schur indices of the cyclic algebra

C = Q(
√

2)⊗Q Q(ζ5)(g|ζg
5 = ζ2

5 , g4 = −1) = (Q(
√

2, ζ5)/Q(
√

2),−1).

The algebra C has local index 2 at ∞, because R ⊗Q(
√

2)

(Q(
√

2, ζ5)/Q(
√

2),−1) ' (C/R,−1) ' H(R). Thus A ' M3(D), for
D a division algebra of index 2 and center Q(

√
2). Notice that D is

determined by its Hasse invariants by the Hasse–Brauer–Noether–Albert
Theorem. Now we prove that the local indices of A at the finite primes
are all 1. By Proposition 2.13, mp(A) = 1 for every finite prime p not
dividing 5. Thus, we only have to compute m5(A). Note that ζ4 ∈ Q5,
so Q5(

√
2) = Q5(ζ8) is the unique unramified extension of Q5 of degree 2.

Thus ζ8 ∈ Z(Q(
√

2)5 ⊗Q(
√

2) C) and NQ5(
√

2,ζ5)/Q5(
√

2)(ζ8) = −1. By
Proposition 2.11, m5(A) = 1.

Thus, the Hasse invariants of A at the finite primes are all 0 and they
are 1/2 at the two infinite primes, since the algebra has real completion
isomorphic to H(R) at both infinite primes of Q(

√
2). Using these cal-

culations, one deduces that D is the quaternion algebra H(Q(
√

2)) and
A ' M3(H(Q(

√
2))).
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