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Abstract. Let H be a Hopf algebra, and A an H-Galois extension. We
investigate H-Morita autoequivalences of A, introduce the concept of H-
Picard group, and we establish an exact sequence linking the H-Picard
group of A and the Picard group of AcoH .

1. Introduction

The aim of this paper is the following generalization, presented in Section 7
below, of the main result of M. Beattie and A. del Ŕıo [4] (see also [14] for
an approach based on [13]).

Theorem 1.1. Assume that H is a cocommutative Hopf algebra over the
field k. Let A be a faithfully flat H-Galois extension. There is an exact
sequence

1→ H1(H,Z(AcoH))
g1→ PicH(A)

g2→ Pic(AcoH)H
g3→ H2(H,Z(AcoH)).

Here H∗(H,Z(AcoH)) are the Sweedler cohomology groups (with respect to
the Miyashita-Ulbrich action of H on Z(AcoH)), Pic(AcoH)H is the group of
H-invariant elements of Pic(AcoH) and PicH(A) is the group of isomorphism
classes of invertible relative Hopf bimodules. We shall give later more details
about these notations. Moreover, g1 and g2 are group-homomorphisms,
while g3 is not.
We give a proof of the theorem by using the ideas of [14] and the results of
[6] and [15], obtaining in this way an interesting interpretation of the above
theorem in terms of Clifford extendibility to A of AcoH -modules.
The paper is divided as follows. In Section 2 we present our general set-
ting, which involves Hopf-Galois extensions, the Miyashita-Ulbrich action,
and most importantly, the concepts of H-Morita context and �H -Morita
context introduced in [6], and their relationship with Hopf subalgebras.
The main result of Section 3 says that if H is cocommutative and A is
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a faithfully flat H-Galois extension of B := AcoH , then the cotensor prod-
uct A�e := A�HA

op is a faithfully flat Hopf-Galois extension of the en-
veloping algebra Be := B ⊗ Bop. In the first part of Section 4 we discuss
the particular case when A is a cleft extension of the commutative algebra
B := AcoH , and especially, the characterization of this situation in terms
in Sweedler’s 1- and 2-cohomology. This is needed in the second part of
Section 4, where we review and adapt to our needs the results of Militaru
and Ştefan [15] on Clifford extendibility of modules. The cleft extension
in discussion is the subalgebra E := AEND(A ⊗B M)op of rational ele-
ments in AEnd(A ⊗B M)op, where M is an H-invariant B-module, and
EcoH ' BEnd(M)op is assumed to be commutative. In Section 5 we intro-
duce the H-Picard group PicH(A) and the �H -Picard group Pic�H (AcoH)
of AcoH . It is a consequence of the results of [6] that the groups PicH(A)
and Pic�H (AcoH) are isomorphic. In the situation where H is cocommuta-
tive, we can introduce the subgroup Pic(AcoH)H of Pic(AcoH) consisting of
H-stable elements of Pic(AcoH) (Section 6). The definitions of the maps g1,
g2 and g3, as well as the proof of the main theorem are given in Section 7.
The main ingredient here is the application of the Militaru-Stefan lifting
theorem to an H-stable invertible (B,B)-bimodule M , by considering the
cleft extension E := A�eEND(A�e⊗BeM)op of EcoH ∼= Z(B). Note that the
action of H on Z(B) coming from E is the same as the Miyashita-Ulbrich
action coming from A, hence it is independent of M . Section 8 is concerned
with the analysis of the map g3. It turns out that the action Pic(B) on Z(B)
induces an action of Pic(B)H on Hn(H,Z(B)), and that g3 is an 1-cocycle
of the group Pic(B)H with values in H2(H,Z(B)).
The exact sequence describing PicH(A) given in Section 7 holds in the case
where H is cocommutative; in the general case, we can still give a descrip-
tion of PicH(A), in the case where the coinvariants of A coincide with the
groundfield, that is, A is an H-Galois object. This is done in Section 9, and
involves Schauenburg’s theory of bigalois objects.
Modules will be unital and left, unless otherwise stated. For general results
on Hopf algebras the reader is referred to [7], [9] or [16]. For group graded
versions of the topics discussed here we also mention [3] and [11].

2. Hopf-Galois extensions

Throughout this paper, H is a Hopf algebra, with bijective antipode S,
over a field k. We use the Sweedler notation for the comultiplication on
H: ∆(h) = h(1) ⊗ h(2). MH (respectively HM) is the category of right
(respectively left) H-comodules. For a right H-coaction ρ (respectively a
left H-coaction λ) on a k-module M , we denote

ρ(m) = m[0] ⊗m[1] and λ(m) = m[−1] ⊗m[0].

The submodule of coinvariants M coH of a right (respectively left) H-como-
dule M consists of the elements m ∈M satisfying ρ(m) = m⊗1 (respectively
λ(m) = 1⊗m).
Let A be a right H-comodule algebra. AMH and MH

A are the categories of
left and right relative Hopf modules, and AMH

A is the category of relative
Hopf bimodules, see [6]. B = AcoH will be the subalgebra of coinvariants of
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A. We have two pairs of adjoint functors (F1 = A⊗B −, G1 = (−)coH) and
(F2 = − ⊗B A, G2 = (−)coH) between the categories BM and AMH , and
between MB and MH

A . Consider the canonical maps

can : A⊗B A→ A⊗H, can(a⊗B b) = ab[0] ⊗ b[1];

can′ : A⊗B A→ A⊗H, can′(a⊗B b) = a[0]b⊗ a[1].

We have the following result, due to H.-J. Schneider [18, Theorem I].

Theorem 2.1. For a right H-comodule algebra A, the following statements
are equivalent.

(1) (F2, G2) is a pair of inverse equivalences;
(2) (F2, G2) is a pair of inverse equivalences and A ∈ BM is flat;
(3) can is an isomorphism and A ∈ BM is faithfully flat;
(4) (F1, G1) is a pair of inverse equivalences;
(5) (F1, G1) is a pair of inverse equivalences and A ∈MB is flat;
(6) can′ is an isomorphism and A ∈MB is faithfully flat.

If these conditions are satisfied, then we say that A is a faithfully flat H-
Galois extension of B.

The Miyashita-Ulbrich action. Let A be a faithfully flat right H-Galois
extension, and consider the map

γA = can−1 ◦ (ηA ⊗H) : H → A⊗B A, h 7→
∑
i

li(h)⊗B ri(h).

Then the element γA(h) is characterized by the property

(1)
∑
i

li(h)ri(h)[0] ⊗ ri(h)[1] = 1⊗ h.

For all h, h′ ∈ H and a ∈ A, we have (see [19, 3.4]):

γA(h) ∈ (A⊗B A)B;(2)

γA(h(1))⊗ h(2) =
∑
i

li(h)⊗B ri(h)[0] ⊗ ri(h)[1];(3)

γA(h(2))⊗ S(h(1)) =
∑
i

li(h)[0] ⊗B ri(h)⊗ li(h)[1];(4) ∑
i

li(h)ri(h) = ε(h)1A;(5) ∑
i

a[0]li(a[1])⊗B ri(a[1]) = 1⊗B a;(6)

γA(hh′) =
∑
i,j

li(h′)lj(h)⊗B rj(h)ri(h′).(7)

Using the above formulas, it is straightforward to show that Z(B), the center
of B, is a right H-module algebra under the Miyashita-Ulbrich action:

x • h =
∑
i

li(h)xri(h),
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for all x ∈ Z(B), h ∈ H. In what follows, we will view Z(B) as a left
H-module algebra via

(8) h · x = x • S−1(h) =
∑
i

li(S−1(h))xri(S−1(h)).

We will need the following commutation rule in the sequel.

Lemma 2.2. For x ∈ Z(B) and a ∈ A, we have

(9) xa = a[0](S(a[1]) · x) and ax = (a[1] · x)a[0].

Proof. From (6), we know that
∑

i a[0]li(a[1])⊗Bri(a[1]) = 1⊗Ba ∈ B⊗BA ⊂
A⊗B A, and then we can see that

x⊗B a =
∑
i

xa[0]li(a[1])⊗B ri(a[1]) =
∑
i

a[0]li(a[1])x⊗B ri(a[1]),

hence
xa =

∑
i

a[0]li(a[1])xri(a[1]) = a[0](S(a[1]) · x).

For all h ∈ H, we have that h · x ∈ Z(B). Apply the first formula of (9)
with x replaced by a[1] · x; this gives the second formula:

(a[1] · x)a[0] = a[0]((S(a[1])a[2]) · x) = ax.

�

Morita equivalences. We recall here some concepts and results from [6].
These are the main ingredients in the definition of PicH(A) and of the maps
g1 and g2 in Theorem 1.1.

Definition 2.3. Let A and A′ be right H-comodule algebras. An H-Morita
context connecting A and A′ is a Morita context (A,A′,M,N, α, β) such
that M ∈ AMH

A′ , N ∈ A′MH
A , α : M ⊗A′ N → A is a morphism in AMH

A

and β : N ⊗AM → A′ is a morphism in A′MH
A′ .

Definition 2.4. Assume that A and A′ are right faithfully flat H-Galois
extensions of AcoH = B and A′coH = B′. A �H -Morita context between B
and B′ is a Morita context (B,B′,M1, N1, α1, β1) such that M1 (resp. N1)
is a left A�HA

′op-module (resp. A′�HA
op-module) and

• α1 : M1 ⊗B′ N1 → B is left A�HA
op-linear,

• β1 : N1 ⊗B M1 → B′ is left A′�HA
′op-linear.

Morita(B,B′) is the category with Morita contexts connecting B and B′ as
objects. A morphism between the Morita contexts (B,B′,M1, N1, α1, β1)
and (B,B′,M2, N2, α2, β2) is a couple (µ, ν), with µ : M1 → M2 and ν :
N1 → N2 bimodule maps such that α1 = α2◦(µ⊗B′ν) and β1 = β2◦(ν⊗Bµ).
In a similar way (see [6]), we introduce the categories Morita�H (B,B′) and
MoritaH(A,A′).
We recall the following result, see [6, Theorems 5.7 and 5.9].

Theorem 2.5. Assume that A and A′ are right faithfully flat H-Galois
extensions of B and B′.

(1) The categories MoritaH(A,A′) and Morita�H (B,B′) are equivalent.
The equivalence functors send strict contexts to strict contexts.
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(2) Let (B,B′,M1, N1, α1, β1) be strict Morita context. If M1 has a left
A�HA

′op-module structure, then there is a unique left A′�HA
op-

module structure on N1 such that (B,B′,M1, N1, α1, β1) is a strict
�H-Morita context. The corresponding strict H-Morita context
(A,B,M,N, α, β) is given by the following data

M = (A⊗A′op)⊗A�A′op M1 ∈ AMH
A′ ;

N = (A′ ⊗Aop)⊗A′�Aop N1 ∈ A′MH
A ;

α = (A⊗Aop)⊗A�Aop β1 ; β = (A′ ⊗A′op)⊗A′�A′op β1.

Hopf subalgebras. Now let K be a Hopf subalgebra of H. We assume
that the antipode of K is bijective, and that H is faithfully flat as a left
K-module. Let K+ = Ker (εK). It is well-known, and easy to prove (see
[21, Sec. 1]) that

H = H/HK+ ∼= H ⊗K k

is a left H-module coalgebra, with operations

h · l = hl, ∆H(h) = h(1) ⊗ h(2), εH(h) = ε(h).

The class inH represented by h ∈ H is denoted by h. 1 is a grouplike element
of H, and we consider coinvariants with respect to this element. A right H-
comodule M is also a right H-comodule, by corestriction of coscalars:

ρH(m) = m[0] ⊗m[1].

The H-coinvariants of M ∈MH are then

M coH = {m ∈M | m[0] ⊗m[1] = m⊗ 1}
= {m ∈M | ρ(m) ∈M ⊗K} ∼= M�HK.

If A is a right H-comodule algebra, then AcoH is a right K-comodule algebra,
and (AcoH)coK = AcoH . In [6, Cor. 7.3], we have seen the following result,
based on [19, Remark 1.8].

Proposition 2.6. Let H, K and A be as above, and assume that A is a
faithfully flat H-Galois extension of B. Then AcoH is a faithfully flat K-
Galois extension of B.

Let i : AcoH → A and j : K → H be the inclusion maps. Then we have a
commutative diagram

AcoH ⊗B AcoH
can

AcoH //

i⊗Bi

��

AcoH ⊗K
i⊗j

��
A⊗B A

canA // A⊗H
The map i⊗ j is injective (here we use the fact that we work over a field k).
From the fact that can

AcoH is an isomorphism, it follows that i⊗B i is also
injective. For k ∈ K, we then have

(canA ◦ (i⊗B i))(γAcoH ) = ((i⊗ j) ◦ can
AcoH )(γ

AcoH ) = 1⊗ j(k),

hence

(10) (i⊗B i)γAcoH (k) = γA(j(k)).
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3. Cotensor product of Hopf-Galois extensions

Troughout this Section, we assume that H is cocommutative. ∆ : H →
H ⊗H is a Hopf algebra map, so we can consider H as a Hopf subalgebra
of H ⊗H. Then H ⊗H is a left H-module by restriction of scalars.

Lemma 3.1. H ⊗H is faithfully flat as a left H-module.

Proof. Let H ⊗ 〈H〉 be the vector space H ⊗ H, but with left H-action
h(k ⊗ l) = hk ⊗ l. Then H ⊗ H and H ⊗ 〈H〉 are isomorphic as left H-
modules, and we have the following natural isomorphisms of functors:

−⊗H (H ⊗H) ∼= −⊗H (H ⊗ 〈H〉) ∼= −⊗k H,

an the result follows from the fact that H is faithfully flat as a k-vector
space. �

In a similar way, we have an isomorphism (H ⊗ H) ⊗H M ∼= H ⊗M , for
every left H-module M . In particular, k is a left H-module via the counit
ε, so we have an isomorphism

f : (H ⊗H)⊗H k → H, f(h⊗ k) = hS(k)

of H-module coalgebras, with left H-action on H given by h · k = ε(h)k.

Lemma 3.2. Let A and A′ be faithfully flat H-Galois extensions of B and
B′. Then the following statements hold.

(1) A⊗A′ is a faithfully flat H ⊗H-Galois extension of B ⊗B′.
(2) (A⊗A′)coH⊗H ∼= A�HA

′.
(3) (A�HA

′)coH = B ⊗B′.

Proof. (1) We first show that (A⊗A′)co(H⊗H) = B ⊗B′. We have a map

f : B ⊗B′ → (A⊗A′)co(H⊗H), f(b⊗ b′) = b⊗ b′.

B⊗B′ = (A⊗B′)∩(B⊗A′) and (A⊗A′)co(H⊗H) are both subspaces of A⊗A′,
so it suffices to show that f is surjective. Take

∑
i ai⊗a′i ∈ (A⊗A′)co(H⊗H).

Then ∑
i

ai[0] ⊗ a′i[0] ⊗ ai[1] ⊗ a′i[1] =
∑
i

ai ⊗ a′i ⊗ 1⊗ 1.

Applying ε to the fourth tensor factor, we find∑
i

ai[0] ⊗ a′i ⊗ ai[1] =
∑
i

ai ⊗ a′i ⊗ 1.

This means that
∑

i ai⊗a′i ∈ B⊗A′. In a similar way, we find that
∑

i ai⊗
a′i ∈ A⊗B′.
It is easy to show that canA⊗A′ is bijective. Finally A⊗A′ is faithfully flat
as a right B⊗B′-module: B⊗A′ is faithfully flat as a right B⊗B′-module
because for every left B ⊗ B′-module M there is a natural isomorphism
(B⊗A′)⊗B⊗B′M ∼= A′⊗B′M . Similarly, A⊗A′ is faithfully flat as a right
B ⊗ A′-module. Then apply the following general property: if f : A → B
and g : B → C are algebra morphisms, and B/A and C/B are faithfully
flat, then C/A is faithfully flat.
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(2) We can apply Proposition 2.6, with H replaced by H ⊗H, K by H and
A by A⊗A′. Note that

∑
i ai ⊗ a′i ∈ (A⊗A′)coH⊗H if and only if∑

i

ai[0] ⊗ a′i[0] ⊗ ai[1]S(a′i[1]) =
∑
i

ai ⊗ a′i ⊗ 1,

or ∑
i

ai[0] ⊗ a′i ⊗ ai[1] =
∑
i

ai ⊗ a′i[0] ⊗ a
′
i[1],

which means precisely that
∑

i ai ⊗ a′i ∈ A�HA
′.

(3) We know that A�HA
′ is a right H-comodule algebra with structure map

ρ given by

(11) ρ(
∑
i

ai ⊗ a′i) =
∑
i

ai[0] ⊗ a′i ⊗ ai[1] =
∑
i

ai ⊗ a′i[0] ⊗ a
′
i[1].

Take x =
∑

i ai⊗a′i ∈ (A�HA
′)coH . It follows from (11) that x ∈ (B⊗A′)∩

(A⊗B′) = B ⊗B′. �

Combining these observations with Proposition 2.6, we obtain the following
result, which is well-known in the situation where B = B′ = k.

Theorem 3.3. Let A and A′ be faithfully flat H-Galois extensions of B and
B′. Then A�HA

′ is a faithfully flat H-Galois extension of B ⊗B′.

We want to apply this theorem in the case when A′ is the opposite algebra
Aop. Since H is cocommutative, Aop is a right H-comodule algebra, with
coaction ρ given by

ρ(a) = a[0] ⊗ S(a[1]).

Lemma 3.4. If A is a faithfully flat H-Galois extension of B, then Aop is
a faithfully flat H-Galois extension of Bop.

Proof. The map canAop : Aop ⊗Bop Aop → Aop ⊗H is given by

canAop(a⊗ a′) = a′[0]a⊗ S(a′[1]) = (Aop ⊗ S) ◦ can′A.

Then canAop is bijective since can′A and S are bijective. We know from
Theorem 2.1 that A ∈ MB is faithfully flat, and this implies that Aop ∈
BopM is faithfully flat. It then follows from Theorem 2.1 that Aop is also a
faithfully flat H-Galois extension. �

Proposition 3.5. Let A be a faithfully flat H-Galois extension of B. Then
A�e := A�HA

op is a faithfully flat H-Galois extension of the enveloping
algebra Be := B ⊗Bop. Moreover, the element

(12) γA�e(h) :=
∑
i,j

(li(h(1))⊗ rj(h(2)))⊗B⊗Bop (ri(h(1))⊗ lj(h(2)))

belongs to A�e ⊗Be A�e.

Proof. First observe that canAe : Ae ⊗Be Ae → Ae ⊗H ⊗H is given by

canA⊗Aop((a⊗ b)⊗ (a′ ⊗ b′)) = aa′[0] ⊗ b
′
[0]b⊗ a

′
[1] ⊗ S(b′[1]).
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Recall the notation γA(h) :=
∑

i li(h)⊗B ri(h). Then we compute that

canAe

(∑
i,j

(li(h(1))⊗ rj(h(2)))⊗Be (ri(h(1))⊗ lj(h(2)))
)

=
∑
i,j

li(h(1))ri(h(1))[0] ⊗ lj(h(2))[0]rj(h(2))⊗ ri(h(1))[1] ⊗ S(lj(h(2))[1])

(1,4)
=

∑
j

1⊗ lj(h(3))rj(h(3))⊗ h(1) ⊗ S(S(h(2)))
(5)
=1⊗ 1⊗∆(h).

Let i : A�e → Ae be the canonical injection. It follows from (10) that

(i⊗B⊗Bop i)(γA�e(h)) = γAe(∆(h))

=
∑
i,j

(li(h(1))⊗ rj(h(2)))⊗Be (ri(h(1))⊗ lj(h(2))),

and the statement is proved. �

4. Cleft extensions and the lifting Theorem

In this Section, we adapt and review the results from [15], going back to
older results from graded Clifford theory, see [8].

Cleft extensions.

Proposition 4.1. Let H be a Hopf algebra, A a right H-comodule algebra,
and B = AcoH . We have a category CA, with two objects 1 and 2, and
morphisms

CA(1,1) = Hom(H,B) ; CA(1,2) = HomH(H,A);

CA(2,1) = {u : H → A | ρ(u(h)) = u(h(2))⊗ S(h(1)), for all h ∈ H};

CA(2,2) = {w : H → A | ρ(w(h)) = w(h(2))⊗ S(h(1))h(3), for all h ∈ H}.
The composition of morphisms is given by the convolution product.

Recall that A is called H-cleft if there exists a convolution invertible t ∈
HomH(H,A), or, equivalently, if 1 and 2 are isomorphic in CA. Then
t(1)−1 = u(1), and t′ = u(1)t ∈ HomH(H,A) has convolution inverse ut(1),
and t′(1) = 1. So if A is H-cleft, then there exists a convolution invertible
t ∈ HomH(H,A) with t(1) = 1.
If H is cocommutative, then CA(1,1) = CA(2,2).
If t ∈ HomH(H,A) is an algebra map, then t is convolution invertible (with
convolution inverse t ◦ S), so A is H-cleft. Consider the space

ΩA = {t ∈ HomH(H,A) | t is an algebra map}.

We have the following equivalence relation on ΩA: t1 ∼ t2 if and only if
there exists b ∈ U(B) such that bt1(h) = t2(h)b, for all h ∈ H. We denote
ΩA = ΩA/ ∼.
Take t ∈ HomH(H,A) with convolution inverse u such that t(1H) = 1A, and
consider the map

ωt : H ⊗B → B, ωt(h⊗ b) = t(h(1))bu(h(2)).
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Assume that ΩA 6= ∅, and fix t0 ∈ ΩA with convolution inverse u0. Now
consider the bijection

F : CA(1,1) = Hom(H,B)→ CA(1,2) = HomH(H,A),

F (v) = v ∗ t0, F−1(t) = t ∗ u0. It is then easy to show that F (v) ∈ ΩA if
and only if

(13) v(hk) = v(h(1))ωt0(h(2) ⊗ v(k))

and v(1H) = 1B. If (13) holds, then v(1H) = 1B if and only if v is convolution
invertible. Moreover, F (v) ∼ t0 if and only if v(h) = ωt0(h⊗ b)b−1 for some
invertible b ∈ B.
We will now discuss when F−1(ΩA) is a subgroup of Hom(H,B).

Proposition 4.2. Let H be cocommutative, and let A be an H-cleft right
H-comodule algebra. Assume that B = AcoH is commutative. Choose t ∈
HomH(H,A) with convolution inverse u, such that t(1) = 1 and, a fortiori,
u(1H) = 1A. Then we have the following properties.

(1) ωt is independent of the choice of t;
(2) ab = ωt(a[1] ⊗ b)a[0], for all a ∈ A and b ∈ B.

If ΩA 6= ∅, then we have an algebra map t ∈ HomH(H,A), and then the
map ωt defines a left H-module algebra structure on B, and we can consider
the Sweedler cohomology groups Hn(H,B), see [20]. We then denote h · b =
ωt(h⊗ b).

Proposition 4.3. Assume that ΩA 6= ∅. Then ΩA
∼= Z1(H,B) and ΩA

∼=
H1(H,B).

Proof. (sketch) If H is cocommutative and B is commutative, then (13) is
equivalent to

v(hk) = (h(1) · v(k))v(h(2)),
which is precisely the condition that v is a Sweedler 1-cocycle. �

Proposition 4.4. Now assume that B = k; it is not necessary that H is
cocommutative. If ΩA 6= ∅, then ΩA

∼= Alg(H, k).

Proof. In this situation, ωt(h⊗ b) = ε(h)b, for every choice of t. Then (13)
is equivalent to v(hk) = v(h)v(k), and the result follows. �

Suppose that A is H-cleft. Pick a convolution invertible t ∈ HomH(H,A)
such that t(1) = 1. Then consider

σ : H ⊗H → B, σ(h⊗ k) = t(h(1))t(k(1))u(h(2)k(2)).

Let B#σH be equal to B ⊗ H as a vector space, with right H-coaction
ρ = B ⊗∆, and with multiplication

(b#h)(c#k) = b(h · c)σ(h(1) ⊗ k(1))h(2)k(2).

Proposition 4.5. The map φ : B#σH → A, φ(b#h) = bt(h) is an isomor-
phism of right H-comodule algebras. The inverse of φ is given by the formula
φ−1(a) = a[0]u(a[1])#a[2]. Let σ ∈ Z2(H,B). The following statements are
equivalent:

(1) σ ∈ B2(H,B);
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(2) there exists an algebra map t′ ∈ HomH(H,A);
(3) A ∼= B#ε⊗εH.

The Militaru-Stefan lifting Theorem. Let A be a faithfully flat H-
Galois extension of B = AcoH . AMH will denote the category of (left-right)
relative Hopf modules. Let P,Q ∈ AMH . A left A-linear map f : P → Q is
called rational if there exists a (unique) element f[0]⊗f[1] ∈ AHom(P,Q)⊗H
such that

f[0](p)⊗ f[1] = f(p[0])[0] ⊗ S−1(p[1])f(p[0])[1],

or, equivalently,

(14) ρ(f(p)) = f[0](p[0])⊗ p[1]f[1],

for all p ∈ P . The subset of AHom(P,Q) consisting of rational maps is
denoted by AHOM(P,Q). This is a right H-comodule, and AEND(P )op is
a right H-comodule algebra.
Now take M ∈ BM. Then A ⊗B M ∈ AMH , and E = AEND(A ⊗B M)op

is a right H-comodule algebra. From the category equivalence between BM
and AMH , it follows that

F := EcoH = AEndH(A⊗B M)op ∼= BEnd(M)op.

B can be viewed as a right H-comodule algebra, with trivial coaction ρ(b) =
b⊗1, for all b ∈ B, so we can consider the category of relative Hopf modules
BMH . If M is a left B-module, then A ⊗B M and M ⊗ H are objects of
BMH . DM will be the full subcategory of BMH , with two objects A⊗BM
and M ⊗H. We then have the following result.

Theorem 4.6. Let A be a faithfully flat H-Galois extension of B = AcoH

and M ∈ BM. Then the categories CE and DM are anti-isomorphic.

Proof. (sketch) We define a contravariant functor α : CE → DM at the
objects level in the following obvious way: α(1) = M ⊗ H and α(2) =
A⊗B M . Before we state the definition at the morphisms level, we observe
that we have two natural isomorphisms

β1 : BHom(A⊗B M,M)→ BHomH(A⊗B M,M ⊗H);

β2 : BHom(M ⊗H,M)→ BEndH(M ⊗H)

defined as follows:

β1(φ)(a⊗B m) = φ(a[0] ⊗B m)⊗ a[1] ; β−1
1 (ϕ) = (M ⊗ ε) ◦ ϕ;

β2(Θ)(m⊗ h) = Θ(m⊗ h(1))⊗ h(2) ; β−1
2 (θ) = (M ⊗ ε) ◦ θ.

Consider ηM : M → (A⊗BM)coH , the unit of the adjunction (F2, G2) (see
Section 2) evaluated at M . Since F2 is an equivalence of categories, ηM is
an isomorphism. We have an isomorphism

α̃11 : CE(1,1) = Hom(H,EcoH)→ BHom(M ⊗H,M),

given by the formulas

α̃11(v)(m⊗ h) = η−1
M (v(h)(1⊗B m));

α̃−1
11 (Θ)(h)(a⊗B m) = a⊗B Θ(m⊗ h).
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We then define α11 = β2 ◦ α̃11. The isomorphism

α12 : CE(1,1) = HomH(H,E)→ BHomH(M ⊗H,A⊗B M)

is given by the formulas

α12(t)(m⊗ h) = t(h)(1⊗B m) ; (α−1
12 (ψ)(h))(a⊗B m) = aψ(m⊗ h).

We have an isomorphism

α̃21 : CE(2,1)→ BHom(A⊗B M,M),

given by the formulas

α̃21(u)(a⊗B m) = η−1
M (u(a[1])(a[0] ⊗B m));(

α̃−1
21 (φ)(h)

)
(a⊗B m) =

∑
i

ali(h)⊗B φ(ri(h)⊗B m).

We then define α21 = β1 ◦ α̃21. Finally, the isomorphism

α22 : CE(2,1)→ BEndH(A⊗B M)op

is given by the formulas

α22(w)(a⊗B m) = w(a[1])(a[0] ⊗B m);

(α−1
22 (κ))(h)(a⊗B m) =

∑
i

ali(h)κ(ri(h)⊗B m).

A long computation shows that α22 is a well-defined isomorphism, and that
α is a functor. �

Recall from [19] that M ∈ BM is called H-stable if A ⊗B M and M ⊗ H
are isomorphic as left B-modules and right H-comodules, or, equivalently,
the two objects of DM are isomorphic. From Theorem 4.6 we immediately
deduce the following result.

Corollary 4.7. M ∈ BM is H-stable if and only if there exists a convolu-
tion invertible t ∈ HomH(H,E).

Assume that M ∈ BM is H-stable. Then there is an isomorphism ϕ :
A ⊗B M → M ⊗H in BMH . Let ψ = ϕ−1, φ = (M ⊗ ε) ◦ ϕ, t = α−1

12 (ψ),
u = α−1

21 (ϕ). Then the following assertions are equivalent.
(1) t(1) = 1;
(2) u(1) = 1;
(3) ψ(m⊗ 1) = 1⊗B m, for all m ∈M ;
(4) φ(1⊗B m) = m, for all m ∈M .

Indeed, the equivalences 1)⇐⇒ 2) and 3)⇐⇒ 4) are obvious, and 1)⇐⇒ 3)
follows immediately from the definition of α12 and α−1

21 .
We have seen (cf. comments following Proposition 4.1) that t′ and u′ given
by t′(h) = t(h) ◦ u(1) and u′(h) = t(1) ◦ u(h) are convolution inverses,
satisfying the additional condition t′(1) = u′(1) = 1. Thus ψ′ = α1(t′)
satisfies (3), and φ′ = α̃2(u′) satisfies (4). ψ′ and φ′ can be computed
explicitly, using the formulas given in the proof of Theorem 4.6:

ψ′(m⊗ h) = ψ(φ(1⊗B m)⊗ h) ; 1⊗B φ′(a⊗B m) = ψ(φ(a⊗B m)⊗ 1).

ψ′ and ϕ′ are composition inverses. The proof of the following result is now
a straightforward exercise.
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Proposition 4.8. Take φ ∈ BHom(A ⊗B M,M), and let u = α̃−1
21 (φ) ∈

C(2,1) and t = u ◦ S−1 ∈ C(1,2) = HomH(H,E). Then the following
statements are equivalent:

(1) φ : A⊗BM →M , φ(a⊗Bm) = a ·m is an associative left A-action
on M ;

(2) u is an anti-algebra map;
(3) t is an algebra map.

Proposition 4.9. For i = 1, 2, take φi ∈ BHom(A⊗BM,M), and consider
ui = α̃−1

21 (φi) ∈ HomS(H,E) and ti = ui ◦S−1 ∈ HomH(H,E). Let Mi = M
as a left B-module, with left A-action defined by φi. Then M1

∼= M2 if and
only if t1 ∼ t2.

Proof. We have that t1 ∼ t2 if and only if there exists an invertible map
f ∈ BEnd(M) ∼= EcoH such that t1(h) ◦ (A ⊗B f) = (A ⊗B f) ◦ t2(h), or,
equivalently, u1(h)◦(A⊗B f) = (A⊗B f)◦u2(h), for all h ∈ H. This implies
that

1⊗B φ1(a⊗B f(m)) = u1(a[1])(a[0] ⊗B f(m))

= (u1(a[1]) ◦ (A⊗B f))(a[0] ⊗B m)

= ((A⊗B f) ◦ u2(a[1]))(a[0] ⊗B m)

= 1⊗B f(φ2(a⊗B f(m))),

and φ1(a ⊗B f(m)) = f(φ2(a ⊗B f(m))), for all a ∈ A and m ∈ M , which
means that f : M2 →M1 is an isomorphism of left A-modules.
Conversely, let f : M2 → M1 is an isomorphism of left A-modules. Then
f : M →M is left B-linear, so f ∈ BEnd(M). Then we have, for all h ∈ H,
a ∈ A and m ∈M , that

u1(h)(a⊗B f(m)) =
∑
i

ali(h)⊗B φ1(ri(h)⊗B f(m))

=
∑
i

ali(h)⊗B f(φ2(ri(h)⊗B m)) = (A⊗B f)(u2(h)(a⊗B m)),

hence u1(h) ◦ (A⊗B f) = (A⊗B f) ◦ u2(h), as needed. �

As an immediate consequence, we obtain the Militaru-Ştefan lifting Theo-
rem.

Corollary 4.10. Let A be a faithfully flat H-Galois extension of B = AcoH

and M ∈ BM. There is a bijective correspondence between the isomorphism
classes of left A-module structures on M extending the B-module structure
on M and the elements of ΩE.

Example 4.11. Let A be an H-Galois object, that is, AcoH = k, and
M = k. Then E = AEnd(A)op ∼= A as an H-comodule algebra, and EcoH =
AcoH = k. The map α̃21 : CA(1,2) and its inverse are given by the formulas

α̃21(u)(a) = u(a[1])a[0] ∈ AcoH = k;

α̃−1
21 (φ)(h) =

∑
i

li(h)φ(ri(h)).
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φ ∈ A∗ defines an A-action A ⊗ k → k if and only if φ is an algebra map.
It follows from Corollary 4.10 that ΩA = Alg(A, k). If ΩA 6= ∅, then it
follows from Proposition 4.4 that Alg(A, k) ∼= Alg(H, k). The correspon-
dence goes as follows. Fix φ0 ∈ Alg(A, k). φ ∈ Alg(A, k) corresponding to
v ∈ Alg(H, k) is given by the formula

φ(a) = v(S(a[1]))li(a[2])φ0(ri(a[2]))a[0].

5. Picard groups

The Picard group of an H-comodule algebra. Consider a Hopf algebra
H with bijective antipode and an H-comodule algebra A. Let PicH(A) be
the category with strict H-Morita contexts of the form (A,A, P,Q, α, β) as
objects. A morphism between (A,A, P1, Q1, α1, β1) and (A,A, P2, Q2, α2, β2)
consists of a couple (f, g), with f : P1 → P2, g : Q1 → Q2 H-colinear A-
bimodule isomorphisms such that α1 = α2 ◦ (f ⊗B g) and β1 = β2 ◦ (g⊗A f).
Note that PicH(A) has the structure of monoidal category, where the tensor
product is given by the formula

(A,A, P1, Q1, α1, β1)⊗ (A,A, P2, Q2, α2, β2) =
(
A,A, P1 ⊗A P2,

Q2 ⊗A Q1, α1 ◦ (P1 ⊗A α2 ⊗A Q1), β2 ◦ (Q2 ⊗A β1 ⊗A P1)
)
.

The unit object is (A,A,A,A,A,A). Every object (A,A, P1, Q1, α1, β1) of
PicH(A) has an inverse, namely (A,A,Q1, P1, β1, α1).
Up to isomorphism, a strict H-Morita context is completely determined
by one of its underlying bimodules; therefore, we use the shorter notation
P 1 = (A,A, P1, Q1, α1, β1). PicH(A) = K0PicH(A), the set of isomorphism
classes in PicH(A), is a group under the operation induced by the tensor
product, and is called the H-Picard group of A. If H = k, and B is a
k-algebra, then Pick(B) = Pic(B) is the classical Picard group of B.

The �-Picard group of B. Let M,N ∈ A�eM. In [6], it is shown that
M ⊗B N ∈ A�eM. We will need an explicit formula for the A�e-action on
M ⊗B N , given in Proposition 5.1 below.
In the proof [6, Theorem 2.4], it is shown that we have an isomorphism

αN : A⊗B N → Ae ⊗A�e N, αN (a⊗B n) = (a⊗ 1)⊗A�e n.

We claim that the inverse α−1
N of αN is given by the formula

α−1
N ((d⊗ e)⊗A�e n) =

∑
i

dli(S(e[1]))⊗B (ri(S(e[1]))⊗ e[0]) · n.

It follows from Lemma 6.4 that α−1
N is well-defined. Using the property that

γA(1H) = 1A ⊗B 1A, we find that

(α−1
N ◦ αN )(a⊗B n) = α−1

N ((a⊗ 1)⊗A�e n) = a⊗B n.
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We also compute that

(αN ◦ α−1
N )((d⊗ e)⊗A�e n)

= αN

(∑
i

dli(S(e[1]))⊗B (ri(S(e[1]))⊗ e[0]) · n
)

=
∑
i

(dli(S(e[1]))⊗ 1)⊗A�e (ri(S(e[1]))⊗ e[0]) · n

=
(∑

i

dli(S(e[1]))ri(S(e[1]))⊗ e[0]

)
⊗A�e n

(5)
=(d⊗ e)⊗A�e n.

Using αN , the left Ae-action on Ae ⊗A�e N can be transported to a left
Ae-action on A⊗B N :

(d⊗ e)(a⊗B n) = α−1
N

(
(d⊗ e)αN (a⊗B n)

)
= α−1

N

(
(da⊗ e)⊗A�e n

)
=
∑
i

dali(S(e[1]))⊗B (ri(S(e[1]))⊗ e[0]) · n.

If M,N ∈ A�eM, then Ae ⊗A�e M,Ae ⊗A�e N ∈ AMH
A , hence

(Ae ⊗A�e M)⊗A (Ae ⊗A�e N) ∼= (A⊗B M)⊗A (A⊗B N) ∼= A⊗B M ⊗B N

in the category AMH
A . On (A⊗BM)⊗A (A⊗BN), the A-bimodule structure

(or left Ae-module structure) is given by the formula

(d⊗ e) ·
(
(a⊗B m)⊗A (a′ ⊗B n)

)
= (d⊗ 1) · (a⊗B m)⊗A (a⊗ e) · (a′ ⊗B n)

=
∑
i

(da⊗B m)⊗A
(
a′li(S(e[1]))⊗B

(
ri(S(e[1]))⊗ e[0]

)
· n
)
.

We transport this left Ae-module structure to A⊗B M ⊗B N :

(d⊗ e) · (a⊗B m⊗B n)

=
∑
i

(1⊗ li(S(e[1]))) · (da⊗B m)⊗B (ri(S(e[1]))⊗ e[0]) · n

=
∑
i,j

dalj

(
S
(
li(S(e[1]))[1]

))
⊗B
(
rj

(
S
(
li(S(e[1]))[1]

))
⊗ ri(S(e[1]))[0]

)
·m

⊗B
(
ri(S(e[1]))⊗ e[0]

)
· n

(4)
=

∑
i,j

dalj(S(e[1]))⊗B
(
rj(S(e[1]))⊗ li(S(e[2]))

)
·m

⊗B(ri(S(e[2])⊗ e[0]) · n.

Now take
∑

k ak ⊗ a′k ∈ A�e. Using the above formula, we compute that

(
∑
k

ak ⊗ a′k) · (1⊗B m⊗B n) =
∑
i,j,k

aklj(S(a′k[1]))

⊗B
(
rj(S(a′k[1]))⊗ li(S(a′k[2]))

)
·m⊗B

(
ri(S(a′k[2]))⊗ a

′
k[0]) · n
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=
∑
i,j,k

ak[0]lj(S(ak[1]))⊗B
(
rj(S(ak[1]))⊗ li(S(ak[2]))

)
·m

⊗B
(
ri(S(ak[2]))⊗ a′k) · n

(6)
= 1⊗B (ak[0] ⊗ li(ak[1])) ·m⊗B (ri(ak[1])⊗ a′k) · n

The map

M ⊗B N → (A⊗B M ⊗B N)coH , m⊗B n 7→ 1⊗B m⊗B n

is an isomorphism. Hence the left A�e-action on A⊗BM ⊗B N restricts to
an action on (A ⊗B M ⊗B N)coH , and defines an action on M ⊗B N . We
can summarize this as follows.

Proposition 5.1. Let M,N ∈ A�eM. Then we have the following action
on M ⊗B N :

(15) (
∑
k

ak ⊗ a′k) · (m⊗B n) = (ak[0] ⊗ li(ak[1])) ·m⊗B (ri(ak[1])⊗ a′k) · n.

Now let Pic�H (B) be the category with strict �H -Morita contexts of the
form (B,B,M,N, γ, δ) as objects. A morphism between the �H -Morita
contexts (B,B,M1, N1, γ1, δ1) and (B,B,M2, N2, γ2, δ2) consists of a couple
(f, g) with f : M1 → M2 and g : N1 → N2 left A�e-module isomorphisms
such that γ1 = γ2 ◦ (f ⊗B g) and δ1 = δ2 ◦ (g ⊗B f).
It follows from Proposition 5.1 that Pic�H (B) is a monoidal category, with
tensor product induced by the tensor product over B, and unit object
(B,B,B,B,B,B). Every object in Pic�H (B) has an inverse, and we call
K0Pic�H (B) = Pic�H (B) the �H -Picard group of B. From Theorem 2.5
and the construction preceding Proposition 5.1, it follows that PicH(A) and
Pic�H (B) are equivalent monoidal categories, so we conclude that PicH(A) ∼=
Pic�H (B).

6. The H-stable part of the Picard group

Throughout this Section, we assume that H is cocommutative. Now let A
be a right H-Galois extension of B. Our next aim is to introduce the H-
invariant subgroup Pic(B)H of Pic(B); roughly spoken, an object of Pic(B)
represents an element of Pic(B)H if its connecting modules M and N are
H-stable. First we need to fix some technical details.
We consider the category BMH

B . Its objects are B-bimodules and right H-
comodules M , such that the right H-coaction ρ is left and right B-linear,
that is, ρ(bmb′) = bm[0]b

′⊗m[1], for all b, b′ ∈ B and m ∈M . The morphisms
are the H-colinear B-bimodule maps. For M,N ∈ BMH

B , we consider the
generalized cotensor product

M ⊗HB N = {
∑
i

mi ⊗B ni ∈M ⊗B N |∑
i

mi[0] ⊗B ni ⊗mi[1] =
∑
i

mi ⊗B ni[0] ⊗ ni[1]}.
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Then M ⊗HB N is an object of BMH
B , with right H-coaction

ρ(
∑
i

mi ⊗ ni) =
∑
i

mi[0] ⊗B ni ⊗mi[1] =
∑
i

mi ⊗B ni[0] ⊗ ni[1].

We have a functor −⊗H : BMB → BMH
B . For M ∈ BMB, the structure

on M ⊗H is given by the formulas

ρ(m⊗ h) = m⊗∆(h), b(m⊗ h)b′ = bmb′ ⊗ h.

In particular, B ⊗H ∈ BMH
B . The functor −⊗H is monoidal in the sense

of our next Lemma.

Lemma 6.1. For M,M ′ ∈ BMB, we have a natural isomorphism

(M ⊗H)⊗HB (M ′ ⊗H) ∼= (M ⊗B M ′)⊗H

in BMH
B .

Proof. It is easy to see that the map

κ : (M ⊗B M ′)⊗H → (M ⊗H)⊗HB (M ′ ⊗H),

m⊗B m′ ⊗ h 7→ (m⊗ h(1))⊗B (m′ ⊗ h(2))

is well-defined and right H-colinear. We claim that κ is bijective, with
inverse given by the formula

κ−1(
∑
j

(mj ⊗ hj)⊗B (m′j ⊗ h′j)) =
∑
j

mj ⊗m′j ⊗ hjε(h′j).

It is clear that κ−1 ◦ κ = M ⊗B M ′ ⊗H. If

x :=
∑
j

(mj ⊗ hj)⊗B (m′j ⊗ h′j) ∈ (M ⊗H)⊗HB (M ′ ⊗H),

then∑
j

(mj ⊗hj(1))⊗B (m′j ⊗h′j)⊗hj(2) =
∑
j

(mj ⊗hj)⊗B (m′j ⊗h′j(1))⊗h
′
j(2).

Applying ε to the third tensor factor, we find

(κ ◦ κ−1)(x) =
∑
j

(mj ⊗ hj(1))⊗B (m′j ⊗ ε(h′j)hj(2)) = x,

hence the claim is verified. �

Lemma 6.2. For all P ∈ BMH
B , we have that

P ⊗HB (B ⊗H) ∼= (B ⊗H)⊗HB P ∼= P

in BMH
B .

Proof. We have a well-defined morphism

α : P → P ⊗HB (B ⊗H), α(p) = p[0] ⊗B (1⊗ p[1])

in BMH
B . The inverse of α is given by the formula

α−1(
∑
i

pi ⊗B (bi ⊗ hi)) =
∑
i

pibiε(hi).
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It is clear that α−1 ◦ α = P . If
∑

i pi ⊗B (bi ⊗ hi) ∈ P ⊗HB (B ⊗H), then∑
i

pi[0] ⊗B (bi ⊗ hi)⊗ pi[1] =
∑
i

pi ⊗B (bi ⊗ hi(1))⊗ hi(2).

Then we find

(α ◦ α−1)(
∑
i

pi ⊗B (bi ⊗ hi)) =
∑
i

pi[0]biε(hi)⊗B pi[1]

=
∑
i

pibiε(hi(1))⊗B (1⊗ hi(2)) =
∑
i

pi ⊗B (bi ⊗ hi).

�

Observe that A�e = A�HA
op ∈ BeMH

Be , with left and right Be-action given
by the formula

(b⊗ b′)(
∑
i

ai ⊗ a′i)(c⊗ c′) =
∑
i

baic⊗ c′a′ib′.

Hence we have a second functor

A�e ⊗Be − : BMB → BMH
B .

Take M ∈ BMB. A�e ⊗Be M is a left Be-module, and, a fortiori, a B-
bimodule. The right H-coaction on A�e ⊗Be M is given by the formula

ρ
(
(
∑
k

ak ⊗ a′k)⊗Be m
)

= (
∑
k

ak[0] ⊗ a′k)⊗Be m⊗ ak[1]

= (
∑
k

ak ⊗ a′k[0])⊗Be m⊗ a′k[1].

Our next aim is to show that the functor A�e⊗Be− is also monoidal. Before
we can show this, we need a few technical Lemmas. Let M ∈ BMB. Then
Aop ⊗B M ∈ BMH

B , with the right H-coaction induced by the coaction on
Aop.

Lemma 6.3. Suppose that M ∈ BMB is flat as a left B-module. Then the
map

f : A�e⊗BM → A�H(Aop⊗BM),
∑
k

(ak⊗a′k)⊗Bm 7→
∑
k

ak⊗(a′k⊗Bm)

is an isomorphism. In a similar way, if M is flat as a right B-module, then

M ⊗B A�e ∼= (M ⊗B A)�HA
op.

Proof. Consider the commutative diagram

0 // A�e ⊗B M

f

��

// Ae ⊗B M
∼=

��

//// Ae ⊗B M ⊗H

0 // A�H(Aop ⊗B M) // A⊗Aop ⊗B M // // Ae ⊗B M ⊗H

The top row is exact because M is left B-flat, and because of the definition
of the generalized cotensor product. The exactness of the bottom row also
follows from the definition of the generalized cotensor product. It follows
from the Five Lemma that f is an isomorphism. �
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Lemma 6.4. For all a ∈ A, the element

x :=
∑
i

li(S(a[1]))⊗B ri(S(a[1]))⊗ a[0] ∈ A⊗B A�e.

Proof. By Lemma 6.3, it suffices to show that x ∈ (A⊗BA)�HA
op. Indeed,∑

i

li(S(a[1]))⊗B ri(S(a[1]))[0] ⊗ a[0] ⊗ ri(S(a[1]))[1]

(3)
=

∑
i

li(S(a[2]))⊗B ri(S(a[2]))⊗ a[0] ⊗ S(a[1]).

�

Lemma 6.5. If
∑

k ak ⊗ a′k ∈ A�e, then the element

x =
∑
i,k

ak[0] ⊗ li(ak[1])⊗B ri(ak[1])⊗ a′k

=
∑
i,k

ak ⊗ li(S(a′k[1]))⊗B ri(S(a′k[1]))⊗ a
′
k[0] ∈ A

�e ⊗HB A�e.

Proof. It follows from Proposition 3.5 that A�e is flat as a left Be-module.
Since Be is flat as a left B-module, we have that A�e is flat as a left B-
module. We have shown in Lemma 6.4 that x ∈ Ae ⊗B A�e. Now∑

i,k

ak[0] ⊗ li(ak[2])⊗B ri(ak[2])⊗ a′k ⊗ ak[1]

(4)
=

∑
i,k

ak[0] ⊗ li(ak[1])[0] ⊗B ri(ak[1])⊗ a′k ⊗ S(li(ak[1])[1]),

so x ∈ A�H(Aop ⊗B A�e) = A�e ⊗B A�e, by Lemma 6.3. It then follows
immediately that x ∈ A�e ⊗HB A�e. �

Lemma 6.6. We have an isomorphism of vector spaces f : A�e ⊗ B →
A�e ⊗HB A�e, given by the formula

f(
∑
k

ak ⊗ a′k ⊗ b) =
∑
i,k

ak[0] ⊗ bli(ak[1])⊗B ri(ak[1])⊗ a′k.

Proof. It follows from Lemma 6.5 that f is well-defined. The inverse of f is
defined as follows. For y =

∑
k ak ⊗ a′k ⊗B a′′k ⊗ a′′′k ∈ A�e ⊗HB A�e, we let

f−1(y) =
∑
k

ak ⊗ a′′′k ⊗ a′ka′′k.

Let us show that f−1 is well-defined. First we show that f−1(y) ∈ Ae ⊗B.
Since y ∈ A�e ⊗HB A�e, we have that∑

k

ak ⊗ a′′′k ⊗ a′k[0]a
′′
k[0] ⊗ a

′
k[1]a

′′
k[1]

=
∑
k

ak ⊗ a′′′k ⊗ a′ka′′k[0] ⊗ S(a′′k[2])a
′′
k[1]

=
∑
k

ak ⊗ a′′′k ⊗ a′ka′′k ⊗ 1.
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For any vector space V , we have that (V ⊗ A)coH = V ⊗ B (B is flat over
k), so the above computation shows that f−1(y) ∈ Ae ⊗B.
Let us next show that f−1(y) ∈ A�e ⊗ B: since y ∈ A�e ⊗HB A�e, we have
that∑

k

ak[0] ⊗ a′k ⊗B a′′k ⊗ a′′′k ⊗ ak[1] =
∑
k

ak ⊗ a′k ⊗B a′′k ⊗ a′′′k[0] ⊗ S(a′′′k[1]),

hence ∑
k

ak[0] ⊗ a′′′k ⊗ a′ka′′k ⊗ ak[1] =
∑
k

ak ⊗ a′′′k[0] ⊗ a
′
ka
′′
k ⊗ S(a′′′k[1]).

Let us finally verify that f and f−1 are inverses.

(f−1 ◦ f)(
∑
k

ak ⊗ a′k ⊗ b) = f−1
(∑
i,k

ak[0] ⊗ bli(ak[1])⊗B ri(ak[1])⊗ a′k
)

=
∑
i,k

ak[0] ⊗ a′k ⊗ bli(ak[1])ri(ak[1])
(5)
=
∑
k

ak ⊗ a′k ⊗ b;

(f ◦ f−1)(
∑
k

ak ⊗ a′k ⊗B a′′k ⊗ a′′′k ) = f(
∑
k

ak ⊗ a′′′k ⊗ a′ka′′k)

=
∑
i,k

ak[0] ⊗ a′ka′′kli(ak[1])⊗B ri(ak[1])⊗ a′′′k

=
∑
i,k

ak ⊗ a′ka′′k[0]li(a
′′
k[1])⊗B ri(a

′′
k[1])⊗ a

′′′
k

(6)
=

∑
k

ak ⊗ a′k ⊗B a′′k ⊗ a′′′k .

�

Take M,M ′ ∈ BMB and consider the composition g̃ = (id ⊗ can−1 ⊗ id) ◦
(ρA ⊗ id):

Ae ⊗Be (M ⊗B M ′) ∼= A⊗B M ⊗B B ⊗B M ′ ⊗B A
−→ A⊗B M ⊗B B ⊗H ⊗B M ′ ⊗B A
−→ A⊗B M ⊗B A⊗B A⊗B M ′ ⊗B A
∼= Ae ⊗Be M ⊗B Ae ⊗Be M ′.

We compute that

g̃(
∑
k

ak ⊗ a′k ⊗Be (m⊗B m′))

=
∑
i,k

(ak[0] ⊗ li(ak[1]))⊗Be m⊗B (ri(ak[1])⊗ a′k)⊗Be m′.

It follows from Lemma 6.6 that g̃ restricts to a map

g : A�e ⊗Be (M ⊗B M ′)→ (A�e ⊗Be M)⊗HB (A�e ⊗Be M ′).
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It is obvious that g ∈ BMH
B , and that g is bijective with inverse

g−1
(∑
k

(ak ⊗ a′k)⊗Be m⊗B (a′′k ⊗ a′′′k )⊗Be m′
)

(16)

=
∑
k

(ak ⊗ a′′′k )⊗Be (ma′ka
′′
k ⊗Be m′)

=
∑
k

(ak ⊗ a′′′k )⊗Be (m⊗Be a′ka
′′
km
′).

As a conclusion, we obtain the following Lemma.

Lemma 6.7. For M,M ′ ∈ BMB, we have an isomorphism

g : A�e ⊗Be (M ⊗B M ′)→ (A�e ⊗Be M)⊗HB (A�e ⊗Be M ′).

Remark 6.8. It follows from Lemmas 6.1 and 6.7 that, for M,M ′,M ′′ ∈
BMB, we have isomorphisms(

(M ⊗H)⊗HB (M ′ ⊗H)
)
⊗HB (M ′′ ⊗H)

∼= (M ⊗H)⊗HB
(
(M ′ ⊗H)⊗HB (M ′′ ⊗H)

)
,(

(A�e ⊗Be M)⊗HB (A�e ⊗Be M ′)
)
⊗HB (A�e ⊗Be M ′′)

∼= (A�e ⊗Be M)⊗HB
(
(A�e ⊗Be M ′)⊗HB (A�e ⊗Be M ′′)

)
in BMH

B that are natural in M,M ′,M ′′.

We now consider the notion of H-stability, as introduced before Corol-
lary 4.7, but with B replaced by Be and A by A�e. The (B,B)-bimodule
M is H-stable if there exists an isomorphism

ϕM : A�e ⊗Be M →M ⊗H

in the category BMH
B .

Proposition 6.9. If M,M ′ ∈ BMB are H-stable, then M ⊗B M ′ is also
H-stable.

Proof. We define ϕM⊗BM ′ by the commutativity of the following diagram:

(17) A�e ⊗Be (M ⊗B M ′)
g //

ϕM⊗BM′

��

(A�e ⊗Be M)⊗HB (A�e ⊗Be M ′)

ϕM⊗H
BϕM′

��
M ⊗B M ′ ⊗H

κ // (M ⊗H)⊗HB (M ′ ⊗H)

�

Suppose that M,M ′ ∈ BMB are H-stable, and let ψM = ϕ−1
M , ψM ′ = ϕ−1

M ′ ,
tM = α−1

12 (ψM ), tM ′ = α−1
12 (ψM ′). For later use, we compute tM⊗BM ′ =

α−1
12 (ψM⊗BM ′) in terms of tM and tM ′ . To this end, we first introduce the

following Sweedler-type notation for the map tM :

tM (h)(1A�e ⊗Be m) = (m(h)+ ⊗m(h)−)⊗Be m(h)0.
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Summation is implicitly understood. Using the definition of α12 and the
commutativity of (17), we compute

tM⊗BM ′(h)(1A�e ⊗Be (m⊗B m′)) = ψM⊗BM ′(m⊗B m
′ ⊗ h)

=
(
g−1 ◦ (ψM ⊗HB ψM ′) ◦ k

)
(m⊗B m′ ⊗ h)

=
(
g−1 ◦ (ψM ⊗HB ψM ′)

)(
(m⊗ h(1))⊗B (m′ ⊗ h(2))

)
= g−1

(
t(h(1))(1A�e ⊗Be m)⊗B t(h(2))(1A�e ⊗Be m′)

)
= g−1

((
(m(h(1))

+ ⊗m(h(1))
−)⊗Be m(h(1))

0
)

⊗B
(
(m′(h(2))

+ ⊗m′(h(2))
−)⊗Be m′(h(2))

0
))

= (m(h(1))
+ ⊗m′(h(2))

−)⊗Be (m(h(1))
0m(h(1))

−m′(h(2))
+ ⊗B m′(h(1))

0)

= (m(h(1))
+ ⊗m′(h(2))

−)⊗Be (m(h(1))
0 ⊗B m(h(1))

−m′(h(2))
+m′(h(1))

0).

We will need a slight improvement of this formula. For b ∈ B, we have

tM (h)(1A�e ⊗Be mb) = tM (h)((1⊗ b)⊗Be m)

= (1⊗ b)tM (h)(1A�e ⊗Be m) = (m(h)+ ⊗m(h)−b)⊗Be m(h)0,

hence

tM⊗BM ′(h)(1A�e ⊗Be (mb⊗B m′)) = (m(h(1))
+ ⊗m′(h(2))

−)(18)

⊗Be(m(h(1))
0m(h(1))

−bm′(h(2))
+ ⊗B m′(h(1))

0).

We have that B is a left A�e-module, with action φB((
∑

k ak⊗a′k)⊗Be b) =∑
k akba

′
k. The corresponding map ϕB = β1(φB) : A�e ⊗Be B → B ⊗H is

given by

ϕB((
∑
k

ak ⊗ a′k)⊗Be b) =
∑
k

ak[0]ba
′
k ⊗ ak[1] =

∑
k

akba
′
k[0] ⊗ S(ak[1]).

It follows from Corollary 4.7 and Proposition 4.8 that ϕB is an isomorphism
in BMH

B .
Now take M = (B,B,M,N, α, β) ∈ Pic(B). We call M H-stable if there
exist isomorphisms

ϕM : A�e ⊗Be M →M ⊗H and ϕN : A�e ⊗Be N → N ⊗H

such that the following diagrams commute:

(19) A�e ⊗Be (M ⊗B N)
A�e⊗Beα //

ϕM⊗BN

��

A�e ⊗Be B

ϕB

��
M ⊗B N ⊗H

α⊗H // B ⊗H

(20) A�e ⊗Be (N ⊗B M)
A�e⊗Beβ //

ϕN⊗BM

��

A�e ⊗Be B

ϕB

��
N ⊗B M ⊗H

β⊗H // B ⊗H



22 S. CAENEPEEL AND A. MARCUS

Theorem 6.10. Let H be a cocommutative Hopf algebra, and let A be a
faithfully flat Hopf-Galois extension of AcoH = B. Then

Pic(B)H = {[M ] ∈ Pic(B) | M is H-stable}
is a subgroup of Pic(B), called the H-stable part of Pic(B).

Proof. Assume that M1 and M2 are H-stable. It follows from Proposi-
tion 6.9 that M1⊗BM2 and N2⊗BN1 are H-stable. A commutative diagram
argument taking Remark 6.8 into account shows that the diagrams (19-20),
with M replaced by M1⊗BM2 and N by N2⊗BN1, commute. This implies
that M1 ⊗BM2 is H-stable. Finally, if M is H-stable, then it is clear from
the definition that M−1 = (B,B,N,M, β, α) is also H-stable. �

7. A Hopf algebra version of the Beattie-del Ŕıo
exact sequence

As in the previous Section, let H be a cocommutative Hopf algebra, and
A a faithfully flat H-Galois extension of B. Take M ∈ Pic(B)H . Then we
have an isomorphism ϕ : A�e ⊗Be M → M ⊗ H in BMH

B . We have that
E = A�eEND(A�e ⊗Be M)op is an H-comodule algebra.

Lemma 7.1. EcoH ∼= Z(B).

Proof. We first observe that

EcoH = A�eEndH(A�e ⊗Be M) ∼= BeEnd(M) = BEndB(M).

The second isomorphism is due to the fact that A�e⊗Be− : BeM→ A�eMH

is a category equivalence, by Theorem 2.1 and Proposition 3.5. Since M is
a strict Morita context, we have that − ⊗B M is an autoequivalence of
MB. −⊗B M and its adjoint send B-bimodules to B-bimodules, so −⊗B
M also defines an autoequivalence of BMB. Consequently BEndB(M) ∼=
BEndB(B) ∼= Z(B). �

For later use, we give an explicit description of the isomorphism

λ : Z(B)→ EcoH = A�eEndH(A�e ⊗Be M), x 7→ λx :

(21) λx(
∑
k

(ak ⊗ a′k)⊗Be m) =
∑
k

(ak ⊗ a′k)⊗Be xm.

We have seen in Theorem 4.6 that there are isomorphisms

α12 : HomH(H,E)→ BHomH
B (M ⊗H,A�e ⊗Be M),

α21 : C(2,1)→ BHomH
B (A�e ⊗Be M,M ⊗H).

Using Proposition 3.5, we compute u = α−1
21 (ϕ) and t = α−1

12 (ϕ−1):

(22) t(h)
(∑
k

(ak ⊗ a′k)⊗Be m
)

=
∑
k

(ak ⊗ a′k)ϕ−1(m⊗ h);

u(h)
(∑
k

(ak ⊗ a′k)⊗Be m
)

=
∑
i,j,k

(
akli(h(1))⊗ rj(h(2))a

′
k

)
(23)

⊗Beφ
(
(ri(h(1))⊗ lj(h(2)))⊗Be m

)
.
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Since EcoH ∼= Z(B) is commutative, we can apply Proposition 4.2, and we
find that Z(B) is a left H-module algebra. We will show in Proposition 7.3
that the left H-action on Z(B) is independent of the choice of M ∈ Pic(B)H ,
and is given by the Miyashita-Ulbrich action (8).

Lemma 7.2. For x ∈ Z(B), m ∈M and h ∈ H, we have that

(24) λx(ϕ−1(m⊗ h)) = ϕ−1((h(2) · x)m⊗ h(1)).

Proof. Write

(25) ϕ−1(m⊗ h) =
∑
k

(sk ⊗ s′k)⊗Be mk ∈ A�e ⊗Be M.

Since ϕ−1 is right H-colinear, we have that

(26) ϕ−1(m⊗ h(1))⊗ h(2) =
∑
k

(sk[0] ⊗ s′k)⊗Be mk ⊗ sk[1].

Then we compute

ϕ−1(xm⊗ h) = xϕ−1(m⊗ h)
(25)
=

∑
k

(xsk ⊗ s′k)⊗Be mk
(9)
=
∑
k

(sk[0](S(sk[1]) · x)⊗ s′k)⊗Be mk

=
∑
k

(sk[0] ⊗ s′k)⊗Be (S(sk[1]) · x)mk
(21,26)

= λS(h(2))·x(ϕ−1(m⊗ h(1)).

and it follows that

ϕ−1((h(2) · x)m⊗ h(1)) = λS(h(2))·(h(3)·x)(ϕ
−1(m⊗ h(1))) = λx(ϕ−1(m⊗ h)).

�

Proposition 7.3. Assume that M ∈ Pic(B) is H-stable. The corresponding
left H-action on EcoH is given by the formula h•λx = λh·x, for all x ∈ Z(B).
This means that the transported action on Z(B) is the Miyashita-Ulbrich
action given by (9).

Proof. Take x ∈ Z(B) and the corresponding λx ∈ EcoH . The action of
h ∈ H on λx is given by (see Proposition 4.2)

h • λx = u(h(1)) ◦ λx ◦ t(h(2)),

and we have

� := (h • λx)(
∑
k

(ak ⊗ a′k)⊗Be m))

(22)
= (u(h(1)) ◦ λx)

(∑
k

(ak ⊗ a′k)ϕ−1((h(3) · x)m⊗ h(2)))

(24)
= u(h(1))

(∑
k

(ak ⊗ a′k)ϕ−1((h(3) · x)m⊗ h(2))
)
.

Now write

(27) ϕ−1((h(2) · x)m⊗ h(1)) =
∑
q

(sq ⊗ s′q)⊗Be mq.
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Since ϕ−1 is right H-colinear, we have that

ϕ−1((h(3) · x)m⊗ h(2))⊗ h(1) =
∑
q

(sq[0] ⊗ s′q)⊗Be mq ⊗ sq[1],

hence

� = u(sq[1])
(∑
q,k

(aksq[0] ⊗ s′qa′k)⊗Be mq)

(23)
=
∑
i,j,k,q

(
qksq[0]li(sq[1])⊗ rj(sq[2])s

′
qa
′
k

)
⊗Be φ

(
(ri(sq[1])⊗ lj(sq[2]))⊗Be mq.

Using (6,12), we find∑
i,q

(sq[0] ⊗ s′q)(li(sq[1])⊗ rj(sq[2]))⊗Be (ri(sq[1])⊗ lj(sq[2]))

=
∑
q

1A�e ⊗Be (sq ⊗ s′q) ∈ Be ⊗Be A�e.

Since φ is left Be-linear, we find

� =
∑
i,j,k,q

(
ak ⊗ a′k)⊗Be

φ
(
(sq[0]li(sq[1])ri(sq[1])⊗ lj(sq[2])rj(sq[2])s

′
q)⊗Be mq

=
∑
k,q

(
ak ⊗ a′k)⊗Be φ

(
sq ⊗ s′q)⊗Be mq

)
(27)
=

∑
k,q

(
ak ⊗ a′k)⊗Be ((M ⊗ ε) ◦ ϕ ◦ ϕ−1)((h(2) · x)m⊗ h(1))

=
∑
k,q

(
ak ⊗ a′k)⊗Be (h · x)m = λh·x

(∑
k

(ak ⊗ a′k)⊗Be m
)
.

This shows that h • λx = λh·x, for all x ∈ Z(B). �

It follows from the discussion in Section 5 that the functor Pic�H (B) →
Pic(B) restricting the A�e-module structure on the connecting bimodules
to the B-bimodule structure is strongly monoidal. This implies that we have
a group homomorphism

g2 : Pic�H (B)→ Pic(B).

Proposition 7.4. The groups Ker (g2) and H1(H,Z(B)) are isomorphic.

Proof. Take [M ] = [(B,B,M,N, α, β)] ∈ Ker (g2). Then M and N are
isomorphic to B as B-bimodules. M is described completely once we know
the left A�e-module structure on M = B, by Theorem 2.5 (2). Isomorphism
classes of left A�e-module structures on B are in bijective correspondence
to the elements of ΩE , cf. Corollary 4.10. It follows from Proposition 4.3
that ΩE

∼= H1(H,Z(B)), hence we have a bijection between H1(H,Z(B))
and Ker (g2), and an injection

g1 : H1(H,Z(B))→ Pic�H (B).

We will now describe this injection explicitly, and show that it preserves
multiplication.
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Let φ0 be the left A�e-action on B corresponding to the trivial element in
Pic�H (B):

φ0

(∑
k

(ak ⊗ a′k)⊗Be b
)

=
∑
k

akba
′
k.

Let u0 = α̃−1
21 be the corresponding element in CE(2,1). Using the formulas

in the proof of Theorem 4.6 we obtain that

u0(h)
(∑
k

(ak⊗a′k)⊗Be b
)

=
∑
i,j,k

(akli(h(1))⊗rj(h(2))a
′
k)⊗Be ri(h(1))blj(h(2)).

Let α ∈ Z1(H,Z(B)), and take G(α) = t = α∗t0 ∈ ΩE (see Proposition 4.3).
Then t(h) = t0(h(1))◦α(h(2)), and u(h) = t(S(h)) = u0(h(1))◦α(S(h(2))). We
compute φα = α̃21(u), using the formulas given in the proof of Theorem 4.6:

1⊗Be φα
(∑
k

(ak ⊗ a′k)⊗Be b
)

=
∑
k

u(ak[1])
(
(ak[0] ⊗ a′k)⊗Be b

)
=

∑
k

u0(ak[1])
(
(ak[0] ⊗ a′k)⊗Be α(S(ak[2]))b

)
=

∑
i,j,k

(
ak[0]li(ak[1])⊗ rj(ak[2])a

′
k

)
⊗Be ri(ak[1])α(S(ak[3]))blj(ak[2])

=
∑
i,j,k

1A�e ⊗Be ak[0]li(ak[1])ri(ak[1])α(S(ak[3]))blj(ak[2])rj(ak[2])a
′
k

=
∑
k

1A�e ⊗Be ak[0]α(S(ak[1]))ba
′
k

This means that g1(α) is represented by B, with left A�e-action given by

(28)
∑
k

(ak ⊗ a′k) ·α b = φα
(∑
k

(ak ⊗ a′k)⊗Be b
)

= ak[0]α(S(ak[1]))ba
′
k.
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Let β ∈ Z1(H,Z(B)) be another cocycle. Then g1(α)⊗B g1(β) = B⊗BB ∼=
B as a (B,B)-bimodule, with left A�e-action∑

k

(ak ⊗ a′k) · b ∼=
∑
k

(ak ⊗ a′k) · (1⊗B b)

(15)
=

∑
i,k

(ak[0] ⊗ li(ak[1])) ·α 1⊗B (ri(ak[1])⊗ a′k) ·β b

(28)
=

∑
i,k

ak[0]α(S(ak[1]))li(ak[2])⊗B ri(ak[2])[0]β(S(ri(ak[2])[1]))ba
′
k

(3)
=

∑
i,k

ak[0]α(S(ak[1]))li(ak[2])⊗B ri(ak[2])β(S(ak[3]))ba
′
k

∼=
∑
i,k

ak[0]α(S(ak[1]))li(ak[2])ri(ak[2])β(S(ak[3]))ba
′
k

(5)
=

∑
k

ak[0]α(S(ak[1]))β(S(ak[2]))ba
′
k

=
∑
k

ak[0](α ∗ β)(S(ak[1]))ba
′
k

=
∑
k

(ak ⊗ a′k) ·α∗β b.

This shows that g1(α)⊗B g1(β) = g1(α ∗β), that is, g1 is a group monomor-
phism. �

Let M ∈ Pic(B) be H-stable. Then there exists an isomorphism

ψ : M ⊗H → A�e ⊗Be M

in BMH
B such that ψ(m⊗1) = 1A�e⊗Bem, for all m ∈M (see the arguments

given after Corollary 4.7). Then t := α−1
1 (ψ) ∈ HomH(H,E) is convolution

invertible and satisfies the condition t(1) = 1. In Proposition 4.5, we con-
structed a cocycle σ ∈ Z2(H,Z(B)). Now let g3([M ]) = [σ] ∈ H2(H,Z(B)).
This defines a map

g3 : Pic(B)H → H2(H,Z(B)).

It follows from Proposition 4.5 that g3([M ]) = 1 if and only if there exists
an algebra map t′ ∈ HomH(H,E). By Proposition 4.8, this is equivalent to
the existence of an associative left A�e-action φ : A�e ⊗Be M →M , which
is equivalent to [M ] ∈ Im (g2). We conclude that Im (g2) = Ker (g3). Our
observations can be summarized as follows.

Theorem 7.5. Let H be a cocommutative Hopf algebra over a field k, and
A a faithfully flat Hopf-Galois extension of B = AcoH . Then we have an
exact sequence

1→ H1(H,Z(B))
g1→ Pic�H (B) ∼= PicH(A)

g2→ Pic(B)H
g3→ H2(H,Z(B)).

Observe that Pic�H (B) ∼= PicH(A) and Pic(B)H are non-abelian groups.
The category of groups is not an abelian category, so it makes no sense to talk
about exact sequences of groups. In the statement in Theorem 7.5, exactness
means that g1 is an injective map, and that Im (gi) = {x | gi+1(x) = 1},
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for i = 1, 2. The maps g1 and g2 are group homomorphisms. An example
given in [4] shows that g3 is not a group homomorphism in general, even in
the case of group graded algebras. We will discuss in Section 8 the property
satisfied by g3.

8. g3 is a 1-cocycle

We recall from [10] that Pic(B) acts on Z(B) as follows. For [M ] ∈ Pic(B),
we have a map ξM : Z(B)→ Z(B) characterized by the property

(29) ξM (x) = y ⇐⇒ mx = ym, for all m ∈M.

It is easy to show that ξM (xy) = ξM (x)ξM (y). We will show that this action
defines an action of Pic(B)H on Hn(H,Z(B)), so that we can consider the
group of cocycles Z1(Pic(B)H , H2(H,Z(B))). We will then show that g3 is
such a 1-cocycle.
Our first aim is to show that the action Pic(B)H on Z(B) commutes with
the action of H on Z(B). First, we need some Lemmas.

Lemma 8.1. Take [M ] ∈ Pic(B)H . For all x ∈ Z(B), m ∈M and
∑

i ai⊗
a′i ∈ A�e, we have that

(30)
(∑

i

ai ⊗ a′ix
)
⊗Be m =

(∑
i

ξM (x)ai ⊗ a′i
)
⊗Be m

in A�e ⊗Be M .

Proof. This follows immediately from the fact that mx ⊗ h = ξM (x)m ⊗ h
in M ⊗ H, for all m ∈ M , x ∈ Z(B) and h ∈ H, and the fact that we a
(B,B)-bimodule isomorphism ψM : M ⊗H → A�e ⊗Be M . �

Lemma 8.2. The map

l : A�e ⊗Be B → A⊗HB Aop, (
∑
i

ai ⊗ a′i)⊗Be b 7→
∑
i

aib⊗B a′i

is an isomorphism.

Proof. Observe first that A�e⊗BeB and A⊗HBAop are objects of the category

A�eMH . It follows from Theorem 2.1 and Proposition 3.5 that it suffices to
show that

(A⊗HB Aop)coH ∼= B ∼= (A�e ⊗Be B)coH .
Take ∑

i

ai ⊗B a′i ∈ (A⊗HB Aop)coH ⊂ A⊗HB Aop.

Then ∑
i

ai[0] ⊗B a′i ⊗ ai[1] =
∑
i

(aib⊗B a′i)⊗ 1.

From the fact that A ∈ BM is faithfully flat, we deduce that
∑

i ai ⊗B a′i ∈
AcoH ⊗B A = B ⊗B A, hence∑

i

ai ⊗B a′i = 1⊗B
∑
i

aia
′
i = 1⊗B a.

Since
∑

i ai ⊗B a′i ∈ A⊗HB Aop, we also have that

1⊗B a[0] ⊗ S(a[1]) = 1⊗B a⊗ 1.
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Apply ρA to the second tensor factor (ρA is left B-linear), and then multiply
the second and third tensor factor. This gives 1⊗B a[0]⊗a[1] = 1⊗B a⊗B 1,
and it follows that a ∈ B. This shows that the map

f : B → (A⊗HB Aop)coH , f(b) = 1⊗B b
is an isomorphism. �

Lemma 8.2 tells us that the map A�e → A⊗HB Aop induced by the canonical
surjection Ae → A⊗B Aop is surjective.

Proposition 8.3. Let M = (B,B,M,N, α, β) represent an H-stable ele-
ment of Pic(B). Then

ξM (h · x) = h · (ξM (x)),

for all h ∈ H and x ∈ Z(B).

Proof. For
∑

k ak ⊗ a′k ∈ A�e, x ∈ Z(B) and m ∈M , we compute that

(
∑
k

ξM (x)ak ⊗ a′k)⊗Be m
(30)
= (

∑
k

ak ⊗ a′kx)⊗Be m

(9)
= (

∑
k

ak ⊗ (a′k[1] · x)a′k[0])⊗Be m

= (
∑
k

ak ⊗ a′k[0])⊗Be m(a′k[1] · x)

(29)
= (

∑
k

ak ⊗ a′k[0])⊗Be ξM (a′k[1] · x)m

= (
∑
k

akξM (a′k[1] · x)⊗ a′k[0])⊗Be m

(9)
= (

∑
k

ak[1] · ξM (a′k[1] · x)ak[0] ⊗ a′k[0])⊗Be m

= (
∑
k

ak[1] · ξM (S(ak[2]) · x)ak[0] ⊗ a′k)⊗Be m.

Now take an arbitrary n ∈ N . Applying Lemma 6.5, we find∑
i,k

((
ξM (x)ak[0] ⊗ li(ak[1])

)
⊗Bem

)
⊗B

((
ri(ak[1])⊗ a′k

)
⊗Ben

)
=

∑
i,k

((
(ak[1] · (ξM (S(ak[2]) · x))ak[0] ⊗ li(ak[3])

)
⊗Bem

)
⊗B
((
ri(ak[3])⊗ a′k

)
⊗Ben

)
.

Now we apply

g−1 : (A�e ⊗Be M)⊗HB (A�e ⊗Be N)→ A�e ⊗Be (M ⊗B N)

to both sides (see (16)). Using (5), we obtain∑
k

(ξM (x)ak ⊗ a′k)⊗Be (m⊗B n)

= (
∑
k

ak[1] · ξM (S(ak[2]) · x)ak[0] ⊗ a′k)⊗Be (m⊗B n).
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Now M ⊗B N ∼= B. It follows that∑
k

(ξM (x)ak ⊗ a′k)⊗Be b =

(∑
k

ak[1] · ξM (S(ak[2]) · x)ak[0] ⊗ a′k

)
⊗Be b,

for all
∑

k ak ⊗ a′k ∈ A�e, x ∈ Z(B) and b ∈ B. Using Lemma 8.2, we find
that ∑

k

ξM (x)ak ⊗B a′k =
∑
k

ak[1] · ξM (S(ak[2]) · x)ak[0] ⊗B a′k

=
∑
k

S(a′k[1]) · ξM (a′k[2] · x)ak ⊗B a′k[0]

for all
∑

k ak ⊗B a′k ∈ A⊗HB Aop and x ∈ Z(B).
Now take h ∈ H. It follows from (3-4) that γA(h) =

∑
i li(h) ⊗B ri(h) ∈

A⊗HB Aop. Therefore∑
i

ξM (x)li(h)⊗B ri(h)

=
∑
i

(S(ri(h)[1]) · ξM (ri(h)[1] · x))li(h)⊗B ri(h)[0]

(3)
=

∑
i

S(h(2)) · ξM (h(3) · x)⊗ li(h(1))⊗B ri(h(1)).

We apply (A⊗ ε) ◦ γA to both sides; this gives

ξM (x)ε(h) = S(h(1)) · ξM (h(2) · x),

and, finally,

h · ξM (x) = h(1) · ξM (x)ε(h(2)) = (h(1)S(h(2))) · ξM (h(3) · x) = ξM (h · x),

which gives the desired formula. �

Proposition 8.4. The action of Pic(B) on Z(B) induces an action of
Pic(B)H on Zn(H,Z(B)), Bn(H,Z(B)) and Hn(H,Z(B)). More precisely,
if f : H⊗n → Z(B) is a cocycle (resp. a coboundary), then ξM ◦ f is also a
cocycle (resp. a coboundary).

Proof. This follows immediately from Proposition 8.3 and the definition of
Sweedler cohomology, see [20] or [5, Sec. 9.1]. �

Since Pic(B)H acts on H2(H,Z(B)), we can consider the cohomology group
H1(Pic(B)H , H2(H,Z(B))).

Theorem 8.5. g3 ∈ Z1(Pic(B)H , H2(H,Z(B))).

Proof. Let [M ], [M ′] ∈ Pic(B)H , and consider the corresponding total inte-
grals

tM : H → E := A�eEND(A�e ⊗Be M), tM ′ : H → E′.

We recall from Section 4 that [σM ] = g3[M ] is defined by the formula

tM (k) ◦ tM (h) = σM (h(1) ⊗ k(1))tM (h(2)k(2)).
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This means that

(tM (k) ◦ tM (h))(1A�e ⊗Be m)

= tM (k)((m(h)+ ⊗m(h)−)⊗Be m(h)0)
= (m(h)+m(h)0(k)+ ⊗m(h)0(k)−m(h)−)⊗Be m(h)0(k)0

equals

σM (h(1) ⊗ k(1))tM (h(2)k(2))(1A�e ⊗Be m)

= (σM (h(1) ⊗ k(1))m(h(2)k(2))
+ ⊗m(h(2)k(2))

−)⊗Be m(h(2)k(2))
0.

Then we compute(
tM⊗BM ′(k) ◦ tM⊗BM ′(h)

)
(1A�e ⊗B (m⊗B m′))

(18)
= tM⊗BM ′(k)

(
(m(h(1))

+ ⊗m′(h(2))
−)

⊗Be(m(h(1))
0m(h(1))

−m′(h(2))
+ ⊗B m′(h(2))

0)
)

(18)
=

(
m(h(1))

+m(h(1))
0(k(1))

+ ⊗m′(h(2))
0(k(2))

−m′(h(2))
−)

⊗Be

(
m(h(1))

0(k(1))
0m(h(1))

0(k(1))
−m(h(1))

−

m′(h(2))
+m′(h(2))

0(k(2))
+ ⊗B m′(h(2))

0(k(2))
0
)
,

hence

g
((
tM⊗BM ′(k) ◦ tM⊗BM ′(h)

)
(1A�e ⊗B (m⊗B m′))

)
=
(
(m(h(1))

+m(h(1))
0(k(1))

+ ⊗m(h(1))
0(k(1))

−m(h(1))
−)

⊗Be m(h(1))
0(k(1))

0
)

⊗B
(
(m′(h(2))

+m′(h(2))
0(k(2))

+ ⊗m′(h(2))
0(k(2))

−m′(h(2))
−)

⊗Be m′(h(2))
0(k(2))

0
)

=
(
(σ(h(1) ⊗ k(1))m(h(2)k(2))

+ ⊗m(h(2)k(2))
−)⊗Be m(h(2)k(2))

0
)

⊗B
(
(σ′(h(3) ⊗ k(3))m

′(h(4)k(4))
+ ⊗m′(h(4)k(4))

−)

⊗Be m′(h(4)k(4))
0
)

(30)
=
(
(σ(h(1) ⊗ k(1))ξM (σ′(h(2) ⊗ k(2)))m(h(3)k(3))

+ ⊗m(h(3)k(3))
−)

⊗Be m(h(3)k(3))
0
)
⊗B

(
(m′(h(4)k(4))

+ ⊗m′(h(4)k(4))
−)

⊗Be m′(h(4)k(4))
0
)

= σ(h(1) ⊗ k(1))ξM (σ′(h(2) ⊗ k(2)))g
(
tM⊗BM ′(hk)(1A�e ⊗B (m⊗B m′))

)
.

This shows that

tM⊗BM ′(k) ◦ tM⊗BM ′(h) = σ(h(1) ⊗ k(1))ξM (σ′(h(2) ⊗ k(2)))tM⊗BM ′(hk).

Consequently,

σM⊗BM ′ = σM ∗ (ξM ◦ σM ′),

which proves the Theorem. �
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9. Galois objects over noncocommutative Hopf algebras

Let H be a (possibly non-cocommutative) Hopf algebra with bijective an-
tipode, and A an H-Galois extension of B = AcoH . We can still define
the Picard groups PicH(A), Pic(B) and Pic�H (B), and we still have that
PicH(A) ∼= Pic�H (B), cf. Section 5. We can therefore ask whether the exact
sequence from Theorem 7.5 can be generalized to non-cocommutative Hopf
algebras. The obstructions are the following.

(1) We need the property that A�HA
op is an H-Galois extension (see

Theorem 3.3 and Proposition 3.5) in order to apply Corollary 4.10
(with H replaced by A�HA

op);
(2) We used the fact that H is cocommutative when we defined the

H-stable part of Pic(B) (see Section 6);
(3) We want to have a group structure on ΩA�HAop .

These problems can be fixed in the case where the algebra of coinvariants
B coincides with the groundfield k, that is, when A is a Galois object.
Examples of Galois objects are for example classical Galois field extensions
(then H = (kG)∗, with G a finite group); other examples of Galois objects
over noncocommutative algebras have been studied in [1, 2].
In this case, ΩA�HAop ∼= Alg(H, k) is a group, by Proposition 4.4, and
problem 3) is fixed. To handle problem 1), we invoke the theory of Hopf-
Bigalois objects, as developed by Schauenburg [17]. If A is a right H-Galois
object, then there exists another Hopf algebra L = L(A,H), unique up to
isomorphism, such that A is an (L,H)-Bigalois object, that is, A is left L-
Galois object, a right H-Galois object, and an (L,H)-bicomodule. For the
construction of L, we refer to [17, Sec. 3]. If H is cocommutative, then L =
H. We can then introduce the Harrison groupoid [17, Sec. 4]. Objects are
Hopf algebras with bijective antipode, morphisms are Hopf-Bigalois objects,
and the composition of morphisms is given by the cotensor product. The
inverse of a morphism A between L and H (that is, an (L,H)-Bigalois
object) isAop, with leftH-coaction λ given by the formula λ(a) = S−1(a[1])⊗
a[0]. In particular, (A�HA

op) is an (L,L)-Bigalois object, and, in particular,
a right H-Galois object. Applying Proposition 4.4 and Corollary 4.10, we
obtain

ΩA�HAop ∼= ΩA�HAop ∼= Alg(A�HA
op, k) ∼= Alg(L, k).

The isomorphism Alg(A�HA
op, k) ∼= Alg(L, k) can also be obtained as fol-

lows. Since Aop is the inverse of A in the Harrison groupoid, we have that
A�HA

op ∼= L as bicomodule algebras.
Since Pic(B) = 1 (k is a field), the map Pic�H (B) → Pic(B) is trivial. Its
kernel is ΩA�HAop , so we obtain the following result.

Proposition 9.1. Let H be a Hopf algebra with bijective antipode, A a right
H-Galois object, and L = L(A,H). Then PicH(A) ∼= Pic�H (k) ∼= Alg(L, k).

If H is cocommutative, then L = H, so PicH(A) ∼= Alg(H, k). This iso-
morphism can be described explicitely. The isomorphism Alg(H, k) →
Alg(A�HA

op, k) is a particular case of (28). For an algebra morphism
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α : H → k, the corresponding φα : A�HA
op → k is given by

φα(
∑
j

aj ⊗ a′j) =
∑
j

aja
′
j[0]α(a′j[1]),

and the corresponding A�HA
op-action on k is induced by α.

Let us now compute the corresponding A-bimodule structure on A. It is
shown in [6, Prop. 2.3] that we have a right H-colinear isomorphism

f : A⊗ (A�HA
op)→ A⊗Aop, f

(
a⊗ (

∑
j

aj ⊗ a′j)
)

=
∑
j

aaj ⊗ a′j .

The inverse of f is given by the formula

f−1(a⊗ a′) =
∑
i

li(S(a′[1]))⊗ ri(S(a′[1]))⊗ a
′
[0].

For N ∈ A�HAopM, we have an isomorphism

g : A⊗N ψ−→A⊗ (A�HA
op)⊗A�HAop N

f⊗N−→(A�HA
op)⊗A�HAop N.

Here ψ is the natural isomorphism. The A-bimodule structure on A⊗N is
obtained by transporting theA-bimodule structure on (A�HA

op)⊗A�HAopN
to A⊗N using g. Take a, a′, a′′ ∈ A and n ∈ N . Then

a′g(a⊗ n)a′′ = a′((a⊗ 1)⊗A�HAop n)a′′ = (a′a⊗ a′′)⊗A�HAop n.

Now

a′ · (a⊗ n) · a′′ = g−1
(
a′g(a⊗ n)a′′

)
= ψ−1

(
f−1(a′a⊗ a′′)⊗A�HAop n

)
=

∑
i

a′ali(S(a′′[1]))⊗
(
ri(S(a′′[1]))⊗ a

′′
[0]

)
n ∈ A⊗N.

Now let N = k, with left A�HA
op-action given by φα, and identify A⊗N ∼=

A using the natural isomorphism. The corresponding A-bimodule structure
on A⊗N ∼= A is then given by the formula

a′ · a · a′′ =
∑
i

a′ali(S(a′′[1]))φα
(
ri(S(a′′[1]))⊗ a

′′
[0]

)
=

∑
i

a′ali(S(a′′[2]))ri(S(a′′[2]))a
′′
[0]α(a′′[1])

(5)
= a′aa′′[0]α(a′′[1]).

We conclude that the (A⊗Aop, H)-Hopf module P representing the element
in PicH(A) corresponding to α is equal to A as a left A-module and a right
H-comodule, and with right A-module action given by the formula

(31) a · a′ = aa′[0]α(a′[1]).

Example 9.2. Let q = pd, and k a field of characteristic p. Consider the
Hopf algebra H = k[x]/(xq − x), with x primitive and S(x) = −x. If d = 1,
then H is the dual of the group algebra over the cyclic group of order p. The
H-Galois are known, we refer to [5, Sec. 11.3] for detail. More precisely, the
group of Galois objects Gal(k,H) ∼= k/{aq − a | a ∈ k}. The Galois object
corresponding to a ∈ k is the Artin-Schreier extension

S = k[y]/(yq − y − a)

with coaction ρS(y) = y ⊗ 1 + 1⊗ x. Furthermore

Alg(H, k) ∼= {b ∈ k | bq = b}.
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The algebra morphism α corresponding to b ∈ k is determined by the formula
α(x) = b. Now fix a ∈ k, and consider S = k[y]/(yq− y−a). It follows from
Proposition 9.1 that

PicH(S) ∼= {b ∈ k | bq = b}.

The (S ⊗ Sop, H)-Hopf module P representing the element of PicH(S) cor-
responding to b satisfying bq = b is equal to S as a left S-module and a right
H-comodule. The right S-action on P is completely determined by the right
action of y on p ∈ P = S. Since y[0]α(y[1]) = y + b, formula (31) takes the
form

p · y = p(y + b).

Example 9.3. We keep the notation of Example 9.2. Let B be a k-algebra,
and A = B ⊗ S, ρA = B ⊗ ρ : B ⊗ S → B ⊗ S ⊗H. Then

canA = B⊗canS : A⊗BA = (B⊗S)⊗B(B⊗S) ∼= B⊗S⊗S → B⊗S⊗H = A⊗H

is an isomorphism, hence A is an H-Galois extension of B.
We claim that the Miyashita-Ulbrich action on Z(B) is trivial. Let γS(h) =∑

i li(h)⊗ ri(h) ∈ S ⊗ S, for all h ∈ H. It is easy to see that

canA(
∑
i

1B ⊗ li(h)⊗ ri(h)) = 1B ⊗ 1S ⊗ h = 1A ⊗ h,

hence
γA(h) =

∑
i

(1B ⊗ li(h))⊗B (1B ⊗ ri(h)),

and, for x ∈ Z(B) ∼= Z(B)⊗ k,

h · x =
∑
i

(1B ⊗ li(h))(1B ⊗ 1k)(1B ⊗ ri(h)) = ε(h)x.

Now it follows that

H1(H,Z(B)) ∼= Alg(H,B) = {b ∈ B | bq = b}.

Our next aim is to show that every element of Pic(B) is H-stable. First
observe that Aop = Bop ⊗ Sop, with Sop = S as an algebra, and with H-
coaction given by ρ(y) = y ⊗ 1− 1⊗ x. Then

A�HA
op = B ⊗Bop ⊗ (S�HS

op) = Be ⊗ S�e.

Now let M ∈ Pic(B). Then A�e⊗BeM = M⊗S�e ∼= M⊗H, since S�e ∼= H.
This shows that M is H-stable, and it follows that Pic(B) = Pic(B)H . The
exact sequence from Theorem 7.5 specializes to

1→ {b ∈ B | bq = b} → PicH(A)→ Pic(B)→ H2(H,Z(B)).

Suppose that H is a finite dimensional commutative Hopf algebra. Then
H∗ is a cocommutative Hopf algebra. If A is an H∗-Galois object, then A is
an H-module algebra, with left H-action h(a) = 〈a[1], h〉a[0]. Furthermore
Alg(H∗, k) = G(H), the group of grouplike elements of H. Take g ∈ G(H);
(31) can then be rewritten as

(32) a · a′ = ag(a′).
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Example 9.4. In [12], forms of the cyclic group algebra have been studied.
One of the examples is the following quotient of the trigonometric Hopf
algebra over Q:

H = Q[c, s]/(c2 + s2 − 1, sc).

H is a form of the group algebra over the cyclic group of order 4, that is,
H⊗Q C ∼= CC4. The grouplike elements of H⊗Q C = C[c, s]/(c2 +s2−1, sc)
are gi = (c + is)i, i = 0, · · · , 3. It is easy to see that g1, g3 6∈ H and
g0 = 1, g2 = c2 − s2 ∈ H, hence

G(H) = {1, g2 = c2 − s2}.

An example of an H∗-Galois object is given in [12, Remark p. 135]: A =
Q(µ), with µ = 4

√
2, and H-action given by the formulas

c(1) = 1 c(µ) = 0 c(µ2) = −µ2 c(µ3) = 0
s(1) = 0 s(µ) = −µ s(µ2) = 0 s(µ3) = µ3

Since G(H) = {1, g2}, it follows from Proposition 9.1 that PicH(A) is the
cyclic group of order 2. Using (32), we can describe its nontrivial element
[P ]. First observe that the action of g2 on A is given by the formula g2(µi) =
(−1)iµ. Then P = A as a left A-module and a left H-module, with right
A-action given by

a · µi = (−1)iµia.
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[4] M. Beattie and A. del Ŕıo, Graded equivalences and Picard groups, J. Pure Appl.
Algebra 141 (1999), 131–152.

[5] S. Caenepeel, Brauer groups, Hopf algebras and Galois theory, K-Monographs Math.
4, Kluwer Academic Publishers, Dordrecht, 1998.

[6] S. Caenepeel, S. Crivei, A. Marcus and M. Takeuchi, Morita equivalences induced by
bimodules over Hopf-Galois extensions, J. Algebra 314 (2007), 267–302.

[7] S. Caenepeel, G. Militaru and S. Zhu, “Frobenius and separable functors for general-
ized module categories and nonlinear equations”, Lect. Notes Math. 1787, Springer-
Verlag, Berlin, 2002.

[8] E.C. Dade, Extending irreducible modules, J. Algebra 72 (1981), 374–403.
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