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DERIVED EQUIVALENCES AND
THE ABELIAN DEFECT GROUP CONJECTURE

ANDREI MARCUS

Abstract. Similarities between the character tables of a block with
abelian defect group and of its Brauer correspondent have been observed
long time ago. This led in the late 1980’s to the conviction that deeper
connection between the two blocks must exist. In this survey we give an
introduction to the applications of categorical equivalences in modular
representation theory and to Broué’s abelian defect group conjecture.
We present some of the methods and the recent achievements on this
subject, with a focus on the techniques coming from Clifford theory.

1. Preliminaries on block theory

1.1. Let G be a finite group and p a prime number. Modular representation
theory studies the relations between representations of G in characteristic
zero and in characteristic p via the study of the group algebra of G over a
complete discrete valuation ring O having residue field k of characteristic
p and quotient field K of characteristic zero. We shall usually assume that
k is algebraically closed and K is “big enough” that is, it contains enough
roots of unity. In particular, this implies that K is a splitting field for the
group algebra KH, for any subgroup H of G. Many important results can
be generalized to “small” fields, and indeed, rationality questions have been
recentley considered in the context of this paper.

The link between representations of G over K and over k is then es-
tablished by the functors “reduction modulo p” k ⊗O − and “extension of
scalars” K ⊗O −.

All modules are assumed to be finitely generated left unitary modules,
and all O-algebras are finitely generated as O-modules.

1.2. A block of the finite group G is a primitive idempotent a in the center of
the group algebra OG. The algebra A = OGa is called the block algebra of
the block a. Most of the time we shall understand by the same a the block
algebra OGa. The group algebra OG decomposes into a direct product

OG = A0 ×A1 × · · · ×An
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of blocks, where Ai = aiOG.
Given an indecomposable OG-modules M , there is a unique block ai such

that aiM 6= 0, and we say that M “belongs” to ai. The trivial OG-module
O belongs to the principal block A0 = a0OG =: B0(OG).

1.3. A defect group of the block A is a minimal subgroup D of G such
that the homomorphism A⊗OD A → A induced by multiplication splits as
homomorphism of (A,A)-bimodules. A source idempotent of A is a primitive
idempotent i ∈ AD such that the induced map Ai ⊗OD iA → A is still
split surjective as a homomorphism of (A,A)-bimodules. The algebra iAi,
considered together with the group homomorphism D → U(iAi), u 7→ ui, is
called a source algebra of A. Here we denoted

AD = {a ∈ A | uau−1 = a for all u ∈ D}.
The defect groups of A form a unique conjugation class of p-subgroups of

G. The defect groups of the principal block A0 are the Sylow p-subgroups
of G. If pd is the order of a defect group of A, then d is called the defect of
b, and we denote d = def(A).

Reduction modulo p gives a bijection between the blocks of OG and the
blocks of kG, preserving defect groups.

The source algebra of A is Morita equivalent to A and encodes all the
essential information about the local structure of the block. From Puig’s
point of view, the main problem of block theory is the determination of the
source algebra of a block as an interior D-algebra.

The defect groups of A control the complexity of A. Defect “zero” just
means that A is isomorphic to a matrix algebra Mr(O), and A is of finite
representation type if and only if D is cyclic. In the rest of the cases, A has
infinite representation type, so the problem of comparing blocks of various
subgroups of G appears to be more feasible.

1.4. By Maschke’s theorem, KA := K⊗OA is a semisimple K-algebra, hence
a direct product of full matrix K-algebras. Each of these matrix algebras
have a unique simple module, which is said to belong to A.

Let V be a simple KA-module. It is known that dimK V divides [G :
Z(G)]. Dade introduced the defect def(V ) of V by the equality

pdef(V ) =
( |G|

dimK V

)

p

,

and denote by kδ(B) the number of (isomorphism classes of) simple modules
of defect δ in A.

2. Local subgroups and the Brauer construction

The Brauer construction provides a link between the “global” and the
“local” structure of blocks. It has been generalized to modules by Feit and
to G-algebras by Broué and Puig.
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2.1. Let P a p-subgroup of G. The Brauer homomorphism associated with
P is the surjective O-algebra homomorphism

BrG
P : (OG)P → kCG(P ),

∑

x∈G

αxx 7→
∑

x∈CG(P )

αxx,

where αx ∈ O and αx is the image of αx in k, for any x ∈ G.
Note that D is a defect group of A = OGa if and only if D is a maximal

subgroup of G such that BrG
D(a) 6= 0.

This construction allows to define the local structure of a block in terms
of its Brauer pairs. A Brauer pair of A = OGa is a pair (P, e) consisting of
a p-subgroup P of G and a block e of kCG(P ) such that BrG

P (a)e = e. With
a partial order relation and morphisms suitably defined, the a-Brauer pairs
form a partially ordered set, and also category called the Brauer category of
the block A.

2.2. For an arbitrary G-algebra A, the Brauer map is the canonical NG(P )-
algebra homomorphism

BrA
P : AP → A(P ) := k ⊗O (AP /

∑

Q<P

TrP
QAQ),

while for an OG-module V , the Brauer map is the canonical homomorphism
of ONG(P )-modules

BrV
P : V P → V (P ) := k ⊗O (V P /

∑

Q<P

TrP
QV Q),

where TrP
Q : V Q → V P is the trace map.

2.3. The correspondence in the following theorem is called the Brauer cor-
respondence:

Let D be a p-subgroup of G and H a subgroup of G containing NG(D).
For any block a of OG having D as defect group there is a unique block b of
OH having D as defect group such that BrD(a) = BrD(b). Moreover, the
correspondence a 7→ b is a bijection between the sets of blocks of OG and of
OH having D as defect group.

Note that by Brauer’s 3rd Main Theorem, the Brauer correspondent of
the principal block A0 is the principal block B0 of OH.

Subgroups of the form NG(P ), where P is a p-subgroups of G are called
“p-local subgroups”.

2.4. More generally, the Brauer map gives a correspondence between blocks
which is not a bijection. One can formulate this also in terms of bimodules.
Let H be a subgroup of G, B = bOH a block of OH and A = aOG a block
of OG. We say that b is a Brauer correspondent of a and write a = bG, if
A is the only block of OG with the property that B is a direct summand of
A regarded as O(H ×H)-modules. Notice that if D is a defect group of B
and H contains CG(D), then bG is defined.
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3. The conjectures of Alperin, Dade, Isaacs-Navarro.
Abelian defect groups

Block theory was initiated by Brauer with the aim to provide a tool for
the classification of finite simple groups. His famous list of problems is still
stimulating the research in this field. Subsequent conjectures are clarification
and refinements of his ideas. Brauer’s problems are expressing the belief
that block theoretic invariants of blocks of positive defect of OG should be
determined from information coming from p-local subgroups. According to
Alperin, the “main problem of block theory” is the determination of values
of the irreducible characters of G on p-singular elements in terms of p-local
information.

3.1. Alperin’s weight conjecture. Let A = aOG be a block of OG, `(A)
be the number of simple A-modules and f0(B) the number of projective
simple A-modules. Then

`(A) =
∑

Q,b

f0(B),

where Q runs over the p-subgroups of G up to conjugacy and B over the
Brauer correspondents of B in NG(Q). This formula implies that if B has
positive defect, then `(A) is indeed p-locally determined.

3.2. Dade’s conjecture. There is an equivalent formulation of Alperin’s
conjecture in terms of p-subgroup complexes and alternating sums, due to
Knörr and Robinson. Inspired by this, Dade stated the following conjecture.

Let Sp(G) be the set of of stricly increasing chains C = (Q0 < Q1 < · · · <
Qn) of nontrivial p-subgroups of G and let |C| = n be the length of C. Then
G acts by conjugation on Sp(G) and let GC = NG(Q0) ∩ · · · ∩ NG(Qn) be
the stabilizer of C. If the maximal normal p-subgroup Op(G) = 1 and A is
a block of positive defect, then for all δ > 0,

∑

C,B

(−1)|C| kδ(B) = 0,

where C runs over Sp(G) up to conjugacy and B over the Brauer correspon-
dents of A in OGC .

This implies Alperin’s conjecture, and for δ = d, it gives an older conjec-
ture of Alperin and McKay.

3.3. The Isaacs-Navarro conjecture. This is another generalization of
the Alperin-McKay conjecture. Let A = aOG be a block with defect group
D, |D| = pd, and let B = bOHG(D) be the Brauer correspondent of A. Let
k be an integer such that p - k and denote by Mk(A) be the number of simple
KA modules V with defect d such that (dimK V )p′ ≡ ±k (mod p). Denote
c = |G : NG(D)|p′ . Then the conjecture predicts that Mck(A) = Mk(B).

There are stronger forms of this conjecture, involving the action of the
Galois group of K on characters (see G. Navarro [52] and A. Turull [76],
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Tur06a). K. Uno [78] also formulated alternating sum versions of these
conjectures.

3.4. Assume that A has abelian defect group D, and let B = bONG(D) be
the Brauer correspondent of A. In this case, Alperin’s conjecture reduces to
the equalities

• `(A) = `(B) (A and B have the same number of simple modules);
• k(A) = k(B) (KA andKB have the same number of simple modules).

Dade’s conjecture also reduces to the equalities
• kδ(A) = kδ(B) (KA and KB have the same number of simple mod-

ules of defect δ), δ ≥ 0.
These suggest that there should be a deeper structural connection between
A and B.

4. Equivalences between symmetric algebras

Let A and B be symmetric O-algebras, free over O (note that blocks of
OG satisfy these conditions). The (A,B)-bimodule is called exact, if AM
and MB are projective, finitely generated. Denote by M∨ the O-dual of M .

In this context, Broué discusses three levels of equivalence: Morita equiva-
lence, derived equivalence and stable equivalence of Morita type. An impor-
tant progress was achieved by the fundamental work of Rickard describing
the equivalences the derived categories of two algebras (regarded as triangu-
lated categories). The characterization of derived equivalences is given either
in terms or one-sided tilting complexes or two-sided tilting complexes (com-
plexes of bimodules). Equivalences between the stable module categories
are much more general; the Morita stable equivalences are those otained by
tensoring with exact bimodules.

4.1. Morita equivalence. Recall that the abelian categories A-Mod and
B-Mod are equivalent if and only if the following equivalent conditions hold.

• There is an exact (A,B)-bimodule M such that M ⊗B M∨ ' A in
A⊗O Aop-Mod and M∨ ⊗A M ' B in B ⊗O Bop-Mod.

• There is a progenerator AP such that B ' EndA(P )op.

4.2. Rickard equivalence. The homotopy categories Hb(A-mod) and
Hb(B-mod) are equivalent as triangulated categories if and only if the fol-
lowing equivalent conditions hold.

• There is a bounded complex C of exact (A, B) bimodules (called two-
sided tilting complex) such that C⊗B C∨ ' A in H(A⊗O Aop-mod)
and C∨ ⊗A C ' B in H(B ⊗O Bop-mod).

• There exists an object T ∈ Hb(A-proj) (called one-sided tilting com-
plex) such that EndH(A-mod)(T )op ' A, HomH(A-mod)(T, T [n]) = 0
for n 6= 0, and the direct summands of T generate Hb(A-proj) as a
triangulated category.
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The connection between the tilting complexes C and T is much more
subtle, since EndH(A-mod)(T )op acts on T only up to homotopy.

4.3. Stable Morita equivalence. By definition, the bounded complex
C of exact (A,B)-bimodules induces a stable equivalence between A and
B, if C ⊗B C∨ ' A ⊕ P in H(A ⊗O Aop-mod) and C∨ ⊗A C ' B ⊕ Q in
H(B ⊗O Bop-mod), where P and Q are bounded complexes of projective
bimodules.

Note that if V ∈ B-stmod, then the image of V in A-stmod is obtained
by taking the image of C ⊗B V under the composition

Hb(A-mod) → Cb(A-mod) → Cb(A-mod)/Hb(A-proj) ' A-stmod

of exact functors. Moreover, by using an argument of Rickard (seee also
subsection 8.2 below), one may replace C with an exact (A,B)-bimodule
M , so that the stable equivalence is induced by the exact functor M ⊗B − :
B-mod → A-mod.

4.4. Here is a list of invariants preserved by a derived equivalence. Assume
that A and B are derived equivalent. Then:

a) The Grothendieck groups K0(A) and K0(B) are isomorphic (Rickard).
b) The centers Z(A) and Z(B) are isomorphic, and more generally

the Hochschild cohomology, rings HH∗(A) and HH∗(B) are isomorphic
(Rickard).

c) The cyclic homology HC∗(A) ' HC∗(B) (Keller).
d) `(A) = `(B) (Happel).
e) k(A) = k(B). Moreover, if A and B are blocks of group algebras, and

if the simple KA-module X corresponds to the simple KB-module Y , then
def(X) = def(Y ), that is, kδ(A) = kδ(B) for δ ≥ 0 (Broué).

Moreover, if the Rickard tilting complex is defined over the ring of p-adic
integers, then X and Y above have the same field of definition and p-local
Schur index (Marcus [49], [49]).

f) A and B have the same representation type.
g) Cartan matrices are invariant under Morita equivalence, but not under

derived equivalence.
h) Let KA be the k-vector space generated by the subset {xy− yx | xy ∈

A}. Külshammer has introduced for any integer n the spaces

Tn(A) := {x ∈ A | xpn ∈ KA}
and let Tn(A)⊥ be the orthogonal space to Tn(A) with respect to the sym-
metrizing form of A. Then the isomorphism φ : ZA → ZB induced
by an equivalence Db(A) ' Db(B) of standard type has the property
φ(TnA⊥) = TnB⊥ for all positive integers n ∈ N (Zimmermann).

i) Let Zp′kG be the k-subspace of the group algebra kG spanned by all
p-regular class sums in G. If A is a block with abelian defect group of kG,
then Zp′A := A∩Zp′kG is a subalgebra of A which is invariant under derived
equivalences (Fan and Külshammer [17]).
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5. Some examples

5.1. p-nilpotent groups. Assume that G = D oH, where D is a Sylow
p-subgroup of G. Then B0(OG) ' OP .

5.2. Isomorphic blocks. Let H E G, D a Sylow p-subgroup of G, and
assume that p - [G : H] and HCG(D) = G. Then B0(OG) ' B0(OH) via
restriction.

5.3. T.I. situation. Assume that G has trivial intersection Sylow p-
subgroups (i.e. D ∩ gD = 1 for g ∈ G \ NG(D), where D is a Sylow
p-subgroup of G). Let A = B0(OG) and B = B0(ONG(D). Then it is not
very difficult to see that the bimodule AAB induces a Morita stable equiva-
lence between A and B.

An interesting example for the T.I. situation is the Suzuki group G =
Sz(8) with p = 2. Then A and B are stably equivalent, but not derived
equivalent. In fact, Z(kA) ' Z(kB), but Z(A) 6' Z(B) (Cliff).

More generally, a subgroup H of G is called weakly embedded if p - [G : H],
and NG(Q) = NH(Q)Op′(CG(Q)) for any p-subgroup Q 6= 1 of H. If this is
the case, then again the bimodule AAB induces a Morita stable equivalence
between A and B.

A conjecture of Auslander predicts that if two self-injective algebras over a
field are stably equivalent, then they have the same number of non-projective
simple modules. This would imply Alperin’s conjecture in the case of abelian
defect groups.

By using the classification of finite simple groups, Blau and Michler proved
the following theorem.

Theorem 5.4. If G has T.I. Sylow p-subgroups, then `(A) = `(B).

6. The abelian defect group conjecture

Let A = aOG be a block of OG with defect group D, let H = NG(D),
and let B = bOH be the block of OH corresponding to A.

6.1. Broué’s Conjecture. If D is abelian, then the algebras A and B are
Rickard equivalent.

Actually, it is conjectured that several refinements of 6.1 are also true,
and then such refined equivalences have additional consequences.

6.2. Splendid and basic equivalences. The complex ACB inducing the
equivalence is splendid, that is, its components are relative δ(D)-projective
p-permutationO(G×H)-modules, that is, are direct summands ofO(G×H)-
modules of the form IndG×H

δ(Q) O, where Q ≤ D and δ(Q) is the diagonal
subgroup of Q×Q.

These come from equivalences between the source algebras of the blocks,
and their main feature is that certain summands of BrG×H

δ(Q) induce equiva-
lence between certain blocks of OCG(Q) and OCH(Q) involved in BrQ(a)
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and BrQ(b), for any subgroup Q of D. This refinement relies on the fact
that in the situation of 6.1, the Brauer categories of subpairs of A and B
are equivalent.

Actually, one may formulate a more general version of conjecture 6.1, by
letting H be a arbitrary finite group and B a block of OH having a defect
group isomorphic to D, such that this isomorphism induces an equivalence
between the Brauer categories of A and B.

By 3.4, Conjecture 6.1 implies the conjecture of Alperin and Dade in the
abelian defect group case. As Broué has pointed out, the “splendid” form
of 6.1 also implies the validity of the Isaacs-Navarro conjecture for blocks
with abelian defect groups.

The concept of splendid equivalence introduced by Rickard in the case of
principal blocks, and it was generalized (in different settings) to arbitrary
blocks by Linckelmann and Harris. A splendid Morita equivalence is also
called a Puig equivalence. Moreover, Puig [62] studied in a very general
setting the local structure of equivalences between blocks, and he observes
a more general class of equivalences which are compatible with the Brauer
construction, the so called basic equivalences.

Recall that, by definition, the Morita equivalence induced by an indecom-
posable (A⊗Bop)-module M is basic between A and B if its source modules
have rank prime to p. Note that the existence of a basic Rickard equivalence
between A and B actually implies that equivalence of the respective Brauer
categories. We also refer the reader to Rouquier [73] for a detailed discussion
of this topic.

A generalization of Conjecture 6.1 was formulated by Rouquier [73]. As-
sume for simplicity that A is the principal block (but this also generalizes
to arbitrary blocks). The hyperfocal subgroup h(D) is, by definition, the
subgroup generated by the commutators [K,Q], where Q runs over the sub-
groups of D, and K runs over the p′-subgroups of NG(Q). If h(D) is abelian,
then there is a basic Rickard equivalence between A and B.

Note that A is a nilpotent block if and only if h(D) = 1. In this case,
A is basically Morita equivalent to OD (where the Sylow p-subgroup D is
arbitrary), but in general, there is no splendid Rickard equivalence between
A and OD.

6.3. Isotypies and p-permutation equivalences. A perfect isometry
between A and B is an isometry between the character groups of A and
B satisfying a certain arithmetic property with respect to p. An isotypy
between A and B is a family of perfect isometries between the centralizers
of subgroups P ≤ D in G and H, which are compatible with the generalized
decomposition map (see Broué [4]).

Boltje and Xu [3] defined a p-permutation equivalence between A and B as
an element γ in the representation ring of p-permutation (A,B)-bimodules
which satisfes γ · γ∨ = [A] and γ∨ · γ = [B] in the representation rings of
(A,A)-bimodules and (B, B)-bimodules, respectively, where γ∨ denotes the
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dual of γ. They showed that a splendid derived equivalence between A and
B induces a p-permutation equivalence (see also Boltje [2]). Moreover, if D
is abelian and the Frobenius categories of A and B are equivalent, then a
p-permutation equivalence between A and B induces an isotypy between A
and B.

The notion of p-permutation equivalence was adapted to deal with the
source algebras of A and B by Linckelmann [42], and he obtained extensions
of the above results.

6.4. The equivalence in 6.1 is compatible with p′-extensions of the group G
(see also 7.3 below).

6.5. The equivalence in 6.1 is compatible with p-central extensions of the
group G (see also 7.4 below).

6.6. The equivalence in 6.1 takes the trivial module to the trivial module.
More precisely, if A and B are the principal blocks, then C ⊗B O ' O.

7. Methods

Here A and B are the same as in the preceding section.

7.1. Gluing local equivalences. With the same notations, let C be a
splendid complex of (A,B)-bimodules and assume that A is the principal
block. By a theorem of Rouquier, the complex C induces a stable equivalence
between A and B if and only if BrA⊗Bop

δP C induces a Rickard equivalence
between kCH(P )aP and kCH(P )bP for every nontrivial subgroup P of D,
where aP = BrP (a) and bP = BrP (b) are the principal blocks of kCH(P )eP

and kCH(P )fP respectively.
A particular case is the following older theorem of Broué: the splendid

(A,B)-bimodule M induces a stable Morita equivalence between A and B

if and only if BrA⊗Bop

δP M induces a Morita equivalence between kCH(P )aP

and kCH(P )bP for every nontrivial subgroup P of D.
Note that this holds if H is weakly embedded in G (so, in particular, if

D is T.I.).
A much more general discussion of gluing splendid tilting complexes was

done by Rouquier [73]. Together with the next subsection, this raises the
possibility of proving Broué’s conjecture by induction.

7.2. Lifting stable equivalences to Rickard equivalences. The fol-
lowing strategy devised by Okuyama is widely used. Assume that we have
a stable Morita equivalence between A and B, and that we can construct a
tilting complex for B with endomorphism ring C. Then B and C are also
stably equivalent of Morita type, hence so are A and C. Assume that the
stable equivalence between A and C sends simple A-modules to simple C-
modules. Then, by a theorem of Linckelmann, A and C are in fact Morita
equivalent.

Various useful constructions of tilting complexes have been proposed by
Okuyama and Rickard. Explicit tilting complexes based on their algorithms



120 ANDREI MARCUS

were exhibited by Holloway [22], Robbins [69] and by M. Schaps et al. (see
[1] and the references given there) in the cases D = C3 × C3 and C5 × C5,
by making use of computational algebra software.

7.3. Clifford theory. One strategy to prove the above conjectures is to
reduce them to the case of simple groups and to use the classification and
the available information on their representations. To this goal, it is impor-
tant to investigate the relationship between representations of a group and
the representations of its normal subgroups and its factor groups. This is
the object of “Clifford theory”. A reduction theory for Broué’s conjecture
for principal blocks has been given by Marcus [44], and it is based on the
properties of graded bimodules and equivalences induced by them.

a) (Going up) In our situation, assume that G is a normal subgroup of a
group G̃ and let F = G̃/G be a p′-group. Let also H̃ = NG̃(D), and assume
that a (and hence b) is F -invariant. The compatibility with p′-extensions
6.4 requires that the complex C inducing the equivalence between A and B
extends to a complex of ∆-modules, where ∆ = ONG̃×H̃(δP ). Then one may
lift an equivalence between A and B to an equivalence between the F -graded
algebras aOG̃ and bOH̃ induced by the complex (aOG̃⊗O (bOH̃)op)⊗∆ C.
We discuss such “group graded equivalences” in the next section. Note
that graded equivalences defined over small fields preserve Turull’s Clifford
classes associated to characters (see [49] and [50]).

b) (Going down) The following situation was considered in [47], and ap-
plies to the symmetric and alternating groups. Assume that G has a normal
subgroup G+, and let H+ = H ∩ G+. Assume also that a ∈ OG+ and
b ∈ OH+, so A and B are F -graded algebras, where F = G/G+. Let C be
a complex inducing an equivalence between A and B. If C is a complex of
F -graded (A,B)-bimodules, then then the 1-component (where 1 ∈ F ) of C
induces an equivalence between aOG+ and bOH+. One useful case is when
F is a cyclic p′-group. If there is an action of the group F̂ = Hom(F,K×)
on C, then C is F -graded.

7.4. Lifting equivalences to p-central extensions. Assume that G =
Ĝ/P is, where P is a central p-subgroup of Ĝ, and let Ĥ be the inverse
image of H in Ĝ. The blocks a and b lift to blocks of OĜ and OĤ. By
the compatibility with p-central extensions 6.5, one may lift an equivalence
between A and B to an equivalence between ãOG̃ and b̃OH̃.

8. Graded equivalences

We are concerned with the problem of constructing derived equivalences
between two algebras R and S graded by the finite group G, and denote
A = R1 and B = S1.

8.1. G-graded tilting complexes. Recall that equivalences between
Db(A) andDb(B) have been characterized by J. Rickard in terms of one-sided
tilting complexes, and in terms of two-sided tilting complexes. A difficulty
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in the case of derived equivalences is that if T is an one-sided tilting complex
of A-modules, then EndH(A)(T )op act on T only up to homotopy.

For two-sided tilting complexes, compatibility with p′-extensions is ex-
pressed in terms of the existence of certain tilting complexes of graded bi-
modules. The results of [46] and [48] are motivated by constructions due
to T. Okuyama [53], [54], [55], and to J. Rickard [68], aimed to lift stable
equivalences between symmetric algebras to Rickard equivalences. Although
they end up with two-sided tilting complexes, the methods of Okuyama and
Rickard are based on constructions of one-sided tilting complexes.

8.1. Let k be a commutative ring, G a group and R =
⊕

g∈G Rg a G-
graded k-algebra. We denote by R-Gr the category of G-graded R-modules
M =

⊕
x∈G Mx and grade-preserving R-homomorphisms.

A complex T ∈ H(R-Gr) is called G-invariant if T (g) ' T (in the category
H(R-Gr)) for all g ∈ G. T is called weakly G-invariant if T (g) ∈ add(T ) for
all g ∈ G.

Let T ∈ H(R-Gr), E = EndH(R)(T )op, and assume that G is a finite
group. Then

a) E is a G-graded algebra with components

Eg ' HomH(R-Gr)(T, T (g)).

b) E is strongly graded (crossed product) if and only if T is weakly G-
invariant (G-invariant).

8.2. A complex P of G-graded R-modules is called perfect if it is bounded,
and its terms are finitely generated projective R-modules. We denote by
R-Grperf the full subcategory of D(R-Gr) consisting of complexes quasi-
isomorphic to a perfect complex. Rickard’s characterization of R-perf also
holds in this situation: a complex P ∈ D(R-Gr) belongs to R-Grperf if and
only if it is compact, that is, the functor

HomD(R-Gr)(P,−) → Ab

commutes with infinite direct sums.
An object T ∈ D(R-Gr) is called a G-graded tilting complex over R if it

satisfies the following conditions:
(a) T ∈ R-Grperf (that is, T , regarded as a complex of R-modules,

belongs to R-perf).
(b) HomD(R)(T, T [n]) = 0 for all n 6= 0.
(c) add(T ) generates R-perf as a triangulated category.

The following theorem is the main result of [46] combined with [45, The-
orem 4.7], and characterizes graded derived equivalences.

Theorem 8.3. Let k be a commutative ring, G a finite group and R, S two
G-graded k-algebras. The following statements are equivalent.

(i) There is a G-graded tilting complex T ∈ D(R-Gr) and an isomorphism
S → EndD(R)(T )op of G-graded algebras.
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(ii) There is a complex X of G-graded (R,S)-bimodules such that the
functor

X
L⊗S− : D(S) → D(R)

is an equivalence.
(iii) There are equivalences F : D(S) → D(R) and F gr : D(S-Gr) →

D(R-Gr) of triangulated categories such that F gr is a G-graded functor (that
is, it commutes with g-suspensions, for all g ∈ G), and the diagram

D(S) F // D(R)

D(S-Gr)
F gr

//

U
OO

D(R-Gr)

U
OO

is commutative, where U is the ungrading functor.
(iv) There are equivalences

Fperf : D(S-perf) → D(R-perf)

and

F gr
perf : D(S-Grperf) → D(S-Grperf)

of triangulated categories such that F gr
perf is a G-graded functor and U ◦

F gr
perf = Fperf ◦ U .
(v) (provided that R and S are strongly graded) There are (bounded)

complexes X1 of ∆(R⊗k Sop) modules and Y1 of ∆(S⊗k Rop) modules, and
isomorphisms

X1

L⊗S1Y1 ' R1 in Db(∆(R⊗k Rop))

and

Y1

L⊗R1X1 ' S1 in Db(∆(S ⊗k Sop)).

The next result is concerned with the induction one-sided tilting com-
plexes, and the first statement is an analogue of the equivalence between (ii)
and (v) in the above theorem.

Proposition 8.4. Assume that G is finite and R is strongly graded. Let
T be a G-invariant object of Hb(A), and denote T̃ = R ⊗A T and S =
EndH(R)(T̃ )op.

1) T is a tilting complex for A if and only if T̃ is a G-graded tilting
complex for R.

2) If T is a tilting complex for A and R is a finite dimensional symmet-
ric crossed product, then S is a symmetric crossed product of B := S1 '
EndH(A)(T )op and G.
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8.2. Stable equivalences and Rickard equivalences between sym-
metric algebras. We shall consider the situation when R and S are G-
graded symmetric crossed products over the algebraically closed field k,
where G is a finite group of order not divisible by p.

8.5. Let T • be an one-sided tilting complex of G-graded R-module with
endomorphism ring EndH(R)(T •)op ' S. Denote A = R1, B = S1, and by
∆ the diagonal subalgebra

∆ = ∆(R⊗k Sop) =
⊕

g∈G

Rg ⊗k Sg−1

of R⊗kSop. There exists a two-sided tilting complex X• of G-graded (R, S)-
bimodules. Then X•

1 is a complex of ∆-modules, and also a two-sided tilting
complex of (R1, S1)-bimodules. Let Y •

1 be a projective resolution of X•
1 as

∆-modules. It is possible to truncate Y •
1 in order to obtain a bounded

complex
Z•1 := (· · · → 0 → Kerdn → Y n

1 → Y n+1
1 → · · · ),

of ∆-modules quasi-isomorphic to X•
1 , such that all the terms of Z•1 but

Ker dn are projective ∆-modules, and Ker dn is projective as an R1-module
and as a right S1-module. Let

M1 := Ωn(Kerdn), N1 := Ω−n(HomR1(Kerdn, R1)),

and
Z• := (R⊗k Sop)⊗∆ Z•1 .

Then we have:
(a) The functor

Z• ⊗S − : Hb(S) → Hb(R)
is an equivalence, and it is also a graded functor. The complex Z•
is called a Rickard tilting complex or a split endomorphism tilting
complex. The inverse equivalence is induced by the k-dual of Z•.

(b) M1 is a ∆-module, N1 ' M∨
1 as ∆(S ⊗k Rop)-modules, and M1 and

N1 induce a stable Morita equivalence between R1 and S1.
(c) It follows that M := (R ⊗k Sop) ⊗∆ M1 and its k-dual induce a

graded stable Morita equivalence between R and S.

This can be extended to Rouquier’s notion of stable equivalences induced
by complexes.

Proposition 8.6. Assume that G is a p′-group, and let C and D be bounded
complexes of G-graded (R, S)-bimodules such that C induces a stable equiv-
alence between R and S, D induces a derived equivalence between R and S,
and the stable equivalence between A and B induced by D1 agrees on each
simple module, up to isomorphism, with that induced by C1.

Then there is a bounded complex X of finitely generated G-graded (R, S)-
bimodules such that

1) X = C ⊕ P , where P is a complex of G-graded projective bimodules;
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2) X induces a G-graded homotopy equivalence between R and S;
3) In the derived category of G-graded (R, S)-bimodules, X is isomorphic

to the composition between D and a G-graded Morita autoequivalence of R.

8.7. In this context, T. Okuyama has devised several methods of construct-
ing tilting complexes, starting with a stable equivalence and a choice of a
subset of the set of simple modules. Let {Si | i ∈ I} be a set of repre-
sentatives for the isomorphism classes of simple A-modules, and let Pi be
a projective cover of Si. The index set I becomes a G-set via the action
of G on simple A-modules. Let I0 be a subset of I, and assume that the
(A,B)-bimodule M1 induces a stable Morita equivalence between A and B.
In [46] and [48] we showed that Okuyama’s complexes are compatible with
p′-extensions provided that the following two conditions hold.

(1) I0 is a G-subset of I.
(2) M1 is a ∆-module.

For instance, in the T.I. situation, the bimodule M1 = AAB induces a stable
Morita equivalence between A and B, and M1 is clearly a ∆-module.

8.8. We now discuss Rickard’s construction [66] and its extension to group
graded algebras [48]. Under a derived equivalence between the k-algebras
A and B, the objects Xi ∈ Db(A-mod), i ∈ I, corresponding to simple B
modules must satisfy the following conditions.

(a) Hom(Xi, Xj [m]) = 0 for m < 0.
(b) Hom(Xi, Xj) = k if i = j and 0 otherwise.
(c) Xi, i ∈ I, generate Db(A-mod) as a triangulated category.

In order to obtain a graded derived equivalence, we also need to consider the
action of G. The next results from [48] should be compared with Robbins
[69], and apply to the examples considered by J. Chuang [10], J. Rickard
[68] and M. Holloway [22].

Theorem 8.9. Let R be a symmetric crossed product of A and G, let I be
a finite G-set, and let Xi ∈ Db(A-mod), i ∈ I, be objects satisfying (8.8. a,
b, c). Assume that the objects Xi satisfy the additional condition
(8.9.a) Rg ⊗A Xi ' Xgi in Db(A-mod), for all i ∈ I and g ∈ G.

Then there is another symmetric crossed product R′ of A′ and G, and
a G-graded derived equivalence between R and R′, whose restriction to A
sends Xi, i ∈ I, to the simple A′-modules.

In order to lift a stable equivalence to a graded derived equivalence by
using Okuyama’s strategy, in our general setting we need to assume that p
does not divide the order of G.

Corollary 8.10. Let R and S be two G-graded symmetric crossed products,
and denote A = R1 and B = S1. Assume that G is a p′-group and I is
a G-set. Let M be a G-graded (R,S)-bimodule inducing a Morita stable
equivalence between R and S, and let {Si | i ∈ I} be a set of representatives
for the simple B-modules.
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If there are objects Xi ∈ Db(A-mod), i ∈ I, satisfying the conditions (8.8.
a,b,c) and (8.9. a), and such that Xi is stably isomorphic to M1 ⊗B Si, for
all i ∈ I, then there is a G-graded derived equivalence between R and S.

Remark 8.11. a) The setting of Broué’ s conjecture and splendid equivalences
actually leads to graded equivalences. Let D be an abelian Sylow p-subgroup
of G, H = NG(D), fix a subgroup p of D, and denote here X = CG(P ), X̃ =
NG(P ), Y = CH(P ), Ỹ = NH(P ), so X̃/X ' Ỹ /Y . Let C• be a splendid
tilting complex of (kGe, kHf)-bimodules, where e and f are the principal
blocks, and let eP and fP be the principal blocks of kX and kY respectively.
Observe that (eP ⊗fP )k(NG×H(δP )) is the diagonal subalgebra of kX̃eP ⊗k

(kỸ fP )op. By the functoriality of the Brauer construction it follows that
the complex IndNG(P )×NH(P )

NG×H(δP ) BrG×H
δP (C•) induces an X̃/X-graded Rickard

equivalence between kX̃eP and kỸ fP .
b) A particular case of application of Theorem 8.3 is Okuyama-Gollan

[56, Lemma 1.5 and Proposition 1.6]. Assume that for the fixed subgroup
P of D, we have CG(P ) = P × G1 for some subgroup G1 of G. It follows
that CH(P ) = P ×H1, where H1 = H ∩ G1. Let e1 be the principal block
of kG1 and f1 the principal block of kH1, and regard R = kCG(P )e1 and
S = kCH(P )f1 as P -graded algebras with R1 = kG1e1 and S = kH1f1.
Observe that

∆(R⊗k Sop) = (e1 ⊗ f1)k(δ(P )(G1 ×H1)),

and since δ(P ) ∩ (G1 × H1) = 1, scalar restriction is an isomorphism of
categories from ∆(R⊗kSop)-mod to R1⊗kSop

1 -mod, the inverse being defined
by the trivial action of δ(P ) of an (R1, S1)-bimodule. Consequently, if C• is
a (splendid) tilting complex of (R1, S1)-bimodules, then IndR⊗kSop

∆(R⊗kSop)C
• is

a (splendid) tilting complex of P -graded (R,S)-bimodules.

9. The status of Broué’s conjecture

9.1. Broué’s conjecture appears to be very hard to check even on particular
examples. The following list contains cases where Broué’s conjecture has
been verified. Here again A is a block of OG with defect group D, and B is
the block of ONG(D) corresponding to A.

(1) D cyclic (Rickard, Linckelmann, Rouquier). Moreover, Rickard tilt-
ing complexes defined over the p-adic number field Qp exist in this
case [50], and this implies Turull’s strengthening the McKay conjec-
ture [77, Theorem 2.2] for cyclic blocks.

(2) D ' C2 × C2 (Erdmann, Linckelmann, Rickard, Rouquier).
(3) A principal block, p = 2 (Rouquier, Okuyama, Okuyama-Golan, and

the reduction theorem by Marcus).
(4) A principal block with defect group D ' C3×C3 (Okuyama, Koshi-

tani, Kunugi, Waki, and the reduction theorem by Marcus).
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(5) G a symmetric group (Rickard, Chuang-Kessar, Chuang-Rouquier)
or an alternating group (Marcus).

(6) A faithful 3-block of defect group C3 × C3 in the central extension
of the Mathieu group M22 by C4 (J. Müller and M. Schaps).

(7) G p-solvable (there is a Morita equivalence) (Dade, Puig, Harris-
Linckelmann).

(8) non-principal blocks of G = HS, G = O′N , G = He, G = Suz and
J4, p = 3, D ' C3 × C3 (Koshitani, Kunugi, Waki, Holm).

(9) non-principal blocks of G = 2.J2 and G = SL2(p2), p = 5, D '
C5 × C5 (Holloway).

(10) A any p-blocks with abelian defect group of the Tits group 2F4(2)′,
an then the Rickard equivalences can be lifted to prove the conjecture
for the group 2F4(2) (the case p = 5 for principal blocks is done by
Robbins [69]).

(11) A any p-blocks with abelian defect group of the Janko simple group
J4 [33].

(12) principal blocks of G = J2 and G = Sp4(4), p = 5, D ' C5 × C5

(Holloway).
(13) principal blocks of G = G2(2n), D ' C5 ×C5, 5 | 2n + 1, 25 - 2n + 1

(Usami-Yoshida).
(14) principal p-blocks of G = G2(q), D ' Cpa×Cpa , pa‖q+1 (Okuyama).
(15) G a connected reductive algebraic group over Fq, where p divides

q − 1 but p does not divide the order of the Weil group (Puig).
(16) Unipotent blocks of weight 2 of G = GLn(q), p - q, D ' Cpα × Cpα

(Turner, Hida-Miyachi).
(17) principal block of G = SL2(pn) (Okuyama); this lifts to the principal

block of GL2(pn) (Marcus).
(18) principal block of G = SU3(q2), p > 3 and p | q + 1, D ' Cpα ×Cpα ,

where pα = (q + 1)p (Kunugi-Waki).
(19) principal block of G = Sp4(q), p > 2 and p | q + 1, D ' Cpα × Cpα ,

where pα = (q + 1)p (Kunugi-Okuyama-Waki).
(20) G = GL2(q), p 6= 2 prime dividing q − 1 or q + 1 (Puig, Rouquier,

Gonard).

9.2. Let (D, e) be a maximal (G,A)-Brauer pair (so e is a block of OCG(D)
corresponding to A), and set N := NG(P, e). Let E := N/DCG(D) be the
inertial quotient of A. In some cases weaker types of equivalences exist.

(1) Assume that D is abelian. By the work of Usami and Puig, A and
B are isotypic in the following cases:
• |E| = 2;
• |E| = 3;
• |E| = 4;
• E is a dihedral group of order 6;
• E ' C4 × C2 and p ≥ 7;
• E ' C3 × C3 and p 6= 2, 7;
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• E is an elementary abelian 2-group and p 6= 2, 3;
• E is a dihedral group of order 8 and p 6= 3.

(2) If D is abelian and the hyperfocal subgroup [N, D] is cyclic, then A
and B are isotypic. Actually, this is true under the following weaker
conditions: E is cyclic, CE(x) = 1 for 1 6= x ∈ [N,P ], and |E| = `(A)
(Watanabe [86]).

(3) Assume that D has order at most p2 and and the number `(B) of
simple B-modules is 1. Then `(A) = 1, E is abelian, the decompo-
sition matrices of A and B are equal, and there is a p-permutation
equivalence between A and B inducing an isotypy between A and B
all of whose signs are positive (Kessar and Linckelmann [27].

9.3. Interesting equivalences still exist in some cases of non-abelian defect
groups.

(1) Consider the Chevalley group G = G2(q), where q is a power of 2
and q ≡ 2, 5 (mod 9). Here p = 3 and the Sylow 3-subgroup D
of G2(q) is the extraspecial group M(3) of order 27 and exponent
3. Then there is a Morita stable equivalence between the principal
block of OG2(q) and the principal block of ONG(Z(D)). Moreover
there is a Puig equivalence between the principal block of ONG(D)
and the principal block of ONG(Z(D)). This can be used to show
that the principal blocks of OG2(q) and OG2(2) are Puig equivalent
(Usami-Nakabayashi).

(2) Let G = PGL3(4), p = 3, D ' M(3), H = NG(P ) ' PGU3(4),
where P = D∩PSL3(4) ' C3×C3 is a Sylow 3-subgroup of PSL3(4).
Then the principal blocks of OG and OH are splendidly Rickard
equivalent (Kunugi-Usami).

(3) Let G = PSL3(q2), H = PSU3(q2), p = 3 | q + 1, where q is a
power of a prime. Then the principal blocks of OG and OH are
splendidly Rickard equivalent. This equivalence lifts to a splen-
did Rickard equivalence between the principal blocks of SL3(q2) and
SU3(q2) (Kunugi-Okuyama).

(4) Let G = GL2(q), q ≡ ±3 (mod 8), p = 2, and let P be a Sy-
low 2-subgroup of SL2(q) (so P is abelian). Then there is a splen-
did Rickard equivalence between the principal blocks of OG and
ONG(P ) (Gonard).

(5) Let b be a block of kG with quaternion defect group Q8. Let Z
be the unique subgroup of order 2 of Q8, let H = CG(Z), and let
c = BrZ(b) be the Brauer correspondent of c. Then the blocks kGb
and kHc are Morita equivalent. This is due to Linckelmann and
Kessar [26], and relies on earlier work of Cabanes and Picaronny
[7] showing the existence of perfect isometries, and on Erdmann’s
classification of tame blocks [16].

(6) Assume that A has a non-abelian TI defect group D with |D| =
p3. Then there is a “generalized” isotypy between A and B (Eaton
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[15]), and it is conjectured that the result is true for any TI defect
group. This version of isotypy is related to the Isaacs-Navarro [23]
refinement of the Alperin-McKay conjecture.
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blocks, Birkhäuser Verlag, Basel 1999.
[63] J. Rickard, Morita theory for derived categories, J. London Math. Soc. 61 (1989),

303–317.
[64] J. Rickard, Derived categories and stable equivalence, J. Pure Appl. Algebra 61

(1989), 303–317.
[65] J. Rickard, Derived equivalences as derived functors , J. London Math. Soc. 43 (1991),

37–48.
[66] J. Rickard, Splendid equivalences: derived categories and permutation modules, Proc.

London Math. Soc. 43 (1996), 37–48.
[67] J. Rickard, The abelian defect group conjecture, Proceedings of the I.C.M. Berlin

1998, vol. II, 121–128.
[68] J. Rickard, Equivalences of derived categories for symmetric algebras, J. Algebra 257

(2002), 460–481.
[69] D. Robbins, Broués abelian defect group conjecture for the Tits group, preprint 2008.
[70] R. Rouquier, From stable equivalences to Rickard equivalences for blocks with cyclic

defect, C.M. Campbell et al eds. Groups 1993 Galway/St. Andrews Proc. of the
NATO Advanced Research Workshop on Representation of Algebras and Related
Topics, Cambridge University Press 2 (1995), 512–523.



ABELIAN DEFECT GROUP CONJECTURE 131

[71] R. Rouquier, Some examples of Rickard complexes, Representation theory of groups,
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