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Abstract. We show that G-graded Rickard equivalences defined over small fields preserve
Cli¤ord classes associated to characters. These equivalences are compatible with operation on
Cli¤ord classes defined in terms of central simple crossed products.

1 Introduction

Cli¤ord classes have been introduced by Turull in [12] as a tool in the investigation of
Schur indices of irreducible complex characters of finite groups together with their
Cli¤ord theory. These classes arise from an equivalence relation between central sim-
ple G-acted algebras over a field F , where G is a finite group.

We have shown in [6] that the G-graded Morita equivalence between the corre-
sponding skew group algebras gives rise to the same classes. In addition, the Morita
equivalence relation can be defined between two central simple G-graded crossed
products, an observation that has other advantages as well.

We recall our approach to Cli¤ord classes in Section 2, and then we show how
other notions and constructions from [13] extend from G-algebras to crossed prod-
ucts. In Section 3 we discuss the interior subgroup of Cli¤ðG;FÞ, formed by classes
of crossed products for which the 1-component is a central simple F -algebra, its
action on Cli¤ðG;FÞ, and its parametrization in terms of H 2ðG;F�Þ and BrðFÞ. Sec-
tion 4 deals with inflation, restriction (truncation) and induction of crossed products
and of Cli¤ord classes. In Section 5 we show that G-graded Rickard equivalences
defined over small fields induce character correspondences that preserve Cli¤ord
classes and are compatible with the above-mentioned operations. We show that
such Rickard equivalences defined over the p-adic number field Qp exist in the case
of blocks with cyclic defect groups (Section 6), by adapting Rouquier’s proof [10] of
Broué’s abelian defect group conjecture for these blocks. This also give another ex-
planation for the validity of Turull’s conjecture [14, Theorem 2.2] for cyclic blocks.

Our general references are [8] for standard results on central simple algebras, [3] for
block theory and [11] for Rickard equivalences. As this paper is a sequel of [6], we
keep its conventions, and we refer the reader to it for unexplained facts concerning
crossed products and Cli¤ord classes.



2 Characters and Cli¤ord classes

We fix a finite group G, a field F of characteristic zero, and let F be an algebraic clo-
sure of F . Let R ¼ 0

g AG
Rg be a finite-dimensional strongly G-graded F -algebra.

Write A ¼ R1.

2.1. There is a natural action of the group G on the set of ideals of A and on the cen-
ter ZðAÞ of A. We say that R is a simple G-graded F -algebra if R1 has no non-trivial
proper G-invariant ideals. If in addition ZðAÞG ¼ F , then we say that R is central
simple.

The skew group algebra R :¼ A � G is called a trivial central simple G-graded
F -algebra if A ¼ EndF ðNÞ, where N is a (left) FG-module.

If R and S are strongly G-graded F -algebras, then we consider the diagonal
subalgebra

DðRnF SÞ :¼ 0
g AG

Rg nF Sg

of RnF S.

2.2. Let R and S be strongly G-graded algebras. We say that there is a G-graded
Morita equivalence between R and S if there are G-graded bimodules RMS and

SNR and isomorphisms M nS N FR and N nR M FS of G-graded bimodules.
If V and V 0 are R-modules, then there is a natural action of G on HomR1

ðV ;V 0Þ,
and the graded Morita equivalence induces an isomorphism

HomR1
ðV ;V 0ÞFHomS1

ðN nR V ;N nR V 0Þ

of FG-modules.

Theorem 2.3. Let R and S be central simple G-graded F-algebras. Let 1 ¼ e1 þ � � � þ en

and 1 ¼ f1 þ � � � þ fm be decompositions into primitive central idempotents of A and B,
respectively.

The following statements are equivalent.

(i) There is a G-graded Morita equivalence between R and S.

(ii) m ¼ n and there is an isomorphism between the G-sets fe1; . . . ; eng and f f1; . . . ; fng
such that e1 corresponds to f1, and moreover, there is an H-graded Morita equiv-

alence between R 0 :¼ e1Re1 and S 0 :¼ f1Sf1, where H is the stabilizer in G of e1.

(iii) There exist FG-modules V and V 0 such that writing T :¼ EndF ðVÞ � G and

T 0 :¼ EndF ðV 0Þ � G, we have an isomorphism

DðRnF TÞFDðS nF T 0Þ

of G-graded algebras.
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Definition 2.4. Let R and S be central simple G-graded F -algebras. If the equivalent
conditions of Theorem 2.3 hold, then we say that R and S are equivalent.

We denote by Cli¤ðG;FÞ the set of equivalence classes of central simple G-graded
F -algebras, and by ½R� the class of R in Cli¤ðG;F Þ.

The relationship between this definition and Turull’s original definition is discussed
in detail in [6].

Assume that the strongly G-graded F -algebra R is semisimple. Write FR :¼
F nF R. Next we recall how to associate Cli¤ord classes to irreducible characters
of FR.

Proposition 2.5. Let V be a simple R-module, and let w be the character of a simple

submodule of the FR-module F nF V. Let

E :¼ EndRðRnA VÞop:

Then E is a central simple G-graded F ðwAÞ-algebra, where

FðwAÞ ¼ F ðfwðaÞ j a A AgÞ ¼ FðfwðaÞ j a A AVZðRÞgÞ:

Definition 2.6. With the notation of the previous proposition, the Cli¤ord class ½½w�� of
w is the Cli¤ord class ½E� in Cli¤ðG;KÞ, where K :¼ F ðwAÞ.

The next result ([6, Theorem 3.4]) is a generalization of [12, Theorem 3.5], and ex-
amines what happens when the Cli¤ord classes of two characters are equal.

Theorem 2.7. Let R and S be strongly G-graded F-algebras, and write A ¼ R1 and

B ¼ S1.
Let w be an irreducible character of FR and let h be an irreducible character of FS.

We assume that F ¼ FðwAÞ ¼ F ðhAÞ, so the classes ½½w�� and ½½h�� belong to Cli¤ðG;FÞ.
Assume that ½½w�� ¼ ½½h��. Then for any subgroup H of G, there is an isometry be-

tween CharðFRH jwAÞ and CharðFSH jwBÞ. This correspondence commutes with induc-

tion, restriction and G-conjugation of characters, with multiplication with characters of

FH and with GalðF=F Þ-conjugation of characters.
Corresponding pairs of characters have the same fields of character values, the same

Schur indices, and determine the same Cli¤ord classes (and in particular the same ele-

ments in the respective Brauer groups).

3 Inertia groups and the interior subgroup

Note that Cli¤ðG;F Þ does not have a natural group structure. However, it contains a
subgroup with respect to the operation given by taking the diagonal subalgebra, and
this subgroup acts on Cli¤ðG;FÞ.
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3.1. Let G be a finite group and F a field of characteristic zero. Let R be a central
simple G-graded F -algebra with R1 ¼ A. Let 1 ¼ e1 þ � � � þ en be the decomposition
into primitive central idempotents of A, and let K ¼ e1ZðAÞ.

The subgroup I :¼ CGðKÞ is called an inertia group of R. The set of inertia groups
of R is a conjugacy class of subgroups of G, and this set is invariant under graded
Morita equivalence. Moreover, K=F is a Galois extension with Galois group isomor-
phic to CGðe1Þ=I .

Definition 3.2. The interior subgroup of Cli¤ðG;FÞ is defined by

ICli¤ðG;FÞ ¼ f½R� A Cli¤ðG;F Þ jZðR1Þ ¼ Fg:

This generalizes the notion introduced in [13, Section 3] in the case of central sim-
ple G-acted algebras. From the definition and by [6, Lemma 2.9] it is not di‰cult to
deduce the following result.

Proposition 3.3. (a) Let ½R� A Cli¤ðG;FÞ. Then ½R� A ICli¤ðG;F Þ if and only if G is the

inertia group of R.
(b) Let ½R�; ½S� A Cli¤ðG;FÞ. If either ½R� A ICli¤ðG;F Þ or ½S� A ICli¤ðG;FÞ, then

the product

½R�½S� :¼ ½DðRnSÞ�

is well defined. In particular, ICli¤ðG;FÞ is a group acting on the set Cli¤ðG;FÞ, and

moreover, this action is compatible with field extensions of F .

3.4. Factorization. Let ½R� A Cli¤ðG;F Þ, write R1 :¼ A, and let S JR be a strongly
G-graded subalgebra of R such that B :¼ S1 is a central simple F -algebra. Then
C :¼ CAðBÞ becomes a G-acted algebra as follows. For each g A G, there is an inver-
tible element sg A UðSÞVSg; then define gc ¼ sgcs�1

g for any g A G and c A C. This
clearly does not depend on the choice of sg. We may form the skew group algebra
T :¼ C � G.

By using [8, Theorem 12.7] and the argument of [13, Theorem 4.1], it is easy to
prove that ½T � A Cli¤ðG;FÞ, and that the map

DðS nTÞ ! R; bsg n cg 7! b � gcsg;

where g A G, b A B, sg A UðSÞVSg and c A C, is an isomorphism of G-graded alge-
bras, that is, ½R� ¼ ½S�½T � in Cli¤ðG;F Þ.

Proposition 3.5. Let ½R� A ICli¤ðG;F Þ. Then R determines a class

cohiðRÞ A H 2ðG;F�Þ,

and the map

ICli¤ðG;FÞ ! H 2ðG;F�Þ � BrðFÞ; ½R� 7! ðcohiðRÞ; ½R1�Þ

is an isomorphism of groups.
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Proof. For each g A G, let rg A UðRÞVRg. By the Skolem–Noether theorem, there
is ug A UðR1Þ such that rgar�1

g ¼ ugau�1
g for all a A R1 and g A G. It follows that

cg :¼ u�1
g rg A CRðR1Þg VUðRÞ, hence the family cg, g A G determines a 2-cocycle

g A Z2ðG;F�Þ. By definition, cohiðRÞ is the class ½g� A H 2ðG;F�Þ.
Clearly, the map sending ½R� to ðcohiðRÞ; ½R1�Þ is a bijection with inverse given by

ð½g�; ½A�Þ 7! ½FgG nF A�

for all ½g� A H 2ðG;F�Þ� and ½A� A BrðFÞ. It is also easy to see that these maps are
group homomorphisms. r

4 Operations with Cli¤ord classes

4.1. Inflation. Let f : G ! G be a surjective group homomorphism, write N ¼ Ker f,
and let ½S� A Cli¤ðG;FÞ. Consider the group algebra R :¼ S½N� of S and N. This
F -algebra is strongly G-graded, with components Rg ¼ SfðgÞ, for all g A G. We obtain
a map

inflf : Cli¤ðG;FÞ ! Cli¤ðG;F Þ; ½S� 7! ½S½Ker f��;

since if there is a G-graded Morita equivalence between S and S 0, then there is a
G-graded Morita equivalence between S½N� and S 0½N�.

This map restricts to a group homomorphism ICli¤ðG;F Þ ! ICli¤ðG;FÞ, it is
compatible with the action of ICli¤ðG;F Þ on Cli¤ðG;F Þ, and it is compatible with
field extensions.

Note that this construction generalizes the one given in [13, Section 6]. Indeed, if B

is a G-acted algebra and S ¼ B � G is the corresponding skew group algebra, then the
skew group algebra R ¼ A � G corresponding to the G-acted algebra A :¼ inflfðBÞ
coincides with S½N�.

4.2. Restriction. Let ½R� A Cli¤ðG;FÞ and let H be a subgroup of G. Then RH is a
strongly H-graded F -algebra, and truncation induces a map ResG

H from

Cli¤ðG;FÞH :¼ f½R� A Cli¤ðG;F Þ jZðR1ÞH ¼ Fg

to Cli¤ðH;F Þ.
It is easy to see that this map sends ICli¤ðG;F Þ to ICli¤ðH;F Þ, it is compat-

ible with the action of ICli¤ðG;FÞ on Cli¤ðG;F Þ, and it is compatible with field
extensions.

4.3. Induction. A general notion of induction of crossed products was given by
Klasen and Schmid [4]. We present here their construction in a slightly modified
form, and with actions on the left.
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Let R be a crossed product of the ring A with the group G. Let e be a central idem-
potent of A such that the centralizer H :¼ CGðeÞ has finite index in G. Assume that
the distinct G-conjugates of e are pairwise orthogonal, and their sum is 1. Then
S :¼ eRe ¼ eRH is a crossed product of B :¼ eA with H, and we say that R ¼ IndG

H S

is induced from S and H. Note that ReR ¼ R, hence R and S are Morita equivalent.
Conversely, let S be a crossed product of B and H, and assume that H has finite

index in G. Then, by [4, Theorem 1], there exists a crossed product R ¼ IndG
HðSÞ,

which is unique up to an isomorphism of G-graded rings.
To construct R, we start with a presentation S ¼ Bt

bH obtained by choosing an
homogeneous invertible element sh A UðSÞVSh, for each h A H. Then the map t

and the factor set b are given by

t : H ! AutðBÞ; txðbÞ ¼ sxbs�1
x ;

and

b : H � H ! UðBÞ; bðx; yÞ ¼ sxsys�1
xy ;

for all x; y A H and b A B. Let fti j i A G=Hg be a system of representatives for the left
cosets of H in G, with tH ¼ 1. For any x A G and i A G=H let xi A G=H and xi A H be
defined by the equality

xti ¼ txixi:

Let A ¼ Z½G=H�nZ B, and define the multiplication in A by

ði n bÞð j n b 0Þ ¼ dij i n bb 0;

for all i; j A G=H and b; b 0 A B, where dij is the Kronecker symbol. For x; y A G define
sx A Aut A and aðx; yÞ A UðAÞ by

sxðin bÞ ¼ xi n txi
ðbÞ; ax;y ¼

X

i AG=H

xyi n bðxi; yxiÞ:

Finally, let R be the free left A-module with basis frx j x A Gg and multiplication de-
fined by

ðarxÞða 0ryÞ ¼ asxða 0Þaðx; yÞrxy;

for all x; y A G and a; a 0 A A. One observes immediately that [13, Definition 8.1] is a
particular case of this construction. More precisely, we have the following.

Proposition 4.4. (1) With the above notation, R is a crossed product of A and G, and

R ¼ IndG
HðSÞ.

(2) If S ¼ B � H is a skew group algebra, then IndG
HðSÞ is a skew group algebra of

A and G. (In this case we also say that A ¼ IndG
H B as G-algebras.)
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(3) Let R ¼ IndG
HðSÞ and let R 0 be another G-graded crossed product. Then there is

an isomorphism

DðIndG
HðSÞnR 0ÞF IndG

HðDðS nR 0
HÞÞ

of G-graded algebras.

Proof. For (1) we refer to [4, Theorem 1], and (2) follows from the construction. Let e

be a central idempotent of R1 such that S ¼ eRe ¼ eRH . Then en 1 A R1 nR 0
1 is a

central idempotent of DðRnR 0Þ, and we have that

ðen 1ÞDðRnR 0Þðen 1Þ ¼ ðen 1ÞDðRnR 0ÞH ¼ DðS nR 0
HÞ:

Hence the statement follows by the definition of the induction. r

Note also that induction of crossed products appears implicitly in [6, Theorem
2.13]. In particular, it says that any central simple G-graded F -algebra is induced
from a uniquely determined (up to conjugacy) central simple H-graded F -algebra
whose 1-component is a skew-field. The following connection with endomorphism
rings of induced modules can be deduced without di‰culty.

Proposition 4.5. Let R be a strongly G-graded ring, and let H be a subgroup of G. Let

V be a simple R1-module such that its stabilizer (inertia group)

GV ¼ fg A H jRg nR1
V FV as R1-modulesg

equals H. Then the following statements hold.
(1) Let ~VV ¼ 0

i AG=H
Rti

nR1
V be the sum of distinct G-conjugates of V. Then

EndRðRnR1
~VVÞF IndG

HðEndRH
ðRH nR1

VÞÞ

as G-graded crossed products.
(2) Let U be a simple RH-module containing V as an R1-submodule. Then IndG

H U is

a simple R-module, and

EndR1
ðIndG

H UÞF IndG
HðEndR1

ðUÞÞ

as G-algebras.

Finally, induction behaves well with respect to central simple crossed products.

Theorem 4.6. Let H be a subgroup of the finite group G. Then induction of crossed

products from H to G defines a map

IndG
H : Cli¤ðH;FÞ ! Cli¤ðG;FÞ:
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Proof. The proof of [13, Proposition 8.2] adapts easily to show that if S is a central
simple H-graded F -algebra, then IndG

HðSÞ is central simple G-graded F -algebra. Now
let S and S 0 be equivalent central simple H-graded F -algebras. Then there is an
H-graded ðS;S 0Þ-bimodule N inducing a Morita equivalence between S and S 0.
Let R ¼ IndG

HðSÞ and R 0 ¼ IndG
HðS 0Þ. There are central idempotents e A R1 and

e 0 A R 0
1 such that S ¼ eRe and S 0 ¼ e 0R 0e 0. Then the ðR;R 0Þ-bimodule

M :¼ RenS N nS 0 e 0R 0

induces a G-graded Morita equivalence between R and R 0. r

Corollary 4.7. Let F be a field of characteristic zero and let F be an algebraic closure

of F . Let R a be strongly G-graded F-algebras, write A ¼ R1, and let H be a subgroup

of G.
Let w be an irreducible character of FRH such that FðwAÞ ¼ F , so the class ½½w�� be-

longs to Cli¤ðH;FÞ. Assume that wA contains an irreducible character of FA which is

stabilized by H. Then IndG
H w is an irreducible character of FR, and

½½IndG
H w�� ¼ IndG

H ½½w�� A Cli¤ðG;F Þ:

5 Rickard equivalences

In this section we show that Cli¤ord classes are invariant under derived equivalences.
We adopt a setting slightly more general than that of [5].

5.1. Let K be a finite extension of the field Qp of p-adic numbers, and let O be the
ring of integers in K.

Fix a finite group G and let R ¼ 0
g AG

Rg and S ¼ 0
g AG

Sg be two G-graded
crossed product O-orders. We assume that R and S are symmetric O-algebras, such
that the symmetrizing forms of R and S are G-invariant symmetrizing forms for
A :¼ R1 and B :¼ S1, respectively. Write KR ¼ KnO R, and assume that KR and
KS (or equivalently KA and KB) are semisimple K-algebras.

We assume that there exists a finite extension K̂K of K such that K̂K is a splitting
field of K̂KRH and K̂KRH for every subgroup H of G. Let ÔO be the ring of integers
of K̂K.

5.2. We say that there is a G-graded Rickard equivalence between R and S if there is
a complex M of G-graded ðR;SÞ-bimodules which are projective as R-modules and
as right S-modules, such that

M nS M4FR

in the homotopy category of G-graded ðR;RÞ-bimodules, and

M4nR M FS
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in the homotopy category of G-graded ðS;SÞ-bimodules, where M4 is the O-dual of
M. In this case, the functors M nS � and M4nR � are equivalences between the
homotopy categories R-modules and S-modules. This is a G-graded equivalence, in
the sense that it sends G-graded objects to G-graded objects, it commutes with grade
shifting and with grade forgetting functors.

Theorem 5.3. Assume that the complex M induces a G-graded Rickard equivalence

between R and S. Then for each subgroup H of G there is an isometry between the

K̂K-characters of K̂KRH and the K̂K-characters of K̂KSH .
These isometries are compatible with restriction, induction, G-conjugation and Galois

conjugation of characters.
Moreover, corresponding characters have equal Cli¤ord classes (and so in particular,

equal Schur indices and determine the same element in the appropriate Brauer group),
and the character correspondence commutes with induction and restriction of Cli¤ord

classes.

Proof. We know that for each subgroup H of G, the complex MH induces an H-
graded Rickard equivalence between RH and SH , and these equivalences commute
with the induction, restriction and conjugation functors. By a well-known result of
Broué, the Rickard equivalence is compatible with the extensions of O and K, and
induce an isometry of K̂K-characters. The compatibility with Galois-conjugation fol-
lows from the fact that the complex MH is Galois-invariant.

Let w be an irreducible character of K̂KRH , and let V be a simple KRH -module
such that w is a constituent of the character of K̂KnK V . Let W be the simple
KRH -module corresponding to V under the Rickard equivalence. Then the irreduc-
ible character h of K̂KSH corresponding to w is a constituent of K̂KnK W . The
character w determines the Cli¤ord class

½½w�� ¼ ½EndRH
ðRH nA VÞopp� A Cli¤ðH;KðwAÞÞ;

while h determines the Cli¤ord class

½½h�� ¼ ½EndSH
ðSH nB WÞopp� A Cli¤ðH;KðhBÞÞ:

The endomorphism algebra of a KRH -module is the same when regarded in the cat-
egory of KRH-modules and in the homotopy category of KRH -modules. By Cli¤ord
theory, the restriction of V to A is a direct sum of H-conjugate simple A-modules.
Since the Rickard equivalences obtained from M commute with induction, restriction
and conjugation, we deduce that there is an isomorphism

EndRH
ðRH nA VÞFEndSH

ðSH nB WÞ

of H-graded K-algebras. Consequently, KðwAÞ ¼ KðhBÞ and ½½w�� ¼ ½½h��.
Let y be an irreducible character of A contained in wA, and assume that H stabil-

izes y. Then, by Corollary 4.7, and since V is y-quasihomogeneous, we have
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IndG
H ½½w�� ¼ ½½IndG

H w�� ¼ ½IndG
HðEndKAðVÞÞ�

¼ ½EndKAðIndG
H VÞ� A Cli¤ðH;KðwAÞÞ:

The correspondent r of y under the G-graded Rickard equivalence is also stabilized
by H, and we similarly have

IndG
H ½½h�� ¼ ½½IndG

H h�� ¼ ½IndG
HðEndKBðWÞÞ� ¼ ½EndKBðIndG

H WÞ�:

Since IndG
H V ¼ KRnKRH

V corresponds to IndG
H W under the G-graded Rickard

equivalence, we deduce that

½½IndG
H w�� ¼ ½½IndG

H h��:

Finally, let f be an irreducible character of KR lying over y, and assume that for any
g A G there exists h A H such that gy ¼ hy. Then ½½f�� A Cli¤ðG;KðwAÞÞH , and

½½ResG
H f�� ¼ ResG

H ½½f�� A Cli¤ðH;KðwAÞÞ;

where ResG
H f denotes the restriction of f to KRH . The correspondent c of f is an

irreducible character of KS lying over the correspondent r of y. Arguments as above
show that

½½ResG
H f�� ¼ ½½ResG

H c�� A Cli¤ðH;KðwAÞÞ: r

6 Turull’s conjecture and blocks with cyclic defect groups

Let G be a finite group, p a prime number and D a p-subgroup of G. Denote by
IrrðG;DÞ the union of the sets IrrðBÞ of ordinary irreducible characters belonging to
p-blocks B of G having defect group D. The notation Irr0 means characters of height
zero. Also let Qp denote the field of p-adic numbers, and Qp its algebraic closure.

Turull [14] formulated the following conjecture strengthening Navarro’s conjecture
B [7, Section 1].

Conjecture 6.1. There exists a bijection

f : Irr0ðG;DÞ ! Irr0ðNGðDÞ;DÞ

having the following properties:

(1) if w A Irr0ðBÞ, and B has defect group D, then f ðwÞ A Irr0ðbÞ, where b is the
Brauer correspondent block of NGðDÞ of the block B;

(2) f commutes with the action of GalðQp=QpÞ; so, in particular, QpðwÞ ¼ Qpð f ðwÞÞ
for every w A Irr0ðG;DÞ;
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(3) for every w A Irr0ðG;DÞ, we have mpð f ðwÞÞ ¼ mpðwÞ, so that f ðwÞ and w have the
same p-local Schur index.

Turull also proved in [14, Theorem 2.2] that the above conjecture holds for blocks
with cyclic defect groups. In this section we point out that this result is also a conse-
quence of Rouquier’s work [10] on Broué’s conjecture. We mention here that a
detailed discussion of the connections between Broué’s conjecture and the Alperin–
McKay, Dade, Isaacs–Navarro conjectures can be found in [15]. Uno states in [15,
Section 4] that Rouquier’s complex is invariant under a certain Galois action. What
we need here is a splendid tilting complex defined over small fields.

6.2. We adopt the setting of [3, Chapter VII]. Let K be a finite extension of Qp, O
the ring of integers in K, and k the residue field of O. Assume that D is a cyclic
subgroup of G of order pa > 1. For 0c ic a, let Di be the unique subgroup of D

of index pi, and let Ni ¼ NGðDiÞ. Let B be a block of OG, and let Bi be the block of
ONi corresponding to B.

6.3. Under the assumption that the p-modular system ðK;O; kÞ is ‘big enough’, a
result of Rouquier ([10, Theorem 10.1]) states that the block algebras B and B0 are
splendidly Rickard equivalent. The main ingredients of his proof are the following:

(1) the Morita stable equivalence between B ¼ Ba and Ba�1 given by restriction and
induction;

(2) the structure of the block algebra B0 having normal defect group D;

(3) the construction of a Rickard tilting complex, based on the information on
modules and characters encoded in the Brauer tree;

(4) induction on i, i ¼ a; a � 1; . . . ; 0.

Note that (1) and (4) do not require assumptions on the size of the p-modular sys-
tem ðK;O; kÞ, and also the result on structure of blocks with normal defect groups
generalizes to small fields (see [2, Theorem 1.17], or [1] for an alternative proof ).
The Brauer tree of B is defined if K satisfies condition (*) of [3, p. 276]. However,
this condition can be avoided as well.

Proposition 6.4. The blocks B and B0 are splendidly Rickard equivalent.

Proof. There is a totally ramified extension K 0 of K for which condition (*) of [3,
p. 276] is satisfied. Let O 0 be the ring of integers in K 0. Then the residue field of O 0 is
k. Let B 0 be the block of O 0G corresponding to B, and B 0

0 the block of O 0N0 correspond-
ing to B0. By [10, Theorem 10.1], there is a splendid tilting complex X 0 of ðB 0;B 0

0Þ-
bimodules. Then k nO 0 X 0 is a splendid tilting complex of ðkB 0; kB 0

0Þ-bimodules. By
[9, Theorem 5.2], there is a splendid tilting complex X of ðB;B0Þ-bimodules such that

k nO X F k nO 0 X 0;

and X is unique up to isomorphism. r
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