REMARKS ON INDUCTION OF G-ALGEBRAS AND SKEW GROUP ALGEBRAS

TIBERIU COCONETS

Abstract

In the first section we give a pointed group version of a result of Dade on Green theory. Related to this, in the second section we consider an H-algebra B, where H is a subgroup of a finite group G. For the skew group algebra $B * H$, we prove that its induction to G in the sense of Puig is isomorphic to the skew group algebra over G of the induction, in the sense of Turull, of B to G. MSC 2000. 20C20, 16S35 Key words. Pointed group, defect pointed group, G-interior algebra, induction of G-algebras.

1. PRELIMINARIES

Let \mathcal{O} be a discrete valuation, and let A be an \mathcal{O}-algebra with identity, finitely generated as an \mathcal{O}-module. Let G be a finite group acting as automorphisms of A, hence A is a G-algebra. For any $a \in A$, and $g \in G$ we will denote by ${ }^{g} a$ the action of g on the element a.

For any subgroup H of G, denote by

$$
A^{H}=\left\{\left.a \in A\right|^{g} a=a \text { for all } g \in H\right\},
$$

the subalgebra of fixed elements of A by the action of H. Observe that by restriction, A is a H-algebra. Obviously this subalgebra contains the identity of the bigger algebra. For two subgroups K and H of G such that $K \subseteq H$, we have the relative trace map

$$
\operatorname{Tr}_{K}^{H}: A^{K} \rightarrow A^{H}, \operatorname{Tr}_{K}^{H}(a)=\sum_{g \in[H / K]}{ }^{g} a .
$$

We denoted by $[H / K]$ a set of representatives of the right cosets H / K. It is clearly, a well-defined map which is a additive group homomorphism. If $b \in A^{H}$ then $\operatorname{Tr}_{K}^{H}(a b)=\operatorname{Tr}_{K}^{H}(a) b$ and $\operatorname{Tr}_{K}^{H}(b a)=b \operatorname{Tr}_{K}^{H}(a)$ which implies that the image $A_{K}^{H}:=\operatorname{Tr}_{K}^{H}\left(A^{K}\right)$ is a two-sided ideal of A^{H}.

We are going to need the following definitions and remarks, hence for the sake of completeness we just state them here, for further details the reader is referred to [4].

Definition 1. A pointed group on the G-algebra A is a pair (H, α), where H is a subgroup of G and α is a point on A^{H}, i.e. a conjugacy class of a primitive idempotent $i \in A^{H}$; we shall use the notation H_{α} for a pointed group.

Remark 1. There is an partial order relation denoted " \leq " which can be defined on the set of pointed groups of the G-algebra A. Two subgroups K_{β}, H_{α} satisfy $K_{\beta} \leq H_{\alpha}$, if $K \leq H$ and for every $i \in \alpha$ there exists $j \in \beta$ such that $j=i j i$.

Definition 2. A pointed group P_{γ} is called a defect pointed group of H_{α} if and only if P_{γ} is a minimal pointed group such that $\alpha \subseteq \operatorname{Tr}_{P}^{H}\left(A^{P} \gamma A^{P}\right)$. The last condition is equivalent to the following statement: for every $i \in \alpha$ there exists $j \in \gamma$ such that $i=\operatorname{Tr}_{P}^{H}(a j b)$ for some $a, b \in A^{P}$. We also say that H_{α} is projective relative to P_{γ}.

Remark 2. Without specifying the point γ one can equivalently define P to be the defect of the pointed group H_{α}, that is, P is minimal such that $\alpha \subseteq A_{P}^{H}$. One easily shows that these two definitions are equivalent.

2. A POINTED GROUP VERSION OF A RESULT IN GREEN THEORY

Let e be an idempotent of A satisfying:

1) If $g \in G$ and ${ }^{g} e \neq e$, then ${ }^{g} e e=0$;
2) For all $a \in A^{G}$ we have $e a=a e$;

Let $G_{e}=\left\{g \in G \mid{ }^{g} e=e\right\}$ be the subgroup of G fixing e under the conjugation action. Condition 1) implies that

$$
c:=\operatorname{Tr}_{G_{e}}^{G}(e)=\sum_{g \in\left[G / G_{e}\right]}{ }^{g} e
$$

is an idempotent of A^{G}, and using 2) we see that c is central in A^{G}. Since G_{e} fixes e we have $(e A e)^{G_{e}}=e A^{G_{e}} e$.

Proposition 1. With the above notations, the map

$$
c A^{G} \rightarrow e A^{G_{e}} e, a \mapsto a e=e a
$$

is a ring isomorphism. The inverse map sends any $b \in e A^{G_{e}} e$ into $\operatorname{tr}_{G_{e}}^{G}(b) \in$ $c A^{G}$.

Since this is the exact restatement of a result in [1, Section 4], we leave the proof out of this paper.

Because e is fixed by G_{e} we deduce that $e A e$ is a G_{e}-algebra. The next result is the pointed group version of [1, 4.9].

Proposition 2. Let P_{γ} be a defect pointed group of $\left(G_{e}\right)_{\beta}$ on $e A e$. Then $P_{\gamma^{\prime}}$ is a defect pointed group of G_{α} on $c A^{G}$. Moreover, the point α is the correspondent of β with respect to the above isomorphism and γ^{\prime} is a point of $c A^{P}$.

Proof. By definition $P_{\gamma} \leq\left(G_{e}\right)_{\beta}$ is minimal such that

$$
\beta \subseteq \operatorname{Tr}_{P}^{G_{e}}\left(e A^{P} e\right)=e \cdot \operatorname{Tr}_{P}^{G_{e}}\left(A^{P}\right) e=e A_{P}^{G_{e}} e
$$

It follows that for every $i \in \beta$ there exists $w \in e A^{P} e$ such that

$$
i=e \operatorname{Tr}_{P}^{G_{e}}(w) e=\operatorname{Tr}_{P}^{G_{e}}(w)
$$

It follows that $j:=\operatorname{Tr}_{G_{e}}^{G}(i)=\operatorname{Tr}_{P}^{G}(w) \in c A^{G}$, and moreover j is a primitive idempotent of $c A^{G}$ satisfying $j=c j$. We may take α to be a point of $c A^{G}$ containing j, hence $\alpha=\operatorname{Tr}_{G_{e}}^{G}(\beta)$. Since ewe $=w$, it follows $w=e w=$ $c e w=c w \in c A^{P}$, and because $j=\operatorname{Tr}_{P}^{G}(w)$, where $w \in c A^{P}$, we deduce that $\alpha \subseteq \operatorname{Tr}_{P}^{G}\left(c A^{P}\right)=(c A)_{P}^{G}$. The pointed group G_{α} is projective relative to P, hence there exists γ^{\prime} a such that G_{α} is projective relative to $P_{\gamma^{\prime}}$.

Suppose there would exist a pointed group R_{ϵ} on $c A$ such that $R_{\epsilon} \leq P_{\gamma^{\prime}}$. Then we would have $R \leq P \leq G_{e}$, and by [4, Exercise 13.5, p. 109], for the points β and γ there would exist a point ϵ^{\prime} such that $R_{\epsilon^{\prime}} \leq P_{\gamma}$, which contradicts the minimality of P_{γ}.

3. INDUCTION AND SKEW GROUP ALGEBRAS

Let H be a subgroup of a finite group G, and consider an H-algebra A. We use the definition of induction of A as in [5, Section 8]. The induction of A from H to G is

$$
\operatorname{Ind}_{H}^{G}(A)=\mathcal{O} G \otimes_{\mathcal{O} H} A
$$

where an element $g \otimes a \in \mathcal{O} G \otimes \mathcal{O H}_{H} A$ is denoted by ${ }^{g} a$, and for $b \in \operatorname{Ind}_{H}^{G}(A)$ and $g \in G$ the element ${ }^{g} b$ is the result of g acting on b. If $a, b \in A$ and $g_{1}, g_{2} \in G$, the multiplication in this algebra is given by:

$$
\left({ }^{g_{1}} a\right)\left({ }^{g_{2}} b\right)= \begin{cases}g(a b) & \text { if } g=g_{1}=g_{2} \\ 0 & \text { if } g_{1} H \neq g_{2} H .\end{cases}
$$

As noted in [3, 4.3], this is a particular case of the induction of crossed products introduced in [2].

Consider the map

$$
\psi: G \rightarrow \operatorname{Aut}_{\mathcal{O}}\left(\operatorname{Ind}_{H}^{G}(A)\right), \quad g \mapsto \psi(g)(a):={ }^{g} a .
$$

If $a \in \operatorname{Ind}_{H^{\prime}}^{G}(A)$ then $a=g \otimes a^{\prime}$ for some $g \in G$ and some $a^{\prime} \in A$, hence $a=\psi(g)\left(a^{\prime}\right)$ and this means ψ is surjective. For $a \in \operatorname{Ind}_{H}^{G}(A)$ such that $\psi(g)(a)=g \otimes a=0$, it clearly follows that $a=0$, hence $\psi(g)$ is injective. Even more, for $g \in G$ and $a, b \in \operatorname{Ind}_{H}^{G}(A)$ we have

$$
\psi(g)(a b)={ }^{g}(a b)={ }^{g}(a)^{g}(b)=\psi(g)(a) \psi(g)(b) .
$$

We have shown that for any $g \in G, \psi(g)$ is an automorphism $\operatorname{of~}_{\operatorname{Ind}}^{H}(A)$ which is clearly \mathcal{O}-linear.

Let $g_{1}, g_{2} \in G$ and $a \in \operatorname{Ind}_{H}^{G}(A)$. We have

$$
\psi\left(g_{1} g_{2}\right)(a)={ }^{g_{1} g_{2}} a={ }^{g_{1}}\left(g_{2} a\right)={ }^{g_{1}}\left(\phi\left(g_{2}\right)(a)\right)=\left(\psi\left(g_{1}\right) \circ \psi\left(g_{2}\right)\right)(a),
$$

hence ψ is a group homomorphism which endows $\operatorname{Ind}_{H}^{G}(A)$ with a structure of a G-algebra.

Now let B be an H-algebra over \mathcal{O} and consider the skew group algebra $S:=B * H$ of B and H. Let $A=\operatorname{Ind}_{H}^{G}(B)$ be the above induced algebra, and denote by $R:=A * G$ the skew group algebra of A over G. The algebra R has a natural structure of interior G-algebra given by $G \rightarrow R^{*}, g \mapsto 1 \cdot g=g \cdot 1$, in the same manner S has a structure of interior H-algebra.

We may view the elements of R as pairs of the form $a \cdot g=(a, g)=\left(g^{\prime} \otimes b, g\right)$ where $b \in B, g \in G$ and $g^{\prime} \in[G / H]$. The subset of R consisting of elements in which $g^{\prime}=1$ and $g \in H$ is a subalgebra of R isomorphic to S. Identifying S with that subalgebra, the action of G on S is defined in the same way as the action of G on the elements of A.

There is another type of induction which is due to Puig and which can be applied to the interior H-algebra S, namely $\mathcal{O} G \otimes_{\mathcal{O H}} S \otimes_{\mathcal{O H}} \mathcal{O} G$. Recall that its algebra structure is given by

$$
\left(g \otimes s \otimes g^{\prime}\right)\left(g_{1} \otimes s_{1} \otimes g_{1}^{\prime}\right)= \begin{cases}g \otimes s \cdot g^{\prime} g_{1} \cdot s_{1} \otimes g_{1}^{\prime} \text { if } g^{\prime} g_{1} \in H \\ 0 & \text { if } g^{\prime} g_{1} \notin H\end{cases}
$$

where $g, g^{\prime}, g_{1}, g_{1}^{\prime} \in G$ and $s, s_{1} \in S$. The interior G-algebra structure is given by $g \cdot(x \otimes s \otimes y)=g x \otimes s \otimes y$ and $(x \otimes s \otimes y) \cdot g=x \otimes s \otimes y g$ for all $g, x, y \in G$ and $s \in S$. Observe that the induction of S is completely determined by elements in B and by sets of representatives of the left, respectively right cosets of H in G. We have the following result.

Theorem 1. The map

$$
\varphi: \mathcal{O} G \otimes_{\mathcal{O} H} S \otimes_{\mathcal{O H}} \mathcal{O} G \rightarrow R, \quad g \otimes s \otimes f \mapsto g \cdot s \cdot f,
$$

where $g, f \in G$ and $s \in S$, is an isomorphism of G-graded G-interior algebras, and the diagram

of G-graded G-interior algebras is commutative.
Proof. For $x, y \in[G / H]$ and $b \in B$, the map φ sends $x \otimes b \otimes y$ to ${ }^{x} b \cdot(x y)$. It is clear that φ is a well-defined map, since for other representatives of the
right respectively left cosets x^{\prime}, y^{\prime} we have

$$
\begin{aligned}
\varphi\left(x^{\prime} \otimes b \otimes y^{\prime}\right) & =\varphi\left(1 x^{\prime} \otimes b \otimes 1 y^{\prime}\right) \\
& =\varphi\left(x\left(x^{\prime}\right)^{-1} x^{\prime} \otimes b \otimes y\left(y^{\prime}\right)^{-1} y^{\prime}\right) \\
& =\varphi(x \otimes b \otimes y) .
\end{aligned}
$$

Let us show that φ is indeed a morphism of algebras. Let $x \otimes b \otimes y$ and $x^{\prime} \otimes b^{\prime} \otimes y^{\prime}$ be two elements of the Puig's induction of S. Then by definition we have

$$
(x \otimes b \otimes y)\left(x^{\prime} \otimes b^{\prime} \otimes y^{\prime}\right)= \begin{cases}x \otimes b \cdot y x^{\prime} \cdot b^{\prime} \otimes y^{\prime} & \text { if } y x^{\prime} \in H \\ 0 & \text { if } y x^{\prime} \notin H\end{cases}
$$

Note that in our case $y x^{\prime} \in H$ is equivalent to $y x^{\prime}=1$. Then

$$
\begin{aligned}
\varphi\left((x \otimes b \otimes y)\left(x^{\prime} \otimes b^{\prime} \otimes y^{\prime}\right)\right) & = \begin{cases}\varphi\left(x \otimes b \cdot y x^{\prime} \cdot b^{\prime} \otimes y^{\prime}\right) & \text { if } y x^{\prime} \in H \\
0 & \text { if } y x^{\prime} \notin H\end{cases} \\
& = \begin{cases}x\left(b b^{\prime}\right) \cdot\left(x y^{\prime}\right) & \text { if } y x^{\prime}=1 \\
0 & \text { if } y x^{\prime} \neq 1 .\end{cases}
\end{aligned}
$$

On the other hand, $\varphi(x \otimes b \otimes y)={ }^{x} b \cdot(x y)$, and $\varphi\left(x^{\prime} \otimes b^{\prime} \otimes y^{\prime}\right)=x^{\prime} b^{\prime} \cdot\left(x^{\prime} y^{\prime}\right)$, hence by applying the definition of the product in R the definition of the product in A we get

$$
\begin{aligned}
\varphi(x \otimes b \otimes y) \varphi\left(x^{\prime} \otimes b^{\prime} \otimes y^{\prime}\right) & ={ }^{x} b \cdot(x y) \cdot x^{\prime} b^{\prime} \cdot\left(x^{\prime} y^{\prime}\right) \\
& ={ }^{x} b^{(x y) x^{\prime}} b^{\prime} \cdot\left(x y x^{\prime} y^{\prime}\right) \\
& = \begin{cases}x\left(b b^{\prime}\right) \cdot\left(x y x^{\prime} y^{\prime}\right) & \text { if } x=x y x^{\prime} \\
0 & \text { if } x H \neq x y x^{\prime} H\end{cases} \\
& = \begin{cases}x\left(b b^{\prime}\right) \cdot\left(x y^{\prime}\right) & \text { if } 1=y x^{\prime} \\
0 & \text { if } 1 \neq y x^{\prime}\end{cases}
\end{aligned}
$$

Now let $g \in G$. Then

$$
\begin{aligned}
\varphi(g \cdot(x \otimes b \otimes y)) & =\varphi(g x \otimes b \otimes y)={ }^{g x} b \cdot(g x y) \\
& =(1 \cdot g)\left({ }^{x} b \cdot(x y)\right) \\
& =g \cdot \varphi(x \otimes b \otimes y),
\end{aligned}
$$

and

$$
\begin{aligned}
\varphi((x \otimes b \otimes y) \cdot g) & =\varphi(x \otimes b \otimes y g)={ }^{x} b \cdot(x y g) \\
& =\left({ }^{x} b \cdot(x y)\right)(1 \cdot g)=\varphi(x \otimes b \otimes y) \cdot g .
\end{aligned}
$$

So φ is indeed a morphism of interior G-algebras. Note that in the above equalities

$$
1=\sum_{g \in[G / H]} g \otimes 1_{B}=\sum_{g \in[G / H]}{ }^{g} 1_{B}
$$

is the identity of A and multiplying this identity by ${ }^{x} b$ on either side the product is different from zero exactly when $g=x$.

In order to check the surjectivity of φ we consider $a \cdot g=g^{\prime} b \cdot g \in R$ where $g, g^{\prime} \in G$ and $b \in B$. Let $x^{\prime}, x \in[G / H]$ be two representatives such that $g^{\prime}=x^{\prime} h^{\prime}$ and $g=h x$ for some $h^{\prime}, h \in H$. Then denoting by b^{\prime} the element of A being ${ }^{h^{\prime}} b$, we have

$$
\begin{aligned}
a \cdot g & =x^{\prime} b^{\prime} \cdot(h x)=\left(x^{\prime} b^{\prime} \cdot h\right)(1 \cdot x) \\
& =\varphi\left(x^{\prime} \otimes b^{\prime} \otimes h\right) \cdot x \\
& =\varphi\left(x^{\prime} \otimes b^{\prime} \cdot h \otimes 1\right) \cdot x \\
& =\varphi\left(x^{\prime} \otimes b^{\prime} \cdot h \otimes x\right),
\end{aligned}
$$

hence φ is surjective.
If $\sum_{x, y \in[G / H]} x \otimes b_{x, y} \otimes y \in \operatorname{Ker}(\varphi)$, then

$$
\varphi\left(\sum_{x, y \in[G / H]} x \otimes b_{x, y} \otimes y\right)=\sum_{x, y \in[G / H]}{ }^{x} b_{x, y} \cdot(x y)=0 .
$$

Consider $a \in A$ and invertible element, then for any $g \in G$ the element ${ }^{g} a$ is invertible. Fix $x^{\prime}, y^{\prime} \in[G / H]$ and multiply the above equality with ${ }^{x^{\prime}} a \cdot 1$ on the left and with ${ }^{\left(y^{\prime}\right)^{-1}} a \cdot 1$ on the right. One obtains $x^{\prime} a^{x^{\prime}} b_{x^{\prime}, y^{\prime}}{ }^{\prime} a=0$, which means $a b_{x^{\prime}, y^{\prime}} a=0$ hence $b_{x^{\prime}, y^{\prime}}=0$. Thus φ is injective and the theorem is proven.

Remark 3. a) Since we identified S with its isomorphic subalgebra of R, viewing $s=b \cdot h$, then the product $g \cdot s \cdot f$ is ${ }^{g} b \cdot h f$, where ${ }^{g} b \in A$.
b) One can easily verify that $\varphi(1)=1$, and that for $g=x h \in G$ with $x \in[G / H]$ and $h \in H$, we have

$$
{ }^{x h} b=g \otimes b=x \otimes^{h} b={ }^{x}\left({ }^{h} b\right) .
$$

In order to clarify the choice of φ, observe that

$$
g \cdot s \cdot f=g \cdot\left(\sum_{h \in H} b_{h} \cdot h\right) \cdot f=\sum_{h \in H}{ }^{g} b_{h} \cdot g h f,
$$

and for another element $g^{\prime} \cdot s^{\prime} \cdot f^{\prime}=\sum_{h \in H} g^{\prime} b_{h}^{\prime} \cdot g^{\prime} h f^{\prime}$, one gets

$$
(g \cdot s \cdot f)\left(g^{\prime} \cdot s^{\prime} \cdot f^{\prime}\right)=\left(\sum_{h \in H}{ }^{g} b_{h} \cdot g h f\right)\left(\sum_{h \in H}^{g^{\prime}} b_{h}^{\prime} \cdot g^{\prime} h f^{\prime}\right)
$$

On the other hand,

$$
\varphi\left(g \otimes s \cdot f g^{\prime} \cdot s^{\prime} \otimes f^{\prime}\right)= \begin{cases}\left(\sum_{h \in H} b_{b_{h}} \cdot g h f\right)\left(\sum_{h \in H} g^{\prime} b_{h}^{\prime} \cdot g^{\prime} h f^{\prime}\right) & \text { if } f g^{\prime} \in H \\ 0 & \text { if } f g^{\prime} \notin H\end{cases}
$$

The product $(g \cdot s \cdot f)\left(g^{\prime} \cdot s^{\prime} \cdot f^{\prime}\right)$ contains sums of elements of the form

$$
{ }^{g} b_{h} g h f g^{\prime} b_{h^{\prime}}^{\prime} \cdot\left(g h f g^{\prime} h^{\prime} f^{\prime}\right)
$$

which are zero if $g H \neq g h f g^{\prime} H$ that is $f g^{\prime} \notin H$.
c) R has a G-algebra structure induced by its interior structure, namely if $\phi: G \rightarrow R^{*}$ is the homomorphism giving the interior structure, then

$$
\psi: G \rightarrow \operatorname{Aut}(R), \quad \psi(g)=\operatorname{Inn}(\phi(g)),
$$

where for $a \in R, \psi(g)(a)=g \cdot a \cdot g^{-1}:={ }^{g} a$, gives R an G-algebras structure. The same argument works for the interior G-algebra $\mathcal{O} G \otimes_{\mathcal{O H}} S \otimes_{\mathcal{O} H} \mathcal{O} G$, which becomes a G-algebra by

$$
{ }^{g}(x \otimes s \otimes y)=g x \otimes s \otimes y g^{-1} .
$$

The isomorphism in the theorem is actually an isomorphism of G-algebras, in other words R and $\mathcal{O} G \otimes{ }_{\mathcal{O} H} S \otimes_{\mathcal{O H}_{H}} \mathcal{O} G$ are isomorphic as G-algebras. Indeed, for $g \in G$ and $x \otimes s \otimes y \in \mathcal{O} G \otimes_{\mathcal{O H}} S \otimes_{\mathcal{O H}} \mathcal{O} G$ we obtain

$$
\begin{aligned}
f\left({ }^{g}(x \otimes s \otimes y)\right) & =f\left(g x \otimes s \otimes y g^{-1}\right)=g x \cdot s \cdot y g^{-1} \\
& =g(x \cdot s \cdot y) g^{-1}={ }^{g} f(x \otimes s \otimes y)
\end{aligned}
$$

d) Let $c=\sum_{g \in\left[G / G_{e}\right]}{ }^{g} e$ be the G-invariant idempotent constructed in the second paragraph. Then c is the identity of the algebra $(c A c) * G=c(A * G) c$. These two algebras are in particular crossed products of A and G, and of $c A c$ and G respectively. The idempotent e is the identity, hence a central idempotent of $e\left(A * G_{e}\right) e=(e A e) * G_{e}$. By using the uniqueness of the induction as presented in [2], we may write

$$
c(A * G) c=\operatorname{Ind}_{G_{e}}^{G}\left(e\left(A * G_{e}\right) e\right) .
$$

If $B=\operatorname{Ind}_{G_{e}}^{G}(e A e)$ is the induction to G in the sense of Turull of the algebra $e\left(A * G_{e}\right) e$, by using the above theorem we have

$$
\begin{aligned}
c(A * G) c & =\operatorname{Ind}_{G_{e}}^{G}\left(e\left(A * G_{e}\right) e\right) \\
& =\mathcal{O} G \otimes \mathcal{O G}_{e} e\left(A * G_{e}\right) e \otimes \otimes_{\mathcal{O} G_{e}} \mathcal{O} G \\
& \simeq B * G .
\end{aligned}
$$

The equality $(c A c) * G=c(A * G) c$ forces the isomorphism

$$
c A c \simeq B=\mathcal{O} G \otimes_{\mathcal{O} G_{e}} e A e,
$$

hence the G-algebra $c A c$ is the Turull induction to G of the G_{e}-algebra $e A e$.

REFERENCES

[1] Dade, E.C., Block extensions, Illinois J. Math. 17 (1973), 198-272.
[2] Klasen, W. and Schmid, P., Induced crossed products. Commun. Algebra 18 (1990), 2573-2586.
[3] Marcus, A., Derived invariance of Clifford classes, J. Group Theory, to appear.
[4] Thévenaz, J., G-Algebras and Modular Representation Theory, Clarendon Press, Oxford 1995.
[5] Turull, A., Reduction theorems for Clifford classes, J. Group Theory 9 (2006), 27-47.

Received November 18, 2008

Babeş-Bolyai University

Faculty of Mathematics and Computer Science
Str. Mihail Kogălniceanu nr. 1
400084 Cluj-Napoca, România
E-mail: coconet.tibi@gmail.com

