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Abstract

In this paper our propose is to find a common term
which is included in the assumptions of theorems prov-
ing existence of zeros, implicit functions, fixed points or
coincidence points. This new point of view allows us to
weaken the assumptions which guarantee the solvability
of nonlinear equations and to recommend a possible uni-
fied treatment of several classes of operators which ap-
pear in the theory of nonlinear equations.

I. Introduction

In general, to prove the existence of zeros, of implicit functions, fixed
points or coincidence points, one can use either assumptions in con-
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nection with the geometrical properties of Banach spaces or the near-
ness of a mapping having good properties. By assumptions which are
in connection with the geometrical properties of the Banach spaces,
we mean monotonicity [2, 18, 36], accretivity [5, 6, 17, 19, 27, 28, 30],
K-positivity [14, 16], pseudo-contractivity [12, 22, 26]). The nearness
of two mappings A and B is satisfied, for example, when B is the
differential of A at a point and A is a C1-mapping or in the nons-
mooth case if B strongly approximates A in the sense of Robinson
[20, 31, 32] or B is near A in the sense of Campanato [10, 11, 34, 35].
We will show that these assumptions have the same origin, which
is a generalized accretivity. In this way the iterative procedures for
finding zeros of strongly accretive mappings [13, 15, 24, 25] and fixed
points for strong pseudo-contractions [13, 38] can be used to approx-
imate the solutions of a great variety of nonlinear equations.

We start with a well-known nearness property of the differential.
Let X and Z be Banach spaces, x0 ∈ X, X0 its neighborhood. Let
A : X0 → Z be a mapping which is Fréchet-differentiable on X0 and
suppose that dA : X0 → L(X,Z) is continuous at x0. Then dA(x0)
approximates A in a neighborhood of x0 in the following sense: for
all ε > 0 there exists a neighborhood Xε ⊂ X0 of x0 such that

||dA(x0)(x− y)− (Ax−Ay)|| ≤ ε||x− y|| , ∀ x, y ∈ Xε.

This property of the dA(x0) was generalized by Robinson [31] for
nonsmooth mappings. Using Robinson’s idea, nonsmooth implicit
function and inverse function theorems were proved [19, 20, 32].
We recall now the definition of the strong approximation given by
Robinson [31].

Definition I.1 Let X and Z be Banach spaces, x0 ∈ X and X0 its
neighborhood. Let A,B : X0 → Z. We say that A strongly approxi-
mates B at x0 if for all ε > 0 there exists a neighborhood Xε ⊂ X0

of x0 such that for all x, y ∈ Xε

‖B(x)−B(y)− (A(x)−A(y))‖ ≤ ε ‖x− y‖ . (1.1)

The following notion of nearness was given by Campanato [10, 34].

Definition I.2 Let A and B be two mappings from a set X into a
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Banach space Z. We say that A is near B if there exist α > 0 and
0 ≤ c < 1 such that for all x, y ∈ X we have

||Bx−By − α(Ax−Ay)|| ≤ c||Bx−By|| . (1.2)

Remark I.1 A. Tarsia proved ([34], Theorem 3.2 ) that in the con-
text of Definition 1.1, if for some ε > 0, B|Xε : Xε → B(Xε) is invert-
ible such that its inverse is Lipschitz continuous and if A strongly
approximates B at x0, then A is near B in a neighborhood of x0.
We notice that for this implication it would be enough to suppose
that (1.1) holds for some ε > 0 with ε · l < 1, where l is the Lipschitz
constant of the inverse of B|Xε .

In order to prove connections between nearness and accretivity let us
introduce the following definitions. These definitions are generaliza-
tions of the well-known notions of accretivity, strong or ϕ-accretivity.
First we define a class Φ of functions ϕ : R+ → R+ which will be
used to define the ϕ-accretivity. We say that ϕ ∈ Φ if ϕ(0) = 0,
ϕ(r) > 0 for r > 0, lim infr→∞ ϕ(r) > 0 and lim infr→r0 ϕ(r) = 0 im-
plies r0 = 0.
In this class belong continuous mappings ϕ : R+ → R+ with ϕ(0) =
0, ϕ(r) > 0 for r > 0 and lim infr→∞ ϕ(r) > 0 ([17, 25, 28]) and non-
decreasing mappings ϕ with ϕ(r) > 0 for r > 0 ([2, 19, 37]).
We remind that in a Banach space Z the normalized duality mapping
J : Z ; Z∗ is defined by

J(z) = {z∗ ∈ Z∗ : 〈z∗, z〉 = ‖z∗‖ · ‖z‖ = ‖z‖2} .

Definition I.3 Let A and B be two mappings from a set X into a
Banach space Z and J : Z ; Z∗ be the normalized duality mapping
of Z.
a) We say that A is accretive with respect to B if for all x, y ∈ X

there exists j(Bx−By) ∈ J(Bx−By) such that

〈Ax−Ay, j(Bx−By)〉 ≥ 0. (1.3)

If instead of (1.3) we suppose

〈Ax−Ay, j(Bx−By)〉 ≥ c||Bx−By||2 (1.4)

for some 0 < c < 1, then we say that A is strongly accretive with
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respect to B.
If instead of (1.3) we suppose

〈Ax−Ay, j(Bx−By)〉 ≥ ϕ(||Bx−By||)||Bx−By|| (1.5)

where ϕ ∈ Φ, then we say that A is ϕ-accretive with respect to B.
b) We say that A is Lipschitzian with respect to B if there exists
L > 0 such that for all x, y ∈ X

||Ax−Ay|| ≤ L||Bx−By||.
Remark I.2 When Z is a Hilbert space, then the above accretivity
notions coincide with the monotonicity, strong monotonicity ([11,
35]) and ϕ-monotonicity with respect to B. Moreover, if in addition
we suppose that B = I we get the notions of monotonicity, strong
monotonicity and ϕ-monotonicity ([2, 3, 4, 37]).
When X = Z is a Banach space and B = I we get the well-known
accretivity, strong accretivity and ϕ-accretivity ([5, 13, 15, 17, 18,
19, 24, 25, 27, 28, 30, 37, 38]).
In the case of linear mappings A = L,B = K : Z → Z we get the
definition of the K-positive definite operator ([14, 16]), namely

〈Ax, j(Bx)〉 ≥ c‖Bx‖2 .

In Section 2 we define the notion of weak-nearness between two op-
erators using the accretivity condition (1.5). We will prove that some
properties (injectivity, surjectivity, openess, homeomorphism) carry
over to weakly-near operators.
The main results of Section 3 prove the existence of zeros and of
implicit functions for Ax = 0 and A(x, λ) = 0 respectively, when A

is weakly-near to some ”good” mapping B.
In Section 4 we consider the solvability of a Dirichlet problem for cer-
tain types of fully nonlinear elliptic equations, including those which
cannot be linearized. Our treatment differs from the methods used
for finding viscosity solutions for fully nonlinear elliptic equations, by
the fact that we use the geometrical properties of Banach spaces to
measure the nearness between functions, instead of focusing on the
ordering relations which are needed to have viscosity subsolutions
and supersolutions (see [9]).
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II. The notion of weak-nearness

A. Tarsia [34] and S. Campanato [11] mentioned that in the case of
a Hilbert space Z, A is near B if and only if A is strongly monotone
with respect to B and Lipschitzian with respect to B. In Banach
spaces we can only prove that nearness implies strong-accretivity
and Lipschitz continuity.

Theorem II.1 Let A and B be two mappings from a set X into a
Banach space Z. If A is near B, then A is strongly accretive with
respect to B and Lipschitzian with respect to B.

Proof. Let us suppose that A is near B, which means that there
exist α > 0, 0 < c < 1 such that for all x, y ∈ X

||Bx−By − α(Ax−Ay)|| ≤ c||Bx−By||.
Hence, for each j(Bx−By) ∈ J(Bx−By) we have

〈Bx−By − α(Ax−Ay), j(Bx−By)〉 ≤

≤ ||Bx−By|| ||Bx−By − α(Ax−Ay)|| ≤ c||Bx−By||2,
so

〈Bx−By, j(Bx−By)〉 − α〈Ax−Ay, j(Bx−By)〉 ≤ c||Bx−By||2,
and

〈Ax−Ay, j(Bx−By)〉 ≥ 1− c

α
||Bx−By||2.

If 1−c
α < 1 then the proof is complete, otherwise we can choose

instead of 1−c
α an arbitrary positive constant less then 1 .

In this way we have proved that A is strongly accretive with respect
to B.
In order to prove that A is Lipschitzian with respect to B it is enough
to notice that

α||Ax−Ay|| − ||Bx−By|| ≤

≤ ||Bx−By − α(Ax−Ay)|| ≤ c||Bx−By||. 2
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Remark II.1 For the completeness of our treatment, let us prove
the reverse implication in the case of a Hilbert space Z.
Assuming that A is strongly monotone and Lipschitzian with respect
to B, for an α > 0 we obtain

||Bx−By − α(Ax−Ay)||2 =

= ||Bx−By||2 − 2α〈Bx−By, Ax−Ay〉+ α2||Ax−Ay||2 ≤

≤ (1− 2αc + L2α2)||Bx−By||2.
We finish the proof by observing that there exists α > 0 such that
0 < 1− 2αc + L2α2 < 1 .

Remark II.2 From the proof of Theorem 2.1 we realize that the
following two conditions are equivalent:
(i) There exists α > 0 and 0 < c < 1 such that

〈Bx−By − α(Ax−Ay) , j(Bx−By)〉 ≤ c ‖Bx−By‖2, ∀ x, y ∈ X .

(ii) A is strongly accretive with respect to B.

In the following definition we give a notion which is weaker than the
Lipschitz continuity with respect to B.

Definition II.1 Let A and B be two mappings from a set X to a
Banach space Z. We say that A is continuous with respect to B if
A ◦B−1 : B(X) ; Z has a continuous selection.

If A is Lipschitzian with respect to B, then A is continuous with re-
spect to B. Indeed, in this case A ◦B−1 : B(X) → Z is single-valued
and Lipschitz continuous, even if B−1 is not single valued.
We will introduce a weaker notion of nearness than those from Defi-
nitions 1.1 and 1.2 and we will use it to prove the existence of zeros,
the existence of implicit functions and the existence of solutions for
fully nonlinear elliptic equations.

Definition II.2 Let A and B be two mappings from a set X into a
Banach space Z. We say that A is weakly-near B if A is ϕ-accretive
with respect to B and continuous with respect to B.
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Let us notice that, if X = Z and A : Z → Z is ϕ-accretive and con-
tinuous, then A is weakly-near to I, the identity map of Z.
Using Theorem 2.1, we can see that if A is near B then A is weakly
near B. In order to have the weak-nearness a strictly weaker condi-
tion than the nearness we need either a non Hilbert Banach space
Z, or a weaker accretivity than the strong accretivity, or continuity
instead Lipschitz continuity.

A. Tarsia mentioned in [35] that if A is near B then Ax = Ay if
and only if Bx = By. When A is weakly-near B we have only that
Ax = Ay implies Bx = By.
In [35] it is proved that some properties as injectivity, surjectivity,
openess are preserved by nearness. In the next proposition we state
that they are also preserved by weak-nearness.

Proposition II.1 Let A, B : X → Z be such that A is weakly-near
B. If B is injective then A is injective and, if B is surjective, then
A is surjective.
If, in addition, we suppose that B(X) is open and
(i) Bx = By implies that Ax = Ay,
then A(X) is open. In the case of a topological space X, if B is a
homeomorphism, then A is a homeomorphism, too.

Proof. Let B be injective. In order to prove that A is injective, let us
consider x, y ∈ X with Ax = Ay. Using (1.5) we get that Bx = By,
which implies that x = y.
Let g : B(X) → Z be the continuous selection of A ◦B−1. Since A

is weakly-near B it follows that g is ϕ-accretive. To prove this, let
u, v ∈ B(X). Then g(u) ∈ A ◦B−1(u) and g(v) ∈ A ◦B−1(v) which
means that there exist x ∈ B−1(u) and y ∈ B−1(v) such that g(u) =
Ax, u = Bx, g(v) = Ay and v = By. Then

〈Ax−Ay, j(Bx−By)〉 ≥ ϕ(||Bx−By||)||Bx−By||
implies that

〈g(u)− g(v), j(u− v)〉 ≥ ϕ(||u− v||)||u− v||.
Now let us suppose that B is surjective. Since the mapping g : Z → Z

is ϕ-accretive and continuous, it is also surjective ([28], Theorem 3).
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Hence A ◦B−1 is surjective, which implies that A is surjective.
Assumption (i) implies that A ◦B−1 is single-valued, therefore g =
A ◦B−1. Moreover, g(B(X)) = A(X). Hence if B(X) is open, then
g(B(X)) is open, too ([28], Corollary 3).
Let us consider now that B is a homeomorphism. Using what we
have just proved regarding the injectivity and surjectivity of A, we
deduce that A is bijective.
Since A is weakly-near B, it follows that A ◦B−1 is continuous. Using
the continuity of B and that A = A ◦B−1 ◦B, we get that A is
continuous.
From (1.5) we obtain that

||Ax−Ay|| ≥ ϕ(||Bx−By||).

Hence

ϕ(||B ◦A−1u−B ◦A−1v||) ≤ ||u− v||

which implies that B ◦A−1 is continuous. Using A−1 = B−1 ◦B ◦
A−1 and the continuity of B−1, we deduce that A−1 is continuous.
2

III. Existence of zeros and of implicit functions by
using the weak-nearness

First we will recall a lemma regarding the existence of zeros in Ba-
nach spaces for ϕ-accretive mappings. We will use this lemma to
prove the existence of zeros for mappings which act between a set
and a Banach space. Actually, these two results are equivalent, be-
cause if in Theorem 3.1 we take X = B(z0, r) and B = I we get
Lemma 3.1.
By B(z0, r) we denote the closed ball centered at z0 and of radius
r > 0.

Lemma III.1 [19, 27] Let Z be a Banach space, z0 ∈ Z and r > 0.
Let us suppose that there is a continuous, ϕ-accretive mapping g :
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B(z0, r) → Z such that for all z ∈ ∂B(z0, r) and t > 0 holds

0 6= t(z − z0) + g(z).

Then there exists z ∈ B(z0, r) such that g(z) = 0.

Theorem III.1 Let X be a set, Z be a Banach space, z0 ∈ Z and
A,B : X → Z. Let us suppose that:
(i) B(z0, r) ⊂ B(X),
(ii) A is weakly-near to B,
(iii) 0 6= t(Bx− z0) + Ax , ∀ t > 0 and x ∈ X with ||Bx− z0|| = r.
Then there exists x ∈ X such that Ax = 0 and ||Bx− z0|| ≤ r.

Proof. Let g : B(X) → Z be the continuous selection of A ◦B−1.
Since A is weakly-near to B, it follows that g is ϕ-accretive (in the
same manner as in the proof of Proposition 2.1). Assumption (iii)
implies that

0 6= t(z − z0) + g(z)

for all t > 0 and z ∈ ∂B(z0, r).
So the mapping g|B(z0,r) satisfies the hypothesis of Lemma 3.1, and
hence there exists z ∈ B(z0, r) with g(z) = 0.
Therefore, 0 ∈ A ◦B−1(z), which implies the existence of x ∈ B−1(z)
such that A(x) = 0. 2

We will prove now an implicit function theorem, which can be con-
sidered a generalization of the classical implicit function theorem and
of the implicit function theorems found in [19, 20, 31, 32, 34]. The
main advantage of this theorem is that we do not assume a uniform
ϕ-accretivity of the mappings A(·, λ) with respect to B and that the
set X does not need to have any linear or topological properties.
(see Corollary 3.1 and the connections with other implicit function
theorems [19]).

Theorem III.2 Let X be a set, Λ be a topological space, Z be a
Banach space. We consider x0 ∈ X, λ0 ∈ Λ, z0 ∈ Z, a neighborhood
Λ0 of λ0, a constant r > 0 and the mappings A : X × Λ0 → Z, B :
X → Z such that
(i) x0 ∈ B−1(z0).
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(ii) B(z0, r) ⊂ B(X),
(iii) A(·, λ) is weakly-near to B (with respect to a function ϕλ) for
all λ ∈ Λ0 \ {λ0}.
(iv) limλ→λ0 inf{R > 0 : ϕλ(R)− ||A(x0, λ)|| > 0 } = 0.
Then there exist a neighborhood Λ1 of λ0 and a mapping x : Λ1 \
{λ0} → X such that for all λ ∈ Λ1 \ {λ0} we have A(x(λ), λ) = 0
and

lim
λ→λ0

||B(x(λ))−B(x0)|| = 0 .

Proof. Let

Λ1 = {λ ∈ Λ0 : inf {R > 0 : ϕλ(R)− ||A(x0, λ)|| > 0} < r}
and λ ∈ Λ1 \ {λ0}. Since

ϕλ(||Bx−Bx0||)||Bx−Bx0|| ≤ 〈A(x, λ)−A(x0, λ), j(Bx−Bx0)〉,
and for all t ≥ 0 we have

0 ≤ 〈t(Bx−Bx0), j(Bx−Bx0)〉 ,
it follows that

ϕλ(||Bx−Bx0||)||Bx−Bx0|| ≤

≤ 〈A(x, λ) + t(Bx−Bx0), j(Bx−Bx0)〉 − 〈A(x0, λ), j(Bx−Bx0)〉.
If ||Bx−Bx0|| = ||Bx− z0|| = R, then

〈A(x, λ) + t(Bx−Bx0) , j(Bx−Bx0)〉 ≥

≥ ϕλ(R)R + 〈A(x0, λ), j(Bx−Bx0)〉
and hence

||A(x, λ) + t(Bx− z0)|| ≥ ϕλ(R)− ||A(x0, λ)||.
Assumption (iv) implies that for each λ ∈ Λ1 \ {λ0} we can choose
Rλ ∈ [0, r] such that ϕλ(Rλ)− ||A(x0, λ)|| > 0 and Rλ → 0 as λ →
λ0. Using Theorem 3.1 we conclude that for all λ ∈ Λ1 \ {λ0} there
exists x(λ) ∈ X such that A(x(λ), λ) = 0 and ||B(x(λ))−B(x0)|| ≤
Rλ. 2
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The following corollary is a special case of Theorem 3.2 in the fol-
lowing setting: X = Z, A = g, B = I, ϕλ = ϕ.

Corollary III.1 [19] Let Z be a Banach space, Λ be a normed
space, (x0, λ0) ∈ Z × Λ. Let us suppose that there exist neighborhoods
Z0 of z0, Λ0 of λ0 and a mapping g : Z0 × Λ0 → Z such that
(i) 0 = g(z0, λ0);
(ii) the mappings g(., λ) are continuous on Z0, for all λ ∈ Λ0;
(iii) the mappings g(., λ) are ϕ-accretive on Z0 (with respect to the
same function ϕ), for all λ ∈ Λ0;
(iv) g(z0, .) is continuous at λ0.
Then there exists a neighborhood Λ1 of λ0 and a unique mapping x :
Λ1 → Z0 such that z(λ0) = z0, z is continuous at λ0 and g(z(λ), λ) =
0 for all λ ∈ Λ1.

IV. Fully nonlinear elliptic PDE

In this section we consider the solvability of the Dirichlet problem for
certain types of fully nonlinear elliptic equations. For these problems
we use the method of weakly-near operators. We obtain existence and
uniqueness results and, also, W 2,p-estimates for the solutions.
The theory of near operators was applied by S. Campanato [11] and
A. Tarsia [34, 35] to fully nonlinear elliptic systems. They proved
that the ellipticity condition (4.1) implies that the operator A (see
Theorem 4.1 below) is near the Laplace operator ∆ in L2(Ω).
We will use the ellipticity condition (4.7) to prove that a more diffi-
cult operator A, given by (4.11), is weakly-near to the linear operator
B, given by (4.5), in Lp(Ω).
The ellipticity condition (4.1) implies that the function a is Lipschitz
with respect to M . This fact assures that M → a(x,M) is almost
everywhere differentiable, which allows the linearization of equation
(4.2). Our results permit to deal also with equations for which the
linearization is not possible, since our function a(x, ·) need not to be
differentiable or Lipschitz.

In what follows, Ω will be a C2 bounded domain of Rn .
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We denote by Rn×n the space of n× n real matrices; | · |m is the Eu-
clidian norm in Rm; trN =

∑n
i=1 ξii is the trace of the n× n matrix

N = (ξij).

In [11, 34, 35] the authors considered a function a : Ω× Rn×n → R
such that
(i) a(x, 0) = 0,
(ii) a(·,M) is measurable ,
(iii) a(x, ·) is continuous,
(iv) there exists three positive constants α, β, γ, with γ + δ < 1 such
that

|trN − α[a(x,M + N)− a(x,M)]| ≤ γ|N |n2 + δ|trN |, (4.1)

for almost every x ∈ Ω, for all M, N ∈ Rn×n.

The main result in [11] is the following.

Theorem IV.1 If all the above conditions hold then
A(u) = a(x,D2u) is a well-defined operator between H2(Ω) ∩H1

0 (Ω)
and L2(Ω). Moreover,
(i) A is near ∆
and, consequently,
(ii) A is bijective.

This theorem implies that for every f ∈ L2(Ω) the problem

u ∈ H2(Ω) ∩H1
0 (Ω), a(x,D2u) = f(x), a.e. x ∈ Ω (4.2)

has a unique solution.
We remark that a satisfies condition (4.1) if and only if

[a(x,M + N)− a(x,M)]trN ≥ (4.3)

≥ 1− δ

α
|trN |2 − γ

α
|trN ||N |n2 ,

|a(x,M + N)− a(x,M)| ≤ 1 + δ

α
|trN |+ γ

α
|N |n2 .

One could prove that A is weakly-near ∆ (see [8]) if we replace (4.1)
by the weaker condition that there exist some positive constants ci,
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i ∈ {1, . . . , 5} with c1 > c2 + c3 such that

[a(x,M + N)− a(x,M)]trN ≥ (4.4)

≥ c1|trN |2 − c2|trN ||N |n2 − c3|N |2n2 ,

|a(x,N)| ≤ c4|trN |+ c5|N |n2 .

Theorem 4.1 remains valid under (4.4).
In what follows we shall propose a condition, which assures that A

is weakly-near to some linear elliptic operator

Bu =
n∑

i,j=1

lij(x)
∂2u

∂xi∂xj
+

n∑

i=1

li(x)
∂u

∂xi
− l0(x)u (4.5)

where L = (lij) ∈ C(Ω,Rn×n), l = (li) ∈ L∞(Ω,Rn), l0 ∈ L∞(Ω),
l0 ≥ 0 and

n∑

i,j=1

lij(x)ξiξj ≥ µ|ξ|2 , ∀ x ∈ Ω, ξ ∈ Rn.

Moreover, we shall work in Lp(Ω), with 2 ≤ p < ∞.
Before stating our assumptions and results, let us write the operator
B and its ellipticity condition as (see [33]):

Bu = tr(L(x)D2u) + lDu− l0u ,

tr(L(x)N) ≥ µ trN, ∀N ∈ Sn , N ≥ 0 ,

where Sn denotes the set of n× n symmetrical matrices and N ≥ 0
means that the symmetrical matrix N = (ξij) is semipositive definite
(i.e.

∑n
i,j=1 ξijηiηj ≥ 0 for all η = (η1, · · ·, ηn) ∈ Rn).

We suppose that the function a : Ω× R× Rn × Rn×n → R satisfies
the following conditions:
(a1) a(x, 0, 0, 0) = 0,
(a2) a(·, r, d, M) is measurable,
(a3) a(x, ·, ·, ·) is continuous,
(a4) there exist α, β, γ ≥ 0 such that

|a(x, r, d, M)| ≤ α|r|+ β|d|n + γ|M |n2 , (4.6)

or
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n < 2p and there exist α : [0,∞) → [0,∞) continuous, β, γ ≥ 0,
s ≥ 1 such that

|a(x, r, d, M)| ≤ α(|r|) (β|d|sn + γ|M |n2) ,

(a5) there exists c > 0 such that

[a(x, r + s, d + δ,N + M)− a(x, s, δ,M)]·

·[tr(L(x)N) + l(x)d− l0(x)r] ≥

≥ c|tr(L(x)N) + l(x)d− l0(x)r|2, (4.7)

for almost all x ∈ Ω, for all r, s ∈ R, d, δ ∈ Rn, M,N ∈ Rn×n.
We can see that the ellipticity condition (a5) implies that the follow-
ing ellipticity condition used in [33] is satisfied:

a(x, s, δ,N + M)− a(x, s, δ,M) ≥ c tr(L(x)N) ≥ cµ trN ,

for all N ∈ Sn , N ≥ 0 . Let us consider the following problem:

u ∈ W 2,p(Ω) ∩W 1,p
0 (Ω) , (4.8)

a(x, u, Du,D2u) = f(x) , for a.e. x ∈ Ω .

Our main result is the following theorem.

Theorem IV.2 If the function a satisfies the assumptions (a1)-
(a5) then the problem (4.8) has a unique solution uf for every f ∈
Lp(Ω). Moreover, there exists C > 0 such that the following estimate
holds

||uf ||W 2,p ≤ C||f ||Lp , (4.9)

for all f ∈ Lp(Ω).

For the proof of Theorem 4.2 we need the following lemmas.

Lemma IV.1 ( [21], Theorem 9.15, Lemma 9.17, p. 242)
The linear elliptic operator B : W 2,p(Ω) ∩W 1,p

0 (Ω) → Lp(Ω) (defined
by (4.5)) is well defined and it is a homeomorphism.
Moreover, there exists C̃ > 0 such that

||u||W 2,p ≤ C̃||Bu||Lp . (4.10)
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Let us consider now the mapping

A : W 2,p(Ω) ∩W 1,p
0 (Ω) → Lp(Ω) (4.11)

Au(x) = a(x, u, Du,D2u).

Lemma IV.2 A is well defined and continuous.

Proof. Using the condition (a4) we get that

|a(x, u, Du,D2u)| ≤ α|u(x)|+ β|Du(x)|n + γ|D2u|n2 ,

or, if n < 2p,

|a(x, u, Du, D2u)| ≤ α(|u(x)|) (
β|Du(x)|sn + γ|D2u|n2

)
,

for every u ∈ W 2,p(Ω) ∩W 1,p
0 (Ω).

When n < 2p, the Sobolev imbedding theorem ([1]) assures that
W 2,p(Ω) ⊂ C(Ω) and W 2,p(Ω) ⊂ W 1,q(Ω) for every q ≥ 1.
Then, in both cases the right side of this inequality is an Lp-function,
and we can deduce that A is well-defined and continuous. 2

Lemma IV.3 A is weakly-near to B.

Proof. A is continuous with respect to B because A and B−1 are
continuous.
We will prove that A is strongly-accretive with respect to B.
The normalized duality map of the Banach space Lp(Ω) is

J : Lp(Ω) → Lq(Ω) , Ju(x) = u(x)|u(x)|p−2||u||2−p

where 1
p + 1

q = 1.

Using (4.7) we obtain that, for every u, v ∈ W 2,p(Ω) ∩W 1,p
0 (Ω):

〈Au−Av, J(Bu−Bv)〉 =

= ||B(u− v)||2−p ·
·

∫

Ω
[a(x, u,Du, D2u)− a(x, v, Dv, D2v)] ·

· B(u− v) · |B(u− v)|p−2dx ≥
≥ c||B(u− v)||2−p

∫

Ω
|B(u− v)(x)|pdx = c||B(u− v)||2 .
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Thus

〈Au−Av, J(Bu−Bv)〉 ≥ c||Bu−Bv||2. (4.12)

2

Now we can prove Theorem 4.2 :
Proof. Because A is weakly-near to B and B is bijective, by Propo-
sition 2.1, we have that A is bijective. Then the problem (4.8) has a
unique solution for every f ∈ Lp(Ω).
In (4.12) we put v = 0 and the unique solution u of Au = f . Then
we obtain

||Bu||2 ≤ 1
c
〈f, J(Bu)〉.

So,

||Bu||Lp ≤ 1
c
||f ||Lp .

Using (4.10) we can deduce the estimate (4.9). 2

In [34] the following problem is also considered

u ∈ H2(Ω) ∩H1
0 (Ω) , (4.13)

a(x,D2u) + g(x, u) = f(x) , a.e. x ∈ Ω .

The function g : Ω× R→ R is measurable in x ∈ Ω and there exists
0 < c < λ1 (where λ1 is the smallest eigenvalue of the Laplace oper-
ator −∆) such that, for all r, s in R and for almost every x in Ω
(i) g(x, 0) = 0,
(ii) 0 ≤ [g(x, r)− g(x, s)](r − s),
(iii) |g(x, r)− g(x, s)| ≤ c|r − s|.
Existence and uniqueness results for problem (4.13) were obtained
for sufficiently small constants c.
We give a similar result for the problem

u ∈ H2(Ω) ∩H1
0 (Ω) , (4.14)

a(x, u, Du,D2u)− g(x)u = f(x) , a.e. x ∈ Ω .

We assume that g satisfies either (g1) or (g2) stated below:
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(g1) g ∈ H2(Ω) ∩ L∞(Ω), Bg(x) ≤ 0 and g(x) ≥ 0 a.e. x ∈ Ω.
(g2) g(x) ≡ g ∈ (−∞, 0) and −g < c · λ1(−B), where λ1(−B) is the
first eigenvalue of (−B).
In addition to previous assumptions for the linear elliptic operator
B, we consider that it has the divergence form

Bu =
n∑

i,j=1

∂

∂xj
(lij(x)

∂u

∂xi
)− l0(x)u , lij = lji ∈ C1(Ω) (4.15)

Lemma IV.4 If (g1) is satisfied then for every u ∈ H2(Ω) ∩H1
0 (Ω)

the following relation holds

−
∫

Ω
g(x)u(x)Bu(x)dx ≥ 0 .

If (g2) is satisfied then for every u ∈ H2(Ω) ∩H1
0 (Ω) the following

relation holds

−
∫

Ω
g · u(x)Bu(x)dx ≥ g

λ1(−B)

∫

Ω
|Bu(x)|2dx .

Proof. If (g1) holds then we have:

−
∫

Ω
g(x)u(x)Bu(x)dx =

= −
n∑

i,j=1

∫

Ω
gu

∂

∂xj
(lij

∂u

∂xi
)dx +

∫

Ω
gl0u

2dx =

=
n∑

i,j=1

∫

Ω
lij

∂(gu)
∂xj

∂u

∂xi
dx +

∫

Ω
gl0u

2dx =

=
n∑

i,j=1

∫

Ω
lij

∂g

∂xj

∂u

∂xi
udx +

n∑

i,j=1

∫

Ω
lijg

∂u

∂xj

∂u

∂xi
dx +

∫

Ω
gl0u

2dx ≥

≥ 1
2

n∑

i,j=1

∫

Ω
lij

∂g

∂xj

∂u2

∂xi
dx +

∫

Ω
gl0u

2dx =

= −1
2

∫

Ω
u2Bgdx +

1
2

∫

Ω
gl0u

2dx ≥ 0 .
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If (g2) is satisfied then:

−
∫

Ω
g · u(x)Bu(x)dx = −g〈u,Bu〉L2 =

= −(−g)|〈u,−Bu〉| ≥ −(−g)
1

λ1(−B)
||Bu||2L2 .

We used that 〈u, Bu〉 ≤ 0, and the inequality |〈v, Tv〉| ≤ |λ1(T )| · |v|2
for the linear, self-adjoint and completely continuous operator T =
(−B)−1 : L2(Ω) → L2(Ω) (see [29]). 2

Theorem IV.3 If the conditions (a1)-(a5) and (g1) or (g2) hold
then there exist C > 0 and a unique solution uf of (4.14) for every
f ∈ L2(Ω) such that

||u||H2 ≤ C||f ||L2 .

Proof. Let us consider the mapping Ã : H2 ∩H1
0 (Ω) → L2(Ω), de-

fined by Ãu(x) = Au(x)− g(x)u, where A is given by (4.11). Argu-
ing as above, we get that Ã is continuous with respect to B. Also,
Ã is strongly-accretive with respect to B, as follows by the following
relations (we use Lemma 4.4 and (4.12)):

〈Ãu− Ãv, Bu−Bv〉 =

= 〈Au−Av, Bu−Bv〉 −
∫

Ω
g(x)(u− v)(x)B(u− v)(x)dx ≥

≥
(

c + ε · g

λ1(−B)

)
||Bu−Bv||2L2 ,

where ε = 0 if (g1) holds and ε = 1 if (g2) holds.
Then Ã is weakly-near B, which is bijective. Thus Ã is bijective
and the existence and unicity of the solution of (4.14) follows. The
estimation can be obtained as in the proof of Theorem 4.2. 2
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