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Abstract. In this paper it is shown that (0, 0, 0) is a center for

ẋ = y, ẏ = z, ż = −1
a

z − a (2x + 1)y − x(x + 1),

and that (−1, 0, 0) is a center for

ẋ = y, ẏ = z, ż = −a x z − 1
a

y − x(x + 1),

(where a > 0) giving in this way a positive answer to questions arised in
the paper Analysis of a quadratic system obtained from a scalar third order
differential equation, Electron. J. Differential Equations 2010 no. 161 (2010).

1. Introduction and statement of the results

The starting point is the scalar third order differential equation

(1)
...
x + f(x)ẍ + g(x)ẋ + h(x) = 0,

with f and g arbitrary polynomials of degree 1 and h a polynomial of degree
2. Without loss of generality we can take h(x) = x(x + 1) when h has two real
zeros. We will associate to equation (1) the quadratic differential systems in R3

(2) ẋ = y , ẏ = z , ż = −f(x)z − g(x)y − h(x) .

A Hopf point of (2) is a singularity that possesses two complex eigenvalues ±i
with zero real part and one nonzero real eigenvalue. System (2) having a singular
point of Hopf type at the origin has a local 2-dimensional center manifold W c(0).
This manifold is invariant for (2) locally (only for sufficiently small |x| and |y|)
and for any k ≥ 1 there exists h̃ of class Ck near the origin such that

h̃(0, 0) = 0, Dh̃(0, 0) = 0,

Dh̃(x, y) being the Jacobian matrix of h̃, and

W c(0) = {(x, y, h̃(x, y)) ∈ R3 : (x, y) in a small neighborhood of (0, 0)}.
The center problem for system (2) at the Hopf type singularity consists in de-
tecting when the singular point becomes either a center or a focus for the flow of
system (2) restricted to the center manifold. We say that the singular point is a
center of (2) if all the orbits on W c(0) near the origin are periodic, and a focus
if they spiral around it. The classical procedure for the solution to the center
problem can be found in [1, 4], while the projection method for the calculation
of the Lyapunov constants is given in [7].
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Recall here that the Lyapunov constants are the coefficients of the Taylor series
of the diplacement map (Poincaré return map minus the identity), so that its
vanishing is a necessary condition for having a center. But essentially, the main
problem is the following. Let R ⊂ R[λ] be the ring of real polynomials whose
variables are the coefficients λ ∈ Rp of some polynomial differential family (2).
The Bautin ideal J is the ideal of R generated by all the Liapunov constants.
Using Hilbert’s basis theorem, it follows that J is finitely generated. Thus, there
are {B1, B2, . . . , Br} ⊂ J such that J = (B1, B2, . . . , Br). Such a set of generators
is called a basis of J when r is the minimum number of the ideal generators. In
this case, we say that r = dim J. For the concrete family of polynomial systems
(2), an open problem nowadays is the determination of J

We recall that, by using the blow-up technique, the problem to characterize
the local phase portrait near an isolated singular point of a planar vector field
can be solved except when the singularity is monodromic, that is, it is either a
focus or a center.

Some aspects of the dynamics of system (2) are studied in [5]. Under conditions
on the set of parameters, the origin and the point (−1, 0, 0) are Hopf points of
system (2). The authors of [5] prove that the first three Lyapunov coefficients
vanish at these Hopf points, hence they conjecture that they are centers. In this
work, analyzing the vector field (2) with the techniques developed in [3], we show
two families of centers, solving in this way the two conjectures formulated in [5].
We have the following result.

Theorem 1. Consider the following 4–parameter family of quadratic differential
systems in R3

(3) ẋ = y , ẏ = z , ż = −f(x)z − g(x)y − h(x) ,

where f(x) = a1x + a0, g(x) = b1x + b0 and h(x) = x(x + 1) and the parameters
(a0, a1, b0, b1) ∈ R4. We have the following center conditions:

(i) The point (0, 0, 0) is a center of system (3) if b0 > 0, a0 = 1/b0, a1 = 0
and b1 = 2b0.

(ii) The point (−1, 0, 0) is a center of system (3) if a0 = b1 = 0, b0 = 1/a1

and a1 > 0.

The proof of Theorem 1 is based on the properties of an inverse Jacobi last
multiplier of system (3) as studied in [3]. Since this proof is based on the main
results of the preprint [3], we write in the last section of this paper an appendix
in order to give an alternative self-contained proof of Theorem 1.

We shortly present the properties of the inverse Jacobi last multiplier function
developed in [3] below.

Let D ⊆ Rn be an open subset and Y =
∑n

i=1 fi(x)∂xi
be a C1(D) vector field

with x = (x1, . . . , xn) ∈ D. A C1 function V : D → R is said to be an inverse
Jacobi last multiplier of Y if it is not locally null and it satisfies the linear first
order partial differential equation

YV = V divY ,
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where divY =
∑n

i=1 ∂fi(x)/∂xi is the divergence of the vector field Y . A good
reference to the theory of inverse Jacobi last multipliers is [2]. See also [6] for a
summary. The next result is a simple consequence of the main results proved in
[3].

Corollary 2. [3] Assume that the linear part of the vector field Y in R3 has the
block diagonal representation

C =

(
A 0
0 B

)
, A =

(
0 −1
1 0

)
,

where B ∈ R\{0} and that there exists a smooth and nonflat inverse Jacobi
last multiplier V (x, y, z) of Y near the origin. If one has the following Taylor
expansion

V (x, y, z) = z + · · · , where the dots indicate terms of order two or higher ,

then the origin is a center for Y.

2. Proof of Theorem 1

The singularities of (3) are p0 = (0, 0, 0) and p1 = (−1, 0, 0). In addition, these
singular points are Hopf points in the following cases:

• Taking b0 > 0, a0 = 1/b0, the origin of system (3) has associated eigen-
values −1/b0 and ±i

√
b0.

• Taking a0− a1 < 0 and (a0− a1)(b0− b1) = −1, the singularity (−1, 0, 0)
of system (3) has associated eigenvalues a1 − a0 and ±i/

√
a1 − a0.

Under the parameter restrictions b0 > 0, a0 = 1/b0, a1 = 0 and b1 = 2b0 of
statement (i), system (3) possesses the inverse Jacobi last multiplier

V (x, y, z) = z + b0 x(x + 1).

This can be easily seen by verifying that this function is a solution of the linear
partial differential equation

y
∂V

∂x
+ z

∂V

∂y
− (z/b0 + b0 (2x + 1)y + x(x + 1))

∂V

∂z
= −V/b0.

We do the linear change of variables

(x, y, z) → 1

1 + b3
0




−b0 0 b3
0

−b
5/2
0 −(1 + b3

0)b
1/2
0 −b

3/2
0

b0 0 1







x
y
z




and the rescaling of time t → −√b0 t bringing the linear part of (3) at the origin
to its canonical form. In short, system (3) is written in the form

ẋ = −y +
1

1 + b3
0

(
b
1/2
0 x2 + 2b2

0xy − 2b5
0yz − b

13/2
0 z2

)
,

ẏ = x +
1

1 + b3
0

(
−b−1

0 x2 − 2b
1/2
0 xy + 2b

7/2
0 yz + b5

0z
2
)

,(4)

ż = b
−3/2
0 z +

1

1 + b3
0

(
b
−5/2
0 x2 + 2b−1

0 xy − 2b2
0yz − b

7/2
0 z2

)
,
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having the inverse Jacobi last multiplier

V (x, y, z) = z + (x− b3
0z)2/(b0(1 + b3

0)).

Applying Corollary 2, the origin is a center of system (4) and consequently of
system (3) proving statement (i).

Under the parameter restrictions a0 = b1 = 0, b0 = 1/a1 and a1 > 0 of
statement (ii), system (3) possesses the inverse Jacobi last multiplier

V (x, y, z) = 1 + x + a1z.

This can be easily seen by verifying that this function is a solution of the linear
partial differential equation

y
∂V

∂x
+ z

∂V

∂y
− (a1 x z + y/a1 + x(x + 1))

∂V

∂z
= −a1 xV.

Firstly we translate the singular point (−1, 0, 0) to the origin with the change
(x, y, z) → (x + 1, y, z). After, we do the linear change of variables

(x, y, z) → 1

1 + a3
1




−a2
1 0 1

−a
1/2
1 a

−1/2
1 + a

5/2
1 −a

3/2
1

a2
1 0 a3

1







x
y
z




and the rescaling of time t → a
−1/2
1 t bringing the linear part of the system to

canonical form. In short we obtain that system (3) becomes

ẋ = −y +
1

a
7/2
1

z(a3
1x− z) ,

ẏ = x− a1xz +
z2

a2
1

,(5)

ż =
z(a2

1 + a3
1x− z)√
a1

,

The origin of this system is trivially a center because W c(0) = {z = 0} and the
system reduced to the center manifold is the linear center ẋ = −y, ẏ = x. Then
statement (ii) is proved. Other proof of this fact follows applying Corollary 2,
because an inverse Jacobi last multiplier of this system is V (x, y, z) = z.

3. Appendix

In this section we present an alternative proof of Theorem 1. We start with
the explicit knowledge of an inverse Jacobi last multiplier V (x, y, z) in all the
cases, as stated before. Next the main idea is first to obtain from V the explicit
expression of an analytic center manifold W c(0) and finally to check that the
singularity of the reduced system to the center manifold is in fact a center. We
only do this procedure in the proof of statement (i) of Theorem 1 because state-
ment (ii) has been trivially proved without resorting to [3].
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To prove statement (i) of Theorem 1 we must study the center problem at
the origin for the equivalent system (4). Recall that this system admits the
inverse Jacobi last multiplier V (x, y, z) = b0(1 + b3

0)z + (x − b3
0z)2. Therefore,

{V (x, y, z) = 0} defines an invariant algebraic surface of (4) which passes through
the origin and is tangent to the plane {z = 0} at this point. In particular, this
means that this invariant surface is tangent to the center eigenspace, the (x, y)-
plane, at the origin, hence in a neighborhood of the origin forms a local center
manifold. Indeed, solving V = 0 for z and inserting into the first two equations
in (4) we obtain the following expression of the reduced system (4) to the center
manifold in local coordinates:

ẋ = P (x, y) = −y +
1

4b
7/2
0 (1 + b3

0)
f+(x) g(x, y) ,

ẏ = Q(x, y) = x +
1

4b5
0(1 + b3

0)
f−(x) g(x, y) ,

where f±(x) = ±1 ± b3
0 ∓

√
1 + b3

0

√
1 + b3

0 − 4b2
0x, and g(x, y) = −1 − b3

0 +

4b2
0x +

√
1 + b03

√
1 + b3

0 − 4b2
0x + 4b

7/2
0 y. It is straightforward to check that the

function v(x, y) =
√

1 + b3
0 − 4b02x is an inverse integrating factor of this reduced

system, that is, the rescaled system ẋ = P (x, y)/v(x, y), ẏ = Q(x, y)/v(x, y) is
hamiltonian. Since v(x, y) is a non-vanishing analytic function near the origin,
this implies that the reduced system to the center manifold possesses a local
analytic first integral around the origin. Hence, the origin becomes a center.
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