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1 Introduction

The aim of this paper is to study the existence of extremal solutions for
the time-dependent problems. We combine the monotone iterative tech-
nique (see [8,1,7,11,10,13,18]) and the theory of semigroups of operators (see
[4,12,14,15]).

Let X = (X, ||, <) be an ordered Banach space (OBS) with normal cone K,
and let T > 0 be a given real number. Given A : D(4) C X — X a densely
defined linear operator on X and a mapping F': (0,7) x X — X, we denote

Lu=u'+ Au — F(t,u).

Given up € X and a mapping G : (0,7) x X x X — X, we consider the
following initial value problem (IVP):

Lu = G(t,u, Lu), t € (0,T)
{ ©(0) = ug. (1)

We also consider the special case of IVP (1):

{ u' + Au = G(t,u), t € (0,T)
u(0) = uo.
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Throughout this paper we shall consider that the following hypotheses are
fulfilled.

(A1) (—A) is the generator of a semigroup of linear contractive and po-
sitive operators on X, (e*At)DO.

(G1) G is sup-measurable (i.e. G (-, u(-),v(-)) : (0,7) — X is measurable
for all measurable functions u,v : (0,7) — X).

(H1) There exist u a mild lower solution and % a mild upper solution of
(1) such that Lu < Lu.

Let us mention that the notion of mild lower (upper) solution and the ope-
rator L will be defined in Section 2.

In addition, we assume that the following conditions hold.
Only for problem (1):
(F1) F(-,u) is measurable for all u € X.

(F2) There exists a € L*(0,T) such that for all u;,us € X and for almost
all t € (0,7),
|F(t,u1) — F(t,us)| < a(t)|ur — ual. (3)

(F3) There exists w > 0 such that for almost every ¢ € (0,7,
F(t,u1) — F(t,u2) < —w(u1 — u2) whenever u; < us.

(G2) u1 < us and v1 < wy imply G(t,u1,v1) < G(t,usz,vs) for almost
every t € (0,T).

(C1) The order cone K is regular.
Only for problem (2):
(G2)’ There exists w > 0 such that for almost every ¢ € (0,7,
G(t,u1) — G(t,u2) < —w(u; — us) whenever u; < us.

(C1)’ The order cone K is regular or (—A) generates a compact semi-
group.

Our main results are the following theorems.

Theorem 1.1 The IVP (1) has minimal and mazimal mild solutions in W =
{u €D(L) : Lu<Iu< INE}.
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Theorem 1.2 The extremal mild solutions of (1) in W are monotone in-
creasing with respect to F,G and uy.

In the special case of IVP (2) we impose also the following hypotheses in
order to obtain the convergence of monotone iterations.

(G3) For all monotone increasing sequences y, — y* and 2z, — z*, the
sequence (G(t,yn, 2n)),, converges to G(t,y*,z*) for almost every t € (0,7).

(G4) For all monotone decreasing sequences y, — y* and z, — z*, the
sequence (G(t,yn, 2n)),, converges to G(t,y*, z*) for almost every t € (0,7).

The main result for IVP (2) is the following theorem.

Theorem 1.3 If (G3) holds then (2) has a minimal mild solution u. in W
and the sequence (un)n>1 defined by

U = u,

Upt1 48 the mild solution of the IVP

u' + Au 4+ wu = Gt up) + Wiy,
u(0) = ug (4)

is monotone increasing and converges to u, in C ([0,T]; X).
If (G4) holds then (2) has a maximal mild solution u* in W and the sequence
(Un)n>1 defined by

v = ﬂ,
Unt1 18 the mild solution of the IVP

u' + Au + wu = G(t,vy) + wop,
u(0) = ug (5)

is monotone decreasing and converges to u* in C ([0,T]; X).
Moreover, u. and u* are monotone increasing with respect to G and uyg.

Our work is especially related to [9] and [13].

S. Carl and S. Heikkila in [9] find sufficient conditions for the existence of
extremal solutions for implicit IVP of type (1) within an order interval de-
termined by a lower and an upper solution, and show that these extremal
solutions are monotone with respect to the data. They mention that a crucial
point in their treatment is the use of a partial ordering and a metric which
depend on the operator L as well as on the initial condition. Due to an
abstract monotone iterative technique developed by the same authors in [8]
we avoid these tricks. They consider the case when the operator L is given
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by Lu = u' — A(t)u — C(t) and defined on the space of absolutely continu-
ous functions AC ([0, T]; X), where A is a Bochner integrable mapping from
[0,T] to the space of all bounded linear operators on X, and C : [0,T] - X
is Bochner integrable, or Lu = u' — ¢(t,u), where ¢ : [0,T] x X — X is
a Caratheodory function which is quasimonotone increasing and Lipschitz
continuous in its second argument.

In Theorem 1.3 we generalize and improve similar results obtained by X. Z.
Liu, S. Sivaloganathan and S. Zhang in [13]. They study the IVP (2) when
G is continuous and only when the order cone K is regular. Our results are
valid also if K is not regular but the semigroup is compact. This fact allows
us to treat the Cauchy-Dirichlet problem for a parabolic equation in the space
X = Cp(9), since the order cone of Cy(€2) is normal but is not regular. Our
treatment is inspired by the abstract technique developed in [8]. We consider
that it is more convenient since we work in the space L!(0,7T; X) instead of
C([0,T]; X).

Finally, let us mention that we extend the notion of lower (upper) solution
as a C'-function (like in [13]) or AC-function (like in [9]), to the notion of
mild lower (upper) solution as a C-function (in Section 2).

2 Preliminaries

The purpose of this section is to define the notion of mild lower (upper)
solution for the IVP (1) and to reduce the IVP (1) to a coincidence equation
in ordered Banach spaces.

Lemma 2.1 [14] For every w > 0, the linear operator —(A + wl) is the ge-
nerator of a continuous semigroup of linear nonexpansive and positive opera-
tors on X, denoted by (S(t)),~,- Moreover, S(t) = e=“te=t for allt > 0. If
the semigroup generated by (—A) is compact then (S(t)),s, is also compact.

We use the abstract Gronwall lemma which is due to Rus (see [16]).

Lemma 2.2 Let X be an ordered metric space and B : X — X a monotone
increasing and a Picard operator. If u < Bu and u* = Bu* then u < u*.

Let us mention that the operator B is Picard if it has a unique fixed point,
which is the limit of the sequence (B™(u))n>0 for every u € X.
Other applications of this lemma are contained in [16,5,6].

Lemma 2.3 i) There exists a unique solution u* € C ([0,T]; X) of

u(t) = S(t)ug +/0 S(t — s)[F(s,u(s)) + wu(s)]ds.
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i) If u € C([0,T]; X) is a solution of the inequality

u(t) < S(t)uo + /0 S(t — s)[F(s,u(s)) +wu(s)]ds

then
u(t) <wu*(t), for allt € [0,T].

Proof. Let us consider the operator

B:C([0,T;X) = C([0,T]; X) (6)

Bu(t) = S(t)uo + /Ot S(t — s)[F(s,u(s)) +wu(s)]ds
and the Bielecki norm on the space C([0,T]; X),
[ullp = mazyeo myfu(t)e~2 oo Flds,

By estimations

|Bui (t) — Bus(t)| =

/ S(t — s)[F(s,u1(s)) — F(s,ua(s)) + wui(s) — wua(s)]| <

1,
< / [a(s) + wllur(s) — ua(s)|ds < §e2f°[“(s)+“’]dsllul — ualp
0

we obtain that
1
||[Buy — Bus||p < §||U1 —uallp, Vui,uz € C([0,T]; X),

which means that B is a contraction on the Banach space (C([0,T]; X), || - ||»)-
We apply the Banach contraction mapping principle and deduce that B is a
Picard operator (u* is the unique fixed point).

The positivity of the semigroup (S(t)) and the hypothesis (F3) assure that
B is monotone increasing.

We have that v* = Bu*, and u < Bu. We apply the abstract lemma, of Rus
and obtain the conclusion. O

Notation 1.

L:D(L)c C(0,T);X)— LY0,T; X) x X

Lu = (w,wp) if and only if

u(t) w0+/ S(t — s)[w(s) + F(s,u(s)) + wu(s)]ds.
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Remark 1. If we apply Lemma 2.3 for F'+w instead of F', we see that D(L)
it can be chosen such that L is well defined and bijective.

Remark 2. Lu = (w, wp) if and only if u is the mild solution of the IVP

u + Au=w(t) + F(t,u)
{ u(0) = wo. M

Let us notice also that Lu = (u' +Au F(t,u), u(0)) forallu € C([0,T]; X))
with u(t) € D(A) and there exists u’ € L'(0,T; X).
For all u € D(L) we consider Lu given by Lu = (Lu,u(0)).

Remark 3. If the function u € D(L) ¢ C([0,T]; X) is such that Lu <
(w, wp) then

u(t) < S(t)wo + /0 S(t — s)[w(s) + F(s,u(s)) + wu(s)]ds. (8)

In order to prove this let us consider (v,v9) € L'(0,T;X) x X such that
Lu = (v,vp). Then
vo <wg and v < w.

Using the definition of L and the positivity of the semigroup (S(t)) we obtain
the conclusion.

Lemma 2.4 Eul < EUQ implies w1 < us.

Proof. Let u;,uy € D(L) C C([0,T]; X) be such that Lu; < EUQ We denote
(w,wo) = Luy. Then us is the - unique solution of the equation Lu = (w,wy),
and u, satisfies the inequality Lu < (w,wp). We use Remark 3, apply Lemma
2.3 and obtain that uq < wus. O

Definition 1. We say that v € D(L) C C ([0,T]; X) is a mild lower solution
of (1) if

Lu(t) < (G(t,u(t), Lu(t)),uo) for almost all t € (0,T).

If the reversed inequality holds then w is said to be a mild upper solution, or
if equality holds, u is a mild solution of (1).

Remark 4. Let u € D (L) be such that u(t) € D(A) for a.a. t € (0,T),
there exists v’ € L'(0,T; X) and it satisfies the following inequalities

u' + Au < g(t
{ u(0) < uog.( ) )
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Then v is a mild lower solution of

{ u' + Au = g(t)

u(0) = uo. (10)

Indeed, let us notice that there exist v € L'(0,T; X) and vy € X such that

u satisfies
{ u' 4+ Au = v(t)

u(0) = vp. (11)

Then, using (9),
vo <wg and wv(t) < g(t)

and, by Remark 2, R
Lu = (v,vp).

Now the conclusion follows easily, since

Lu(t) < (g(t), uo) .
Notation 2. For all u € D(L) let us denote Nu(t) = G(t,u(t), Lu(t)) and
Nu(t) = (Nu(t), up)-

Notation 3. W = L~! ([f@, fﬂ])

Lemma 2.5 For everyu € W, Nu € L' (0,T; X).
The mappings L, N : W — L' (0,T; X) x X are well-defined and

Luy < Luy implies Nuy < Nus. (12)

Proof. Let u € W. By (G1), Nu is measurable and, from the definition of
W, Lu < Lu < Lu. By Lemma 2.3 we have u < u < w. Using also (G2),
these imply that Nu(t) < Nu(t) < Nu(t) for almost every t € (0,7). Then

Lu(t) < Nu(t) < Nu(t) < Na(t) < La(t).

The cone K of X being normal, the norm is semi-monotone and we can prove
the inequality
|Nu(t)| < 6| Lu(t) — Lu(t)| + | Lu(t)|

for almost every ¢ € (0,T). Because the second member of this inequality is
in L', we obtain that Nu € L' (0,T; X).
Relation (12) follows easily by Lemma 2.3 and using (G2). O

Remark 4. When (12) holds we say that N is monotone increasing with
respect to L (see [7]).

Lemma 2.6 N(W) c L(W) = [f/g, fﬂ]
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Proof. The last equality follows by the bijectivity of L.
For every u € W we have Lu < Lu < Lu. Then, using the definition of the
mild lower and upper solution and (12), we obtain

EQSN@SN?;SNESEUD

3 Existence results

The proof of our main results is based on the next coincidence result which
is established in [7] like a consequence of Proposition 3.4 from [8].

Proposition 3.1 Let W be a nonempty set, Z be an ordered Banach space
with a regular order cone and let L,N : W — Z be two mappings. Assume
that the following conditions hold. o R R .
(i) there exists u,w € W such that Lu < Nu, Lu < Nu and Lu < Lu;
(ii) Luy < Lus tmplies Nu; < Nus;
(iii) L(W) = [Eg, iu].
Then equation Lu = Nu has a solution u, with the property

Lu, = min {Lw € [f/g, fﬂ] : Lw > Nw} (13)
and a solution u* with the property

Lu* = max {Lw € [f@, fﬂ] : Lw < Nw} . (14)

If, in adition, W is an ordered set and Luy < Lus implies up < uz, then u.
is the minimal solution and u* is the mazximal solution in W of Lu = Nu.

Proof of Theorem 1.1. If K is regular then the order cone of L' (0,T; X)
is also regular. Then the ordered Banach space Z = L'(0,T;X) x X (with
the natural ordering, see [1]) has a regular order cone. The set W is given
by Notation 3. Conditions (i), (ii) and (iii) are assured by hypothesis (H1),
Lemma 2.5 and the bijectivity of L, respectively. W is an ordered space as a
subset of C ([0, T]; X). Finally, Lemma 2.4 assure that we can apply Proposi-

tion 3.1 and obtain the existence of extremal mild solutions for the IVP (1). O

Proof of Theorem 1.2. Assume that conditions (F1),(F2),(F3) are valid
for the functions F,F, : (0,T) x X — X and (G1) and (G2) are valid for
G,Gp:(0,T) x X x X = X. Assume also that ug,up, € X and that

up < Uo, , F(tvu) < Fp(tvu) and G(t,u,v) < Gp(t,u,v) (15)

for a.a. t € (0,T) and u,v € X.
Moreover we assume the existence of u,u € W so that they are lower and
upper mild solutions of both the IVP (1) and the IVP

{ Lyu = Gp(t,u, Lyu), t € (0,T)

u(0) = ug, (16)
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where Lyu = u' + Au — Fp(t,u).
Thus problems (1) and (16) have minimal solutions wu.,u,, and maximal

solutions u*,uy, respectively, in W. When u € W we denote

Npu = (Gp(t, u, Lu), uop)

and consider L, defined on D(L) like in Notation 1, with F}, instead of F.
For u € D(L) we denote (w,wo) = Lu and (wp,wo,) = L, and obtain that
wo = wp, = u(0) and, by the definition of L, w4+ F(t,u) = w, + F,(t,u).
Then, using (15), w, < w. Hence Lu > Lu.

It follows from this relation, from Epu*p = Npu*p and (15) that Eu*p > Nu*p.
This and (13) imply that Lu, < Eu*p, so that, by applying Lemma 2.4,

Use < U, -
Similarly, it can be shown, by applying the formula (14) that
u* <uy. O

In order to prove Theorem 1.3 we shall also use the operator L given by
Notation 1, but with F(¢,u) = —wu and the operator N given by Notation
2, but with Nu(t) = G(t,u) + wu. The set W is given by Notation 3 with L
described above. We shall also need the following lemma.

Lemma 3.1 (i) L™" is Lipschitz continuous. .
(ii) if the semigroup generated by (—A) is also compact then L™ is completely
continuous.

Proof. (i) Let (w,wp) € L'(0,T;X) x X and denote u = L™!(w, wp).
Using that S(¢) is contractive and the definition of L we obtain the following
relations

t
()] < Jwo| + / fwis)|ds < wo| + [[w]|1, for all ¢ € [0,7],
0

thus
llullc < fwol| + [|w]|L:-

(ii) Let M be a bounded subset of L' (0,T;X) x X. Of course, L~(M)
denotes the set of all mild solutions of the IVP (7) when (w,w) varies in M.
The conclusion is assured by the fact that the semigroup S(t) is also compact
(see [17]). O

Proof of Theorem 1.3. We shall prove only in the case that condition
(G3) holds. If we assume that (G4) is valid, the proof is similar. The last
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statement follows like a direct consequence of Theorem 1.2.

A mild solution of the IVP (2) is a solution of the abstract equation Lu = Nu,
u satisfies Lu < Nu and % is such that Lu > Nu.

Let us consider the sequence (u,) given by (4). Using Lemma 2.6, we obtain
by induction that u, € W for all n > 1, or, equivalently, Lu,, € [Lu, L] for
all n > 1. Tt is easy to see that the following relations hold

Luy = Lu < Nu; = Nu = Luy < Nus = Lug < Nug < ... .
Then (uy,) is a sequence such that (Lu,) and (Nu,) are increasing.

1) If K is regular then the order cone of L' (0,T; X) is also regular. This
assures that (Nuy) and (Lu,) converge in L'.

2) If the semigroup generated by —A is compact we shall use the complete
continuity of L='. The sequence (Lu,) being bounded, it follows by the com-
plete continuity of ™', that (u,) has a convergent subsequence (, ). Using
(F2), the sequence (Nuy, (t)) is convergent for almost every t € (0,7"). But
for each t € (0,T), this is a subsequence of the monotone increasing sequence
(Nuy,(t)). Hence the whole sequence is convergent since the cone K of X
is normal. Also (Nwu,) is bounded in L' (0,7; X). Then, by the monotone
convergence theorem, (Nu,) is convergent in L'. Using (4), (Lu,) is also
convergent in L'.

Now, in both cases, let us denote by Lu, the limit of (Luy,), which is also
the limit of (Nu,). Of course, u. € W and, from the continuity of L' we
have that (u,) is a convergent sequence and u, is its limit. Using (G3), we
obtain that the limit of (Nun) is Nu,. Now it is clear that u, € W is a mild
solution of (2).

Let us consider v* € W an arbitrary mild solution of (2). It is clear that
I~/u1 < Lv*. Then EU2 = Nul < Lv*. Tt can be proved by induction that
Lu,, < Lv*. By Lemma 1.2 (ii), u, < v* and passing to the limit, u, < v*.
Hence u, is the minimal mild solution in W. O

4 An example

Let us consider € a bounded open subset of R". By Cy(2) we denote
the space of all continuous scalar valued functions on € which are 0 on
the boundary 09 of Q; i.e. Co() = {ue C(Q) : ulspg =0}. We con-
sider the Laplacian Ay with maximal distributional domain, i.e. D(Ag) =
{f €Co(Q) : Af € Co(Q)}, Aof = AF.

We say that Q is regular in the sense of Wiener (see [3]) if and only if the
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Dirichlet problem

{ e O e "o

has a solution for all ¢ € C(09).

Lemma 4.1 [2,3] If Q is reqular in the sense of Wiener then A generates
a compact, contractive and positive semigroup on Co(12).

We shall study the existence of extremal solutions of the problem

%—Au:f(u), a.e. in Q x (0,7)
u(z,0) = ug(z), inQ (18)
u(z,t) =0, on 90 x (0,T)

where ug € Cp(R2) and f: R — R is a function such that f(0) =0 and
(f1) f € C(R);
(f2) there exists w > 0 such that

flur) = f(u2) < —w(ur — uz2), whenever u; < us.

Theorem 4.1 If, in adition, hypothesis (H1) is fulfilled for the problem (18)
then there exist extremal solutions in W of (18). Moreover, there exists a
monotone increasing (decreasing) sequence which converges in C([0,T]; X)
to the minimal (mazimal) solution of (18).

Proof. Let us consider the ordered Banach space X = Cy(2) and the Ne-
mytzki operator F' : X — X, F(u)(z) = f(u(z)). Our assumptions assure
that F' satisfies all the hypotheses of Theorem 1.3. The order cone of X
is normal and —A = A, generates a compact semigroup (by Lemma 4.1).
Hence all conditions of Theorem 1.3 are fulfilled. O
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