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a b s t r a c t

Wedealwith nonlinear T -periodic differential systems depending on a small parameter. The unperturbed
system has an invariant manifold of periodic solutions. We provide the expressions of the bifurcation
functions up to second order in the small parameter in order that their simple zeros are initial values of the
periodic solutions that persist after the perturbation. In the end two applications are done. The key tool for
proving themain result is the Lyapunov–Schmidt reductionmethod applied to the T -Poincaré–Andronov
mapping.
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1. Introduction

We want to study the existence of T -periodic solutions of the
differential systems of the form,

x′(t) = F0(t, x)+ εF1(t, x)+ ε2F2(t, x)+ ε3R(t, x, ε), (1)

where ε is a small parameter, F0, F1, F2 : R × Ω → Rn and R :

R × Ω × (−εf , εf ) → Rn are C2 functions, T -periodic in the first
variable, andΩ is an open subset of Rn. Wework in the hypothesis
that there exists a k-dimensional submanifold ofΩ (k ≤ n)whose
points are initial values of T -periodic solutions of the unperturbed
system

x′(t) = F0(t, x). (2)

Our objective is to study the periodic solutions of the unperturbed
system (2) which can be continued to the perturbed system (1) for
values of ε sufficiently small.

For z ∈ Ω we denote by x(·, z, ε) : [0, t(z,ε)) → Rn the so-
lution of (1) with x(0, z, ε) = z. From Theorem 8.3 of [1] we de-
duce that, whenever t(z0,0) > T for some z0 ∈ Ω there exists a
neighborhood of (z0, 0) in Ω × (−εf , εf ) such that, for all (z, ε)
in this neighborhood, t(z,ε) > T . Under this assumption there ex-
ists an open subset D of Ω and a sufficiently small ε0 > 0 such
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that, for all (z, ε) ∈ D × (−ε0, ε0), the solution x(·, z, ε) is de-
fined on the interval [0, T ]. Hence, we can consider the function
f : D × (−ε0, ε0) → Rn, given by
f (z, ε) = x(T , z, ε)− z. (3)
Then, every (zε, ε) such that
f (zε, ε) = 0 (4)
provides the periodic solution x(·, zε, ε) of (1).

The converse is also true, i.e. for every T -periodic solution of
(1), if we denote by zε its value at t = 0 then (4) holds. Then,
the problem of finding a T -periodic solution of (1), can be replaced
by the problem of finding zeros of the finite-dimensional function
f (·, ε) given by (3).

We denote the variational equation of (2) associated to one of
its solutions x(t, z, 0)with

y′
= P(t, z)y, (5)

where
P(t, z) = DxF0(t, x(t, z, 0)), (6)
and with Y (·, z) some fundamental matrix solution of (5).

We denote the projection onto the first k coordinates by π :

Rk
× Rn−k

→ Rk and the one onto the last (n − k) coordinates
by π⊥

: Rk
× Rn−k

→ Rn−k. For the n-dimensional function g
of n variables z = (α, β) ∈ Rk

× Rn−k, we denote by Dβ(πg)
the k × (n − k) matrix whose entries are the first order partial
derivatives with respect to each component of β ∈ Rn−k of the
first k components of g .
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The next theorem is our main result. In its proof we shall apply
a version of the Lyapunov–Schmidt reductionmethod (provided in
Theorem 4 of Section 2) to the function (3) after a suitable change
of coordinates.

Theorem 1. Let β = (β1, . . . , βn−k) : V → Rn−k be a C2 function,
where V ⊂ Rk is open and bounded. We assume that

(i) Z =

zα = (α, β(α)) , α ∈ V


⊂ D and that for each zα ∈

Z, the unique solution x(t, zα, 0) of (2) with x(0, zα, 0) = zα
(denoted shortly xα(t)), is T -periodic; and

(ii) for each zα ∈ Z, there exists a fundamental matrix solution
Yα(t) = Y (t, zα) of (5) such that the matrix Y−1

α (0) − Y−1
α (T )

has in the right up corner the null k × (n − k) matrix, while in
the right down corner has the (n − k)× (n − k)matrix∆α , with
det(∆α) ≠ 0.

The corresponding bifurcation functions f1 : V → Rk of first order in
ε is

f1(α) = π

 T

0
Y−1(t, zα)F1(t, x(t, zα, 0))dt


, (7)

and f2 : V → Rk of second order in ε is

f2(α) = 2πg2(α)+ 2

Dβ(πg1)(zα)


γ (α)

+

n−k
i=1

∂βi

∂ε
(α, 0)

∂

∂βi


Dβ(πg0)(zα)


γ (α), (8)

where γ : V → Rn−k is defined by

γ (α) = −∆−1
α (π

⊥g1)(zα),

and

g0(z) = Y−1(T , z) (x(T , z, 0)− z) ,

g1(z) =

 T

0
Y−1(t, z)F1(t, x(t, z, 0))dt,

g2(z) =
1
2

 T

0
Y−1(t, z)F∗(t, x(t, z, 0))dt,

with

F∗ = 2F2 + 2(DxF1)
∂x
∂ε

+

n
i=1

∂xi
∂ε

∂

∂xi
(DxF0)

∂x
∂ε
,

∂x
∂ε

= Y (t, z)
 t

0
Y−1(s, z)F1(s, x(s, z, 0))ds.

If there exists a zero a ∈ V of f1(α) such that its Jacobian det((Dα f1)
(a)) ≠ 0, then there exists a T-periodic solution ϕ(·, ε) of system
(1) such that ϕ(0, ε) → za as ε → 0.

If f1(α) ≡ 0 and there exists a zero a ∈ V of f2(α) such that its
Jacobian det ((Dα f2) (a)) ≠ 0, then there exists a T-periodic solution
ϕ(·, ε) of system (1) such that ϕ(0, ε) → za as ε → 0.

We remark that in the expression of F∗, the notation ∂
∂xi
(DxF0)

stands for the matrix-valued function whose entries are the first
order partial derivatives with respect to xi of the entries of the
matrix-valued function DxF0. Each term in the sum that appeared
in the expression of F∗ is, then, a product between a scalar and
an n-dimensional column vector obtained of applying an n × n
matrix to an n-dimensional column vector. Similar notation for the
k-dimensional column vector f2(α).

Theorem 1 is proved in Section 3.
The first order bifurcation function f1(α) was already obtained

by Malkin [2] and Roseau [3], see also the book of Françoise [4].
For a shorter proof see [5]. What really is new in Theorem 1 is
the expression of the bifurcation function f2(α) corresponding to

second order analysis in ε of the existence of T -periodic solutions
of system (1). In the particular case that k = n the expression of
f2 was found in [6], while when F0 is identically zero (in particular
this implies k = n), the expressions of the second order and third
order bifurcation functions are known (see for instance [7] and the
references therein). We remark that, in this particular case F0 ≡

0, the construction of these bifurcation functions are part of the
averaging theory (for general results on averaging theory see for
instance the books of Sanders et al. [8], Verhulst [9]). Sometimes,
also in the general case F0 ≢ 0 it is said that results like Theorem 1
describe the averaging method. Moreover, in the particular case
F0 ≡ 0 and for scalar equations (1) (i.e. for n = 1) the recursive
expressions of the bifurcation functions up to any order are known,
see [6,10].

Wedo two applications of the newaveraging theoremat second
order in ε, i.e. of Theorem 1. In the first application we consider a
differential equation of order four of the form

d4x
dt4

+ αx + ψ(x, t) = 0.

This class of equations have been studied in [11,12]. Here we will
analyze the particular fourth order differential equation

d4x
dt4

− x − ε(a + b cos2 t)− ε2 sin(x + t) = 0, (9)

where a, b ∈ R, or equivalently the first order differential system
in R4

ẋ = y,
ẏ = z,
ż = w,

ẇ = x + ε(a + b cos2 t)+ ε2 sin(x + t),

(10)

where the dot denotes the derivative with respect to the time
variable t . Our result on the periodic solutions of the fourth order
differential equation (9) is the following.

Proposition 2. For |ε| ≠ 0 sufficiently small the differential system
(10) has an arbitrary number of limit cycles bifurcating from the
continuum of the periodic solutions of the 2-dimensional isochronous
center that the system has for ε = 0.

The proof of Proposition 2 is given in Section 4, and uses
Theorem 1.

In the second application we deal with the homogeneous
polynomial differential system

ẋ = −y(3x2 + y2),

ẏ = x(x2 − y2),
(11)

of degree 3 that has the C∞ flat first integral

H(x, y) = (x2 + y2) exp


−
2x2

x2 + y2


.

Proposition 3. The homogeneous polynomial differential system
(11) has a global center at the origin (i.e. all the solutions contained
in R2

\ {(0, 0)} are periodic). Let Pi(x, y) and Qi(x, y) for i = 1, 2 be
polynomials of degree at most 3. Then, for convenient polynomials Pi
and Qi, the polynomial differential system

ẋ = −y(3x2 + y2)+ εP1(x, y)+ ε2P2(x, y),

ẏ = x(x2 − y2)+ εQ1(x, y)+ ε2Q2(x, y),
(12)

has at first order averaging one limit cycle, and at second order
averaging two limit cycles bifurcating from the periodic solutions of
the global center (11).
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As far as we know this is one of the first examples for which
the limit cycles bifurcating from the periodic solutions of a 2-
dimensional center of a polynomial differential system having
a non-rational first integral have been studied. The other two
examples that we know in this direction were given recently by
Jiming Li [13] and Llibre et al. [14].

We remark that the result of Proposition 3 with the averaging
method of first order is already contained in Theorem 2 of [14].

The proof of Proposition 3 is also given in Section 4. More
precisely, we will apply Theorem 1, which gives a method to
determine bifurcation of periodic solutions from a submanifold
of isochronous periodic solutions. We note that the degenerate
center of system (11) it is not isochronous because it cannot
be linearized see [15] but, after a change of variables to polar
coordinates (r, θ), it becomes isochronous with respect to the new
time θ and Theorem 1 can be applied.

2. Lyapunov–Schmidt reduction for finite dimensional
functions

The Lyapunov–Schmidt reduction method is the main tool that
we shall use for proving our Theorem 1. Here we provide a version
of it adapted to our necessities. For a general introduction to this
reduction method see [16].

Theorem 4. Let g : D× (−ε0, ε0) → Rn and β = (β1, . . . , βn−k) :

V → Rn−k be C2 functions, where D is an open subset of Rn and V is
an open and bounded subset of Rk. We assume that

g(z, ε) = g0(z)+ εg1(z)+ ε2g2(z)+ O(ε3),

and that
(i) Z =


zα = (α, β(α)) , α ∈ V


⊂ D and that for each zα ∈

Z, g0 (zα) = 0, and
(ii) the matrix Gα = Dzg0 (zα) has in the right up corner the null

k × (n − k) matrix, while in the right down corner has the
(n − k)× (n − k)matrix∆α , with det(∆α) ≠ 0.

We consider the function f1 : V → Rk defined by

f1(α) = πg1(zα). (13)

If there exists a ∈ V with f1(a) = 0 and such that the Jacobian
det ((Dα f1) (a)) ≠ 0, then there exists αε such that g(zαε , ε) = 0
and zαε → za as ε → 0.

We consider the functions γ : V → Rn−k and f2 : V → Rk

defined by

γ (α) = −∆−1
α (π

⊥g1)(zα),

f2(α) = 2(πg2)(zα)+ 2Dβ(πg1)(zα)γ (α)

+

n−k
i=1

∂βi

∂ε
(α, 0)

∂

∂βi
Dβ(πg0)(zα)γ (α).

(14)

If f1(α) ≡ 0 and there exists a ∈ V with f2(a) = 0 such that
the Jacobian det ((Dα f2) (a)) ≠ 0, then there exists αε such that
g(zαε , ε) = 0 and zαε → za as ε → 0.
Proof. We consider the function

π⊥g : Rk
× Rn−k

× [−ε0, ε0] → Rn−k,

(α, β, ε) → π⊥g(α, β, ε).

Then, we have π⊥g(zα, 0) = 0 and Dβ

π⊥g


(zα, 0) = ∆α . Since

det(∆α) ≠ 0, we apply the Implicit Function Theorem and deduce
that, for |ε| sufficiently small, there exists a function β̄ with

(α, ε) → β̄(α, ε) such that β̄(α, 0) = β(α) and
π⊥g(α, β̄(α, ε), ε) = 0.

Now we consider the function

δ : Rk
× [−ε0, ε0] → Rk, δ(α, ε) = πg(α, β̄(α, ε), ε).

We have

δ(α, 0) = πg(zα, 0) = 0,
∂δ

∂ε
(α, ε) = Dβ (πg) (zα)

∂β

∂ε
(α)+

∂ (πg)
∂ε

(zα).

Using (ii) we see that Dβ(πg)(zα, 0) = 0k×(n−k), where 0k×(n−k) is
the null k × (n − k)matrix. Hence ∂δ/∂ε(α, 0) = f1(α). We claim
that ∂2δ/∂ε2(α, 0) = f2(α), such that we can write

δ(α, ε) = εf1(α)+
ε2

2
f2(α)+ O(ε3).

Applying the Implicit Function Theorem to δ(α, ε)/ε in the case
that f1 has a simple zero, respectively to δ(α, ε)/ε2 in the case that
f1 ≡ 0 and f2 has a simple zero, we obtain for |ε| sufficiently small,
the existence of α(ε) such that α(0) = a and δ (α(ε), ε) = 0.
Moreover, denoting zαε =


α(ε), β̄(α(ε), ε)


we have g(zαε , ε)

= 0.
In order to justify the claim we write shortly the expressions

∂δ

∂ε
(α, ε) = Dβ (πg)

∂β

∂ε
+
∂ (πg)
∂ε

,

∂2δ

∂ε2
(α, ε) =

n−k
i=1

∂βi

∂ε

∂

∂βi
Dβ(πg)

∂β

∂ε
+
∂

∂ε
Dβ(πg)

∂β

∂ε

+Dβ (πg)
∂2β

∂ε2
+ Dβ

∂ (πg)
∂ε

∂β

∂ε
+
∂2 (πg)
∂ε2

. �

Corollary 5. Notice that the case k = n is a trivial particular case of
the above theorem. Indeed, when k = n, hypothesis (i) is satisfied if
and only if g0 ≡ 0 and in this case hypothesis (ii) is automatically
fulfilled. The bifurcations functions are f1(z) = g1(z) and f2(z) =

2g2(z).

3. Proof of Theorem 1

We need to study the zeros of the function (3), or, equivalently,
of
g(z, ε) = Y−1(T , z)f (z, ε) = Y−1(T , z) (x(T , z, ε)− z) .
To this function we shall apply Theorem 4. It is sufficient if we
identify the functions g0, g1 and g2 and we prove that they satisfy
the hypotheses of Theorem 4. Of course, g0(z) = g(z, 0) and we
have that g0 (zα) = 0, because x(·, zα, 0) is T -periodic. We shall
prove that

Gα = Dzg0 (zα) = Y−1
α (0)− Y−1

α (T ). (15)
For this we need to know (Dzx) (t, z, 0). Since it is the matrix
solution of (5) with (Dzx) (0, z, 0) = In, we have that (Dzx)
(t, z, 0) = Y (t, z)Y−1(0, z). Moreover,
Dz f (z, 0) = Dzx(T , z, 0)− In = Y (T , z)Y−1(0, z)− In
and
Dzg0(z) = Y−1(0, z)− Y−1(T , z)

+


∂Y−1

∂z1
(T , z)f (z, 0), . . . ,

∂Y−1

∂zn
(T , z)f (z, 0)


,

that, for zα ∈ Z reduces to (15).
We have

∂g
∂ε
(z, 0) = Y−1(T , z)

∂x
∂ε
(T , z, 0).

Taking the derivative with respect to ε in the relations

x′(t, z, ε) = F0(t, x(t, z, ε))+ εF1(t, x(t, z, ε))

+ ε2F2(t, x(t, z, ε))+ O(ε3),
x(0, z, ε) = z,

(16)

one can see that the function (∂x/∂ε) (·, z, 0) is the unique solution
of the initial value problem
y′

= DxF0(t, x(t, z, 0))y + F1(t, x(t, z, 0)), y(0) = 0.
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Hence

∂x
∂ε
(t, z, 0) = Y (t, z)

 t

0
Y−1(s, z)F1(s, x(s, z, 0))ds.

Now we have

g1(z) =
∂g
∂ε
(z, 0) =

 T

0
Y−1(s, z)F1(s, x(s, z, 0))ds.

Taking the secondorder derivativewith respect to ε in the relations
(16), one can see that the function


∂2x/∂ε2


(·, z, 0) is the unique

solution of the initial value problem

y′
= DxF0(t, x(t, z, 0))y + F∗(t, x(t, z, 0)), y(0) = 0,

where the expression of F∗ is given in the statement of the
Theorem. Hence

∂2x
∂ε2

(t, z, 0) = Y (t, z)
 t

0
Y−1(s, z)F∗(s, x(s, z, 0))ds.

Now we have

g2(z) =
1
2
∂2g
∂ε2

(z, 0) =
1
2

 T

0
Y−1(s, z)F∗(s, x(s, z, 0))ds.

This completes the proof of Theorem 1.

Corollary 6 (The Isochronous Case). We assume that there exists an
open set V with V ⊂ D and such that for each z ∈ V , x(·, z, 0) is
T -periodic, that is the hypothesis of the above theorem are fulfilled for
k = n. In this case g0 ≡ 0 and the bifurcation functions have simpler
expressions f1(z) = g1(z) and f2(z) = 2g2(z), where g1 and g2 are
calculated according to the formulas of Theorem 1.

4. Proof of the two applications

Proof of Proposition 2. The linear part at the origin of the
differential system (10) is given by the matrix0 1 0 0

0 0 1 0
0 0 0 1
1 0 0 0

 , (17)

and its eigenvalues are ±1 and ±i. Doing the change of variables
(x, y, z, w) → (X, Y , Z,W ) given by X

Y
Z
W

 =

 1 −1 −1 1
−1 −1 1 1
1 1 1 1

−1 1 −1 1


 x

y
z
w

 ,

system (10) becomes

Ẋ = −Y + ε(a + b cos2 t)

+ ε2 sin((4t + X − Y + Z − W )/4),

Ẏ = X + ε(a + b cos2 t)

+ ε2 sin((4t + X − Y + Z − W )/4),

Ż = Z + ε(a + b cos2 t)

+ ε2 sin((4t + X − Y + Z − W )/4),

Ẇ = −W + ε(a + b cos2 t)

+ ε2 sin((4t + X − Y + Z − W )/4).

(18)

Note that the differential of this system at the origin is the real
normal Jordan form of the matrix (17).

Now we shall apply Theorem 1 to the differential system (18)
taking

x = (X, Y , Z,W ),
F0(t, x) = (−Y , X, Z,−W ),
F1(t, x) = (A, A, A, A),
F2(t, x, ε) = (B, B, B, B),

Ω = R4,

(19)

where A = a + b cos2 t , and B = sin((4t + X − Y + Z − W )/4).
Clearly system (18) with ε = 0 has a linear center at the

origin in the (X, Y )-plane. We remark that all linear centers are
isochronous. Using the notation from the Introduction (mainly the
notation related with the statement of Theorem 1), the periodic
solution x(t, z, 0) of this center with z = (X0, Y0, 0, 0) is

X(t) = X0 cos t − Y0 sin t,
Y (t) = Y0 cos t + X0 sin t,
Z(t) = 0,
W (t) = 0,

(20)

with period T = 2π . The k, V and α of Theorem 1 are k = 2,

V = {(X, Y ) : 0 < X2
+ Y 2 < ρ},

for some real number ρ > 0, and α = (X0, Y0) ∈ V .
For the function F0 given in (19) and the periodic solution

x(t, z, 0) given in (20) the fundamentalmatrix solutionM(t) of the
differential system (5) such that M(0) is the identity matrix of R4

is

M(t) =

cos t − sin t 0 0
sin t cos t 0 0
0 0 et 0
0 0 0 e−t

 .

We remark that for system (18) with ε = 0 the fundamental
matrix does not depend on the particular periodic orbit x(t, z);
i.e. it is independent of the initial conditions z. Therefore, an easy
computation shows that

M−1(0)− M−1(2π) =


0 0 0 0
0 0 0 0
0 0 1 − e−2π 0
0 0 0 1 − e2π

 .

Consequently all the assumptions of Theorem 1 are satisfied.
Hence the corresponding bifurcation function at first order f1(α) is
given by

f1(α) = πg1(zα) = π

 2π

0
M−1(s)F1(s, x(s, z, 0))ds


which is identically zero because we have that the following
integrals 2π

0
(a + b cos2 s)(cos s ± sin s)ds = 0.

Therefore, we must go to second order of bifurcation. In this case
we must study the zeros in V of the system f2(α) = 0 of two
equations and two unknowns, where f2 is given by (8). More
precisely, we have f2(α) = (f2,1(X0, Y0), f2,2(X0, Y0))where

f2,1 =

 2π

0
(cos t + sin t)

× sin

t +

(X0 − Y0) cos t − (X0 + Y0) sin t
4


dt,

f2,2 =

 2π

0
(cos t − sin t)

× sin

t +

(X0 − Y0) cos t − (X0 + Y0) sin t
4


dt.
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After a tedious calculation (which can be checked using an
algebraic processor) and the change of variables (X0, Y0) → (r, s)
given by

X0 − Y0 = 4r cos s,
X0 + Y0 = −4r sin s,

we obtain for

hj(r, s) = f2,j(2r(cos s − sin s),−2r(cos s + sin s)),

with j = 1, 2, that

h1(r, s) = π [J0(r)+ J2(r)(cos 2s − sin 2s)],
h2(r, s) = −π [J0(r)+ J2(r)(cos 2s + sin 2s)],

where Jµ(r) is the µ-th Bessel function of first kind (see [17]).
Adding and subtracting the two equations hj(r, s) = 0, for

j = 1, 2, we obtain the system

p1(r, s) = J2(r) sin 2s = 0,
p2(r, s) = J0(r)+ J2(r) cos 2s = 0.

(21)

It is known that the zeros of the functions Jµ(r) are distinct for
different µ’s, then either s = 0, or s = π/2. We are not interested
in all the solutions of this system, we are only interested to show
that it has asmany solutions aswewant satisfying the assumptions
of Theorem 1. So, in what follows we only study the solutions with
s = 0. Consequently, from the second equation of (21) we obtain

J0(r)+ J2(r) = 0.

Since J0(r)+ J2(r) = 2J1(r)/r , and the function J1(r) has infinitely
many positive zeros tending to be uniformly distributedwhen r →

∞, because the asymptotic behavior of J1(r) is
√
2/(πr) cos(r −

3π/4), it follows that system (21) has infinitely many solutions of
the form (r0, 0) being r0 a positive zero of J1(r). Then, (X0, Y0) =

(2r0,−2r0) is a solution of the system f2,j(X0, Y0) = 0 for j = 1, 2.
Moreover, the determinant of ∂(f2,1, f2,2)/∂(X0, Y0) at the point
(2r0,−2r0) is

det(r0) =
π2

8
r20H(3,−r20/2)


H(3,−r20/2)− H(2,−r20/2)


where H is the regularized hypergeometric function, see [17].
Using the formula

Jµ(z) =
z2

2µ(µ+ 1)!
H(µ+ 1,−z2/4),

we get

det(r0) =
72π2J2(r0)2

r20
.

Since the zeros of J1(r) and J2(r) are different, we get that det(r0) ≠

0. Hence, by Theorem1 for each (2r0,−2r0) contained inV wehave
a periodic orbit of system (18) with |ε| ≠ 0 sufficiently small.

Finally, for a given positive integer N we can fix ρ in the defi-
nition of V in such a way that the interval (0, ρ) contains exactly
N zeros of the function J1(r). Then taking |ε| ≠ 0 small enough,
Theorem1 guarantees the existence ofN periodic solutions for sys-
tem (18). Moreover, choosing |ε| ≠ 0 smaller if necessary, since
system (18) with ε = 0 has its periodic solutions strongly stable
and unstable in the directions Z andW respectively, it follows that
the N periodic solutions for system (18) obtained using Theorem 1
are limit cycles; i.e. they are isolated in the set of all periodic solu-
tions. This completes the proof of the proposition. �

Proof of Proposition 3. First we show that the homogeneous
polynomial differential system (11) has a global center at the

origin. In polar coordinates (r, θ) defined by x = r cos θ, y =

r sin θ , system (11) becomes

ṙ = −r3 sin 2θ,
θ̇ = r2.

Of course, to study this system is equivalent to study the
differential equation

dr
dθ

= −r sin 2θ, (22)

whose solution r(θ, z) satisfying r(0, z) = z is

r(θ, z) = z exp

− sin2 θ


. (23)

Therefore all the solutions of the differential equation (22) and
consequently all the solutions of the homogeneous polynomial
differential system (11) are periodic with the exception of the
origin which is a singular point. Hence it is proved that the origin
of system is a global center.

Now we want to study the limit cycles of the perturbed system
(12) for |ε| ≠ 0 sufficiently small, which bifurcate from the peri-
odic solutions of the center of system (11).

Wewrite the polynomial Pi(x, y) and Qi(x, y) of degree 3 of sys-
tem (11) as

P1 = a00 + a10x + a01y + a20x2 + a11xy + a02y2 + a30x3

+ a21x2y + a12xy2 + a03y3,

P2 = b00 + b10x + b01y + b20x2 + b11xy + b02y2 + b30x3

+ b21x2y + b12xy2 + b03y3,

Q1 = A00 + A10x + A01y + A20x2 + A11xy + A02y2 + A30x3

+ A21x2y + A12xy2 + A03y3,

Q2 = B00 + B10x + B01y + B20x2 + B11xy + B02y2

+ B30x3 + B21x2y + B12xy2 + B03y3.

Doing change to polar coordinates to system (12), we obtain
that it can be written as

dr
dθ

= −r sin 2θ + εF1(θ, r)+ ε2F2(θ, r)+ O(ε3), (24)

where

F1(θ, r) = A1(θ)/r2 + A2(θ)/r + A3(θ)+ A4(θ)r,

F2(θ, r) = B1(θ)/r5 + B2(θ)/r4 + B3(θ)/r3 + B4(θ)/r2

+ B5(θ)/r + B6(θ)+ B7(θ)r,

where Ai and Bi are trigonometric polynomials. Now we shall ap-
ply Corollary 6 to the differential equation (24) taking k = n = 1
and

x = r, t = θ, F0(θ, x) = −r sin 2θ, Ω = (0,∞). (25)

Clearly the differential equation (24) is T = 2π periodic in
the variable θ . Moreover this equation for ε = 0 has all its solu-
tions 2π-periodic and given by (23). The V and α of Theorem 1 are
V = {r : 0 < r < ρ}, for some real number ρ > 0, and α =

z ∈ V .
For the function F0 given in (25) and the periodic solution r(θ, z)

given in (23) the 1 × 1 fundamental matrix M(θ) of the differen-
tial equation (24) with ε = 0 such that M(0) = (1) is M(θ) =

(e− sin2 θ ). We remark that for system (25) the fundamental matrix
does not depend on the particular periodic orbit r(θ, z); i.e. it is in-
dependent of the initial condition z. ThereforeM−1(θ) = (esin

2 θ ).
Since all the assumptions of Theorem 1 are satisfied, by Corol-

lary 6 we must study the zeros in V of the function g1(z), where g1
is given by
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g1(z) =

 2π

0
M−1(t)F1(t, x(t, z, 0))dt,

=
π

2z
((a30 + 2b03 + b21)z2 + 2e(b01(J0(1)

+ 2J1(1))+ a10J1(1))).

In order to obtain the bifurcation function of second order we im-
pose that first order vanish identically. Hence we must to impose
b01 = a10 = 0 and b21 = −a30 − 2b03. In this case we have that
g1(z) = 0. To determine the bifurcation function of second order
we must to compute

∂x
∂ε

= M(t)
 t

0
M−1(t)F1(t, x(t, z, 0))dt.

The computation of this integral gives some terms that cannot be
expressed by means of elementary functions or in function of the
error function erf(z)where the error function is the integral of the
Gaussian distribution given by

erf(z) =
2

√
π

 z

0
e−t2dt.

We avoid this terms fixing the some of the arbitrary parameters
in the following form a02 = −3a20 + 3b11, a20 = b11 and a00 =

0. Moreover the second order derivative of F0 is identically zero.
Therefore we have that

F∗ = 2F2 + 2DxF1 ·
∂x
∂ε
,

and the bifurcation function of second order is given by

g2(z) =
1
2

 T

0
M−1(t)F∗(t, x(t, z, 0))dt,

= −
π

256z3

(16a03a12 + 32a03a30 − 128A30 − 112a03b03

− 256B03 − 32a12b12 − 64a30b12 − 32b03b12
− 128B21 − 16a12b30 − 32a30b30 − 144b03b30)z4

+ 128ez2

−2(A10 + B01 + a01(a12 − 4(a30 + b03))

+ 2a12b10 − 7a30b10 − 8b03b10 − b11b20)J0(1)+ (4A10

+ 5a01a12 − 17a01a30 − 4B01 − 22a01b03
+ 8a12b10 − 33a30b10 − 37b03b10 − a11b11
+ b02b11 − 3b11b20)J1(1)


+ 256b00b11e2J2(2)


.

Consequently this bifurcating function can have two zeros and two
limit cycles can bifurcate from the periodic solutions of the degen-
erate center and this completes the proof of the Proposition. �
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