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Babeş-Bolyai University of Cluj-Napoca,

1 Kogalniceanu str., 3400 Romania

1 Introduction

This paper presents in an abstract setting and with minimal assumptions a
Newton-type iterative process for finding zeros of mappings. We work in the
presence of lower and upper solutions. In particular, the class of mappings
for which our results are applicable, include smooth and convex (or difference
of two convex) operators.
The classical Newton method is very well known and widely used for finding
zeros of mappings having continuous first and second order Fréchet deriva-
tives [8]. If the starting point is sufficiently closed to the solution, this method
provides a sequence which converges quadratically to the solution. The terms
of the sequence are the solutions of the corresponding linear problems. When-
ever the nonlinear mapping is convex, in this way one can provide lower
estimates for the solution (see [3, 10]). It is worth to mention that, when ap-
ply to differential equations, this method is also known as quasilinearization
method.
In the presence of lower and upper solutions, when the mapping is convex,
the sequence starting from the lower solution is, in addition, monotone in-
creasing (see [15, 11, 2]). In recent years these ideas have been extended
and generalized to a variety of problems [10, 9, 12, 13, 1, 7, 6, 5]. A main
new contribution is that the nonlinear part is allowed to be of DC-type (
difference of two convex functions), but still it has to be twice continuously
differentiable.
The problem to design a Newton algoritm for nonsmooth mappings is very
important in applications. Some answers to this question contain [14, 16, 4].
In [14] is considered a class of functions admitting a certain type of approxi-
mation. Our results are for functions which can be ordered compared to some
nonlinear mapping (see relation (2) below). We obtain two approximate se-
quences, one monotone increasing and the other one monotone decreasing,
with quadratic order of convergence. In this way, we generalize similar results
from [15, 11, 2], where the function is assumed to be differentiable and con-
vex. Besides that we do not assume differentiability, our results cover more
cases (e.g. convex, concave, DC-type). We consider as being very important
the fact that our work pointed out that the quasilinearization method (as
developed in [10]) can have a nonsmooth version.



2 Main results

We divided our main results in one lemma, two theorems and one corollary.
Lemma 1 holds in ordered linear spaces (we do not need any topology) and
provides two monotone sequences which are lower and, respectively, upper
estimations for a possible solution. Theorem 1 is a convergence result, and
Theorem 2 provides sufficient conditions that we are able to prove that the
order of convergence is quadratic. In Corollary 1 the function is differentiable;
however the result is an extension of some similar results from [15, 11, 2].
Also, Corollary 1 contains some ideas due to Lakshmikantham et al., so
we can say that it represents an abstract version of the quasilinearization
method.

Lemma 2.1 Let X and Z be two ordered linear spaces, and F : X → Z be
a mapping. We assume that there exist α0, β0 ∈ X such that

α0 ≤ β0 and F (β0) ≤ 0 ≤ F (α0). (1)

For every u, v ∈ X with α0 ≤ u ≤ v ≤ β0 let −A(u, v) : X → Z be a linear
and bijective mapping which has a positive inverse and

F (u) ≤ F (v)−A(u, v)(v − u). (2)

We also suppose that for every α, β, u, v ∈ X with α0 ≤ α ≤ u ≤ v ≤ β ≤ β0,

−A(u, v)z ≤ −A(α, β)z for all z ∈ X, z ≥ 0. (3)

Then the sequences (αn) and (βn) given by the iterative schemes

F (αn) + A(αn, βn) (αn+1 − αn) = 0, n ≥ 0, (4)
F (βn) + A(αn, βn) (βn+1 − βn) = 0, n ≥ 0, (5)

are well and uniquely defined in X and

α0 ≤ α1 ≤ α2 ≤ ... ≤ αn ≤ ... ≤ βn ≤ ... ≤ β2 ≤ β1 ≤ β0. (6)

If in addition, there exists w∗ ∈ X such that α0 ≤ w∗ ≤ β0 and F (w∗) = 0
then

αn ≤ w∗ ≤ βn, (7)

for all n ∈ N.

Proof. It is sufficient if we prove that F (βn) ≤ 0 ≤ F (αn) and
αn+1 and βn+1 are well and uniquely defined

α0 ≤ αn ≤ αn+1 ≤ βn+1 ≤ βn ≤ β0

(8)

and (7) for all n ∈ N. We proceed by induction.
We start with (8).

2



First we prove that (8) holds for n = 0.
By hypothesis, F (β0) ≤ 0 ≤ F (α0).
Bijectivity of −A(α0, β0) assures that α1 and β1 are well and uniquely defined
in D.
Now we show that

α0 ≤ α1 ≤ β0. (9)

We have that
F (α0) + A(α0, β0) (α1 − α0) = 0.

Then, using that F (α0) ≥ 0, we obtain

−A(α0, β0)α0 ≤ −A(α0, β0)α1. (10)

Using (2) and that F (β0) ≤ 0, we also obtain

−A(α0, β0)α1 = F (α0)−A(α0, β0)α0

≤ F (β0)−A(α0, β0)β0

≤ −A(α0, β0)β0. (11)

The inverse pozitivity of −A(α0, β0), (10) and (11) guarantee (9) holds.

In order to prove that
α0 ≤ β1 ≤ β0, (12)

we proceed in similar manner and prove the following inequalities.

−A(α0, β0)β1 = F (β0)−A(α0, β0)β0 ≤ −A(α0, β0)β0. (13)

−A(α0, β0)β1 = F (β0)−A(α0, β0)β0

≥ F (α0)−A(α0, β0)α0

≥ −A(α0, β0)α0.

The inequality
α1 ≤ β1

is obtained by the following relations.

−A(α0, β0)α1 = F (α0)−A(α0, β0)α0

≤ F (β0)−A(α0, β0)β0

= −A(α0, β0)β1.

Thus (8) holds for n = 0.

Let us assume now that (8) holds for n = k ≥ 0 and prove for n = k + 1.
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We prove now that
F (βk+1) ≤ 0 ≤ F (αk+1).

This follows by the following relations which use (3).

F (αk+1) ≥ F (αk) + A(αk, αk+1)(αk+1 − αk)
= (A(αk, αk+1)−A(αk, βk)) (αk+1 − αk)
≥ 0.

F (βk+1) ≤ F (βk)−A(βk+1, βk)(βk − βk+1)
= (−A(βk+1, βk) + A(αk, βk)) (βk − βk+1)
≥ 0.

The arguments used for the proof of the remaining part are similar to those
used for the proof in the case n = 0.

Relation (7) holds for n = 0 by hypothesis. Let us assume now that (7) holds
for n = k ≥ 0 and prove for n = k + 1. This follows by the inverse positivity
of −A(αk, βk) and the following inequalities.

−A(αk, βk)αk+1 = F (αk)−A(αk, βk)αk

≤ F (w∗)−A(αk, w∗)(w∗ − αk)−A(αk, βk)αk

= −A(αk, βk)w∗ + (A(αk, βk)−A(αk, w∗)) (w∗ − αk)
≤ −A(αk, βk)w∗.

−A(αk, βk)βk+1 = F (βk)−A(αk, βk)βk

≥ F (w∗) + A(w∗, βk)(βk − w∗)−A(αk, βk)βk

= −A(αk, βk)w∗ + (A(w∗, βk)−A(αk, βk)) (βk − w∗)
≥ −A(αk, βk)w∗. 2

Theorem 2.1 Let X be an ordered Banach space with regular positive cone,
let Z be another ordered Banach space and let F : X → Z be a continuous
mapping. We assume that all hypotheses of Lemma 2.1 are fulfilled and that
A(α0, β0) is continuous.
Then (αn) and (βn) given by (4) and (5) are well and uniquely defined mono-
tone sequences such that they converge to the minimal and, respectively, the
maximal solution in the order interval [α0, β0] of

F (u) = 0, u ∈ D. (14)
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Proof. The convergence in the norm || · ||X of the sequences (αn)n≥0 and
(βn)n≥0 is assured by the regularity of the order cone of the Banach space
X, since, by Lemma 2.1, they are monotone and ordered bounded. Let us
denote by u∗ and u∗, respectively, the limits of these sequences. Clearly,

αn ≤ u∗ ≤ u∗ ≤ βn, (15)
and u∗ ≤ w∗ ≤ u∗,

for every w∗ such that α0 ≤ w∗ ≤ β0 and F (w∗) = 0.
It remains to prove that F (u∗) = F (u∗) = 0.
Let us denote Γ0 = −A(α0, β0). This is a linear and bijective mapping be-
tween Banach spaces X and Z. Then Γ−1

0 is continuous. The following im-
plications are assured by the continuity and positivity of Γ−1

0 , the regularity
of the positive cone of X and the continuity of T .

0 ≤ F (αn) = −A(αn, βn)(αn+1 − αn) ≤ Γ0(αn+1 − αn)
=⇒ Γ−1

0 F (αn) ≤ αn+1 − αn

=⇒ Γ−1
0 F (αn) → 0, n →∞ =⇒ F (u∗) = 0.

Similarly we can prove that F (u∗) = 0. 2

Remark 1. The solution obtained in Theorem 2.1 is unique if in addition,
there exists a mapping B(v, u) : X → Z for every u, v ∈ X with α0 ≤ u ≤
v ≤ β0 such that

−B(v, u)(v − u) ≤ 0 =⇒ u = v

F (u) ≥ F (v)−B(v, u)(v − u).

Remark 2. In Theorem 2.1 we can replace the hypothesis

(H1) −A(u, v) : X → Z is a linear and bijective mapping which has a
positive inverse

with
(H2) −A(u, v) : X → Z is a linear and continuous mapping such that it

is also inverse positive, i.e. 0 ≤ −A(u, v)z implies 0 ≤ z, and A(α0, β0) is
bijective.

Proof. Let us notice that surjectivity of A(u, v) was used only in order
to prove that αn and βn are well defined. Thus we have to prove that the
bijectivity of A(α0, β0) and the continuity of every A(u, v) assure this fact.
We denote −A(α0, β0) = Γ0 and define a mapping V : X → X by V (z) =
z + Γ−1

0 (F (αn) + A(αn, βn)z) for each fixed n ≥ 0.
V (0) = Γ−1

0 F (αn) ≥ 0,
V (βn − αn) = βn − αn + Γ−1

0 (F (αn) + A(αn, βn)(βn − αn))
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≤ βn − αn + Γ−1
0 F (βn) ≤ βn − αn.

Let z1, z2 ∈ X with z1 ≤ z2

V (z1)− V (z2) = z1 − z2 + Γ−1
0 A(αn, βn)(z1 − z2)

= z1 − z2 + Γ−1
0 (−A(αn, βn)) (z2 − z1)

≤ z1 − z2 + Γ−1
0 Γ0(z2 − z1) = 0

V : [0, βn − αn] → [0, βn − αn] is monotone increasing. By the theorem of
Krasnoselskii, the regularity of the positive cone of X assure that V has a
fixed point. This implies that there exists αn+1.
The inverse positivity of −A(αn, βn) assures that αn is uniquely defined. 2

Theorem 2.2 Let us assume that all hypotheses of Theorem (2.1) are sat-
isfied. We also suppose that
(i) u∗ = u∗ and A(u∗, u∗) : X → Z is continuous;
(ii) for every u, v ∈ X with α0 ≤ u ≤ v ≤ β0 there exists a mapping
B(v, u) : X → Z such that

F (u) ≥ F (v)−B(v, u)(v − u); (16)

(iii) there exist c1, c2 > 0 such that for every α, u, β ∈ X with α0 ≤ α ≤ u ≤
β ≤ β0,

‖(B(w,α)−A(α, β)) z‖ ≤ (c1 ‖w − α‖+ c2 ‖α− β‖) ‖z‖ , (17)

for each z ≥ 0.
Then the convergence of the sequences (αn) and (βn) from Theorem 2.1 is
quadratic.

Proof. Let us denote

pn = u∗ − αn and qn = βn − u∗.

Using (2), (3) and (16) we obtain the inequalities.

−A(αn, βn)(u∗ − αn+1) =
= −A(αn, βn)(u∗ − αn)− F (αn) + F (u∗)
≥ (−A(αn, βn) + A(αn, u∗)) (u∗ − αn)
≥ 0.

−A(αn, βn)pn+1 = −A(αn, βn)pn − F (αn) + F (u∗)
≤ (−A(αn, βn) + B(u∗, αn)) (pn).

We write Γn = −A(αn, βn), Γ∗ = −A(u∗, u∗). Using (3) we have that
Γ∗z ≤ Γnz for all z ≥ 0, which asures that Γ−1

n y ≤ Γ−1
∗ y for all y ≥ 0.

6



We use this fact and the positivity of Γ−1
n in order to justify the following

implications.

0 ≤ Γnpn+1 ≤ (−A(αn, βn) + B(u∗, αn)) (pn) =⇒

0 ≤ pn+1 ≤ Γ−1
n (−A(αn, βn) + B(u∗, αn)) (pn)

≤ Γ−1
∗ (−A(αn, βn) + B(u∗, αn)) (pn).

The positive cone of X is regular, thus the norm of X is semimonotone.
Hence, using (17) and the continuity of Γ−1

∗ , we obtain.

||pn+1|| ≤ δcΓ|| (−A(αn, βn) + B(u∗, αn)) (pn)||
≤ δcΓc1||pn||2 + δcΓc2||pn|| · ||βn − αn||
≤ a||pn||2 + b||qn||2.

The proof of quadratic convergence is therefore complete. 2

Corollary 2.1 Let X and Z be two ordered Banach spaces such that the
positive cone of X is regular and F : X → Z be a mapping. We assume that
there exist α0, β0 ∈ X such that

α0 ≤ β0 and F (β0) ≤ 0 ≤ F (α0).

Let F1, F2 : X → Z be G-differentiable. Suppose F1, F2 are continuous and
and convex on [α0, β0], F = F1 − F2 and F ′

1(α0) − F ′
2(β0) is bijective. In

addition, suppose that for every u, v ∈ X with α0 ≤ u ≤ v ≤ β0, the map
− (F ′

1(u)− F ′
2(v)) : X → Z is inverse positive.

Then the sequences (αn) and (βn) given by the iterative schemes

F (αn) + (F ′
1(αn)− F ′

2(βn)) (αn+1 − αn) = 0, n ≥ 0,

F (βn) + (F ′
1(αn)− F ′

2(βn)) (βn+1 − βn) = 0, n ≥ 0,

are well and uniquely defined and

α0 ≤ α1 ≤ α2 ≤ ... ≤ αn ≤ ... ≤ βn ≤ ... ≤ β2 ≤ β1 ≤ β0.

Moreover, they converge superlinearly to the extremal solutions of

F (u) = 0, α0 ≤ u ≤ β0.

If in addition F ′
1 and F ′

2 are Lipschitz in [α0, β0] then the order of convergence
is quadratic.
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