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Abstract

In this paper we present the quasilinearization method for the peri-
odic problem related to the forced Düffing equation. We obtain two
monotone sequences of approximate solutions, with quadratic order of
convergence. We work in the presence of lower and upper solutions.
The approximate problems are linear.
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1 Introduction

In this paper we apply the quasilinearization method to the periodic problem
for the forced Düffing equation{

x′′ + kx′ + f(t, x) = 0
x(0) = x(T ), x′(0) = x′(T )

(1.1)

where f : [0, T ]×R → R is a continuous function and k ∈ R. Existence of a
lower and an upper solution is assumed. We say that α0 is a lower solution
of the problem (1.1) if α0 ∈ C2[0, T ] and{

α′′0 + kα′0 + f(t, α0) ≥ 0
α0(0) = α0(T ), α′0(0) = α′0(T )

(1.2)
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Whenever the reversed inequality holds for some function β0 ∈ C2[0, T ], we
say that β0 is an upper solution.
We consider the following iterative schemes{

α′′n+1 + kα′n+1 + f (t, αn) + ∂f
∂x (t, αn) (αn+1 − αn) = 0,

αn+1(0) = αn+1(T ), α′n+1(0) = α′n+1(T )
(1.3){

β′′n+1 + kβ′n+1 + f (t, βn) + ∂f
∂x (t, αn) (βn+1 − βn) = 0,

βn+1(0) = βn+1(T ), β′n+1(0) = β′n+1(T ).
(1.4)

The sequences (αn)n≥0 and (βn)n≥0 obtained as solutions of the linear prob-
lems (1.3) and (1.4) are monotone and converge quadratically to the solution
of (1.1). In addition, we require, roughly speaking, that the nonlinear func-
tion f is decreasing and convex.
We say that a sequence (αn)n≥0 converges quadratically to x∗ in C[0, T ]
(with the supremum norm), whenever there exist c > 0 and n0 ∈ N such
that

||x∗ − αn+1|| ≤ c||x∗ − αn||2, for all n ≥ n0.

The type of problems which is the object of our work is extensively studied
in the literature. Let us remind only some references which are related to
the technique used in our paper. The method of lower and upper solutions
for (1.1) is presented by Wang-Cabada-Nieto in [11], together with a mono-
tone iterative method . C. Wang [10] studied the case of reversedly lower
and upper solutions.

The quasilinearization method is a tool for obtaining approximate so-
lutions to nonlinear equations with rapide convergence. It was applied to
a variety of problems (see the monograph [8] by Lakshmikantham-Vatsala
and the references therein), and even some very efficient abstract schemes
were given in [2, 3, 4]. Some boundary value problems were studied with
the quasilinearization method in [5, 6, 8, 9]. Our approach is closely to
[6] and some examples in [8], since we prefer to assume convexity for the
nonlinear part and obtain the approximations as solutions of corresponding
linear problems, rather than do not impose convexity but consider nonlin-
ear approximate problems (like in [5, 9]). Anyway, our results can be easily
extended to the case of nonlinearities of DC-type (i.e. f = f1 − f2, where
f1 and f2 are convex), as in [8].
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2 Preliminaries

The aim of this section is to establish some comparison and existence results
for the linear problem of the form (1.1), which will be needed later on.

Lemma 2.1 Let g, l : [0, T ] → R be two continuous functions with l(t) < 0
for every t ∈ [0, T ]. Let x ∈ C2[0, T ] be such that{

− (x′′ + kx′ + l(t)x) = g(t)
x(0) = x(T ), x′(0) = x′(T ).

(2.5)

If g(t) ≥ 0 for all t ∈ [0, T ] then x(t) ≥ 0 for all t ∈ [0, T ].

Proof. First we prove by contradiction that x(0) ≥ 0. Let us assume that
x(0) < 0. We distinguish three cases: x′(0) = 0; x′(0) < 0 and x′(0) > 0.
Every case lead to

(S) there exists t1 ∈ (0, T ) such that x(t1) < 0 and x′(t1) = 0.
Then t1 is a local minimum for x, which also implies that x′′(t1) > 0. When
we replace these in the following relation

−
[
x′′(t1) + kx′(t1) + l(t1)x(t1)

]
= g(t1)

we get a contradiction.
Let us prove now the above statement (S).
Case 1. Whenever x′(0) = 0, if we replace in the differential equation of x,
we obtain x′′(0) ≤ −l(0)x(0) < 0. Then x′ is strictly decreasing in some
neighborhood of 0, V . But x′(0) = 0. Thus x′(t) < 0 for all t ∈ V . Hence x
is strictly decreasing in V . Relation x(0) = x(T ) assures that (S) is valid.
Case 2. Whenever x′(0) < 0 we have that x′(t) < 0 in some neighborhood
of 0. The rest is like in Case 1.
Case 3. Whenever x′(0) > 0 we have that, also, x′(T ) > 0. Then x is strictly
increasing in some neighborhood of T . Relation x(0) = x(T ) guarantees (S).

Hence we know that x(0) = x(T ) ≥ 0. It is easy to see that the existence
of some t∗ ∈ (0, T ) with x(t∗) < 0 assures that (S) hold. But this lead to a
contradiction, as we have already proved. Then x(t) ≥ 0 for all t ∈ [0, T ]. 2

Lemma 2.2 Let l : [0, T ] → R be a continuous function with l(t) < 0
for all t ∈ [0, T ]. Then the problem (2.5) has a unique solution for every
g ∈ C[0, T ].
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Proof. We apply Theorem 3.1, page 214 from [7] and deduce that is is suf-
ficient if we prove that the only solution of the corresponding homogeneous
equation with x(0) = x(T ) and x′(0) = x′(T ) is the null solution. It is easy
to see that this is valid on the base of Lemma 2.1. 2

Throughout this paper let us consider

D =
{
x ∈ C2[0, T ] : x(0) = x(T ), x′(0) = x′(T )

}
.

Lemma 2.3 Let l : [0, T ] → R be a continuous function with l(t) < 0 for all
t ∈ [0, T ]. The linear operator L : D → C[0, T ], Lx = − (x′′ + kx′ + l(t)x)
is bijective and its inverse is positive and completely continuous between
C[0, T ] to itself.

Proof. The bijectivity of L is assured by Lemma 2.2. It is easy to see that
L is continuous from D endowed with C2 norm

||x||C2 = ||x||+ ||x′||+ ||x′′||,

to C[0, T ] with the supremum norm, denoted here || · ||. Then L−1 exists
and is continuous between C[0, T ] and D. Of course, is continuous between
C[0, T ] to itself. Complete continuity of L−1 is assured because, in addition,
D is compactly imbedded in C[0, T ]. The positivity of L−1, i.e. y ≥ 0
implies L−1y ≥ 0, follows by Lemma 2.1. 2

3 Main results

Throughout this section let us denote

Ω = {(t, u) ∈ [0, T ]× R : α0(t) ≤ u ≤ β0(t)}

and consider the order interval in the space C[0, T ],

[α0, β0] = {x ∈ C[0, T ], α0(t) ≤ x(t) ≤ β0(t) for all t ∈ [0, T ]} ,

where α0, β0 ∈ C[0, T ] with α0(t) ≤ β0(t) for all t ∈ [0, T ]. The following
Lemma is a unicity result for the nonlinear problem (1.1).

Lemma 3.1 Let f : [0, T ] × R → R be continuous and α0, β0 ∈ D, be a
lower and, respectively, an upper solution of (1.1), such that

α0(t) ≤ β0(t) for all t ∈ [0, T ].

Assume that f(t, ·) is C1 on R and ∂f
∂x (t, u) < 0 for all (t, u) ∈ Ω. Then

(1.1) has at most one solution in [α0, β0].

4



Proof. Whenever x and y are two solutions of (1.1) in [α0, β0], we have
that z = x− y satisfies the following relations

−(z′′ + kz′) = f(t, x(t))− f(t, y(t)) = l(t)z,

where

l(t) =

{
f(t,x(t))−f(t,y(t))

x(t)−y(t) , x(t) 6= y(t)
∂f
∂x (t, x(t)), x(t) = y(t).

(3.6)

It easy to see that l(t) < 0 for all t ∈ [0, T ] and that z ∈ D. We apply
Lemma 2.2 and obtain that z = 0, i.e. x = y. 2

The next theorem is our main result.

Theorem 3.1 Let f : [0, T ] × R → R be continuous and α0, β0 ∈ D, be a
lower and, respectively, an upper solution of (1.1), such that

α0(t) ≤ β0(t) for all t ∈ [0, T ].

Assume that f(t, ·) is C2 on R and convex on [α0(t), β0(t)] for all t ∈ [0, T ],
and that ∂f

∂x (t, u) < 0 for all (t, u) ∈ Ω. Then the sequences (αn) and (βn)
given by the iterative schemes (1.3) and (1.4) are well and uniquely defined
in D, and converge monotonically and quadratically in C[0, T ] to the unique
solution of (1.1) in [α0, β0] .

Proof. The fact that αn and βn are well and uniquely defined in D is as-
sured by Lemma 2.2.
The differentiability and convexity of f(t, ·) on [α0(t), β0(t)] imply the fol-
lowing relations

∂f

∂x
(t, u)(v − u) ≤ f(t, v)− f(t, u) ≤ ∂f

∂x
(t, v)(v − u), (3.7)

for all α0(t) ≤ u ≤ v ≤ β0(t).
We shall prove by induction that the following proposition is valid for all
n ≥ 0.

(Pn)


αn ≤ αn+1 ≤ βn+1 ≤ βn

αn+1 is a lower solution of (1.1)
βn+1 is an upper solution of (1.1)

(3.8)

Let us verify first for n = 0. In order to avoid some complicated formulas,
let us denote L0x = −

(
x′′ + kx′ + ∂f

∂x (t, α0)x
)
. Using this notation, we can

write (1.3) for n = 0 in the form

L0α1 = f(t, α0)−
∂f

∂x
(t, α0)α0.
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Then, using also the fact that α0 is a lower solution, we obtain

L0(α1 − α0) = L0α1 + α′′0 + kα′0 +
∂f

∂x
(t, α0)α0 = α′′0 + kα′0 + f(t, α0) ≥ 0.

By Lemma 2.1, it follows that

α0 ≤ α1.

Analogously one can prove that β1 ≤ β0.
Using one of the inequalities (3.7) we have

L0(β1 − α1) = f(t, β0)−
∂f

∂x
(t, α0)β0 − f(t, α0) +

∂f

∂x
(t, α0)α0 ≥ 0.

Thus, by Lemma 2.1,
α1 ≤ β1.

Let us prove now that α1 is a lower solution of (1.1). We have

α′′1 + kα′1 + f(t, α1) = f(t, α1)− f(t, α0)−
∂f

∂x
(t, α0)(α1 − α0) ≥ 0,

where we have used (1.3) and (3.7) for α0 ≤ α1.
Analogously, β1 is an upper solution for (1.1).
The proof of the fact that, if (Pn) is valid then (Pn+1) is true, can be done
in the same manner as above. In order to avoid the repetion, let us skip it.
At this moment we have that for every n ≥ 0, αn+1 ∈ D is a solution of the
linear differential equation (1.3) and that

α0(t) ≤ α1(t) ≤ ... ≤ αn(t) ≤ ... ≤ β0(t) for all t ∈ [0, T ].

We shall prove that the sequence (αn) converges uniformly on [0, T ] and its
limit is a solution of (1.1).
For each t ∈ [0, T ], let us denote by x∗(t) the limit of the numerical sequence
(αn(t)) and σn(t) = Lαn+1(t), where L is the linear operator between D and
C[0, T ] given by Lx = −(x′′ + kx′ − x). Using (1.3) we get that

σn(t) = f(t, αn) + αn+1(t) +
∂f

∂x
(t, αn(t)). (3.9)

Because the functions f and ∂f
∂x are continuous and the sequence (αn) is

bounded in C[0, T ], we have that (σn) is bounded in C[0, T ]. Also, we can
write

αn+1 = L−1σn. (3.10)

6



By Lemma 2.3, L−1 is completely continuous. Hence the sequence (αn) is
compact in C[0, T ]. It is also monotone. Then it is uniformly convergent to
x∗. When we pass to the limit for n → ∞ in (3.10) and (3.9) we get that
x∗ = L−1 [f(t, x∗) + x∗]. Thus x∗ ∈ D and Lx∗ = f(t, x∗) + x∗, which is
equivalent to the fact that x∗ is a solution of the problem (1.1).
Analogously, the sequence (βn) converges uniformly on [0, T ], and its limit
is a solution of 1.1. By Lemma 3.1, the solution is unique in [α0, β0].
In order to justify that the order of convergence of the sequence (αn) to x∗

is 2, we denote
pn = x∗ − αn

and consider the linear operator L∗x = −
[
x′′ + kx′ + ∂f

∂x (t, x∗)x
]
. Let us

remember that, by convexity of f , ∂f
∂x (t, x∗) ≥ ∂f

∂x (t, αn), since x∗ ≥ αn. The
following inequalities hold.

L∗pn+1 ≤ −
[
p′′n+1 + kp′n+1 +

∂f

∂x
(t, αn)pn+1

]
= −(x′′ + kx′)− ∂f

∂x
(t, αn)x∗ +

[
α′′n+1 + kα′n+1 +

∂f

∂x
(t, αn)αn+1

]
= f(t, x∗)− ∂f

∂x
(t, αn)pn − f(t, αn)

≤
[
∂f

∂x
(t, x∗)− ∂f

∂x
(t, αn)

]
pn

≤ a · p2
n.

We have used relation (3.7) for αn ≤ x∗. The last inequality is true because
the function ∂f

∂x (t, ·) is monotone increasing and Lipschitz on the compact
interval [α0(t), β0(t)] for each t ∈ [0, T ]. Using the positivity of L−1

∗ , assured
by Lemma 2.3, we obtain

0 ≤ pn+1 ≤ aL−1
∗

(
p2

n

)
,

and than, continuity of L−1
∗ gives that there exists c > 0 with

||pn+1|| ≤ c||pn||2.

In the same manner one can prove the quadratic convergence of (βn). 2
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[3] A. Buică, R. Precup, Monotone Newton-type iterations for nonlinear
equations, Proc. Tiberiu Popoviciu Itinerant Seminar on Functional
Equations, Approximation and Convexity, E. Popoviciu ed., Srima,
Cluj, 2002, to appear.
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