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The paper addresses the problem of bifurcation of periodic solu-
tions from a normally nondegenerate family of periodic solutions of
ordinary differential equations under perturbations. The approach
to solve this problem can be described as transforming (by a
Lyapunov–Schmidt reduction) the initial system into one which is
in the standard form of averaging, and subsequently applying the
averaging principle. This approach encounters a fundamental prob-
lem when the perturbation is only Lipschitz (nonsmooth) as we do
not longer have smooth Lyapunov–Schmidt projectors. The situa-
tion of Lipschitz perturbations has been addressed in the literature
lately and the results obtained conclude the existence of the bifur-
cated branch of periodic solutions. Motivated by recent challenges
in control theory, we are interested in the uniqueness problem. We
achieve this in the case when the Lipschitz constant of the pertur-
bation obeys a suitable estimate.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

In [21] Malkin developed a perturbation theory to study the existence, uniqueness and stability of
T -periodic solutions in the n-dimensional T -periodic systems of the form

ẋ = f (t, x) + εg(t, x, ε), (1)
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where both functions f and g are sufficiently smooth and ε > 0 is small. It is assumed in [21] that the
unperturbed system (namely (1) with ε = 0) has a family of T -periodic solutions, denoted x(·, ξ(h)),
whose initial conditions are given by a smooth function ξ : Rk → Rn . In these settings the adjoint
linearized differential system

u̇ = −(
Dx f

(
t, x

(
t, ξ(h)

)))∗
u (2)

has k linearly independent T -periodic solutions u1(·,h), . . . , uk(·,h), thus the geometric multiplicity of
the Floquet multiplier +1 of (2) is at least k for each h ∈ Rk . Assuming, in addition, that the algebraic
multiplicity1 of +1 is exactly k (thus the geometric one is also k), Malkin proved [21] that if the
bifurcation function

M(h) =
T∫

0

( 〈u1(τ ,h), g(τ , x(τ , ξ(h)),0)〉
· · ·

〈uk(τ ,h), g(τ , x(τ , ξ(h)),0)〉

)
dτ

has a simple zero h0 ∈ Rk , then for any ε > 0 sufficiently small, system (1) has a unique T -periodic
solution xε such that xε(0) → ξ(h0) as ε → 0. Here simple zero means that M(h0) = 0 and the Ja-
cobian determinant of M at h0 is nonzero. As usual 〈·,·〉 denotes the inner product in Rn . Moreover,
Malkin related the asymptotic stability of the solution xε with the eigenvalues of the Jacobian matrix
DM(h0). The same result has been proved independently in Loud [19]. Since then, this result has
been refined and developed in various directions, and the problem itself has been treated from differ-
ent perspectives, some of them leading to other expressions of the bifurcation function [6,9,14,15,25].
In particular, Rhouma and Chicone [25] studied the situation where only the geometric multiplicity of
the multiplier +1 of (2) is k. The mentioned property has been termed normal nondegeneracy of the
manifold ξ(Rk).

Perturbation theory for Eq. (1) found many applications in engineering and still helps solving
important problems in synchronization (see e.g. Várkonyi and Holmes [23], Makarenkov, Nistri and
Papini [20]).

In this paper (Theorem 7 below is our main result) we prove bifurcation of isolated branches from
normally nondegenerate manifold ξ(Rk) assuming only Lipschitz continuity for the perturbation g , and
continuity of the Lipschitz constant of the map z �→ g(t, z +ζ, ε)− g(t, z,0) with respect to its entries.
This condition, denoted below by (A9), has its roots in Glover, Lazer and McKenna [10] and has re-
cently proved its effectiveness in semi-linear perturbation problems [5]. We are aware that less regular
perturbations g have been already considered in the literature, where a topological degree method
is employed to prove the existence of bifurcation (see e.g. Fečkan [9] and Kamenskii, Makarenkov
and Nistri [14]). However, our paper seems to be the first contribution that takes advantage of the
Lipschitz continuity of g to achieve uniqueness of the bifurcating branch of periodic solutions.

Our interest in Lipschitz differential equations is motivated by applications in control and opti-
mization. In optimization, Lipschitz ingredients come from variational inequalities constraining a dif-
ferential equation (see e.g. [26]). The solutions of boundary-value problems (that includes T -periodic
problems) for this class of equations are investigated in [27], but the role of bifurcation problems
for this kind of solutions hasn’t yet been discussed in the literature. In control, Lipschitz right-hand
sides often appear in the analysis of the so-called dithered T -periodic systems. An averaging method
(see [22] and [12]) allows to analyze the dynamics of such an uncertain system over a suitable av-
eraged system, which appears to be deterministic. One application of the perturbation result that we
propose could be a further simplifying of the averaged equations in the case where the undithered
system possesses families of T -periodic solutions (i.e. resonate with the dither). An example of such
a situation is when the undithered system is autonomous and possesses a cycle of period T .

1 λ∗ is a Floquet multiplier of the T -periodic linear system (2) if it is an eigenvalue of U (T ,h), where U (t,h) is a fundamental
matrix solution of this system. The Floquet multiplier λ∗ has geometric multiplicity k when the dimension of the kernel of
U (T ,h) − λ∗ In×n is k, while its algebraic multiplicity is counted as a root of the algebraic equation det(U (T ,h) − λIn×n) = 0.
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Stability of solutions of differential equations with Lipschitz right-hand sides is quite well under-
stood and goes back to Lasota and Strauss [13] and can also be achieved based on the Clarke Implicit
Function Theorem [7]. This paper represents the next natural step in the development of the pertur-
bation theory for this class of differential equations. This theory has been pioneered by Glover, Lazer
and McKenna in [10] and recently put in a more general context by Buică, Llibre and Makarenkov [5]
(where the unperturbed systems were assumed Hamiltonian or linear).

In order to prove our main result we extend the Lyapunov–Schmidt reduction method (see [6]) to
the case of nonsmooth Lipschitz functions and derive suitable estimates for the dependence of the
Lipschitz constant of the implicit function on state variables and parameter ε. In addition, we need
to discover new Lipschitz analogues of the smooth dependence of the solution of system (1) on the
parameter and the initial condition.

The paper is organized as follows. In the next section we summarize our notations. In Section 3 we
generalize the Lyapunov–Schmidt reduction method for nonsmooth functions. In Section 4 we prove
Theorem 3 and the main result of the paper, Theorem 7.

2. Notations

The following notations will be used throughout this paper.
Let n,m,k ∈ N, k � n, i ∈ N ∪ {0}.
We denote the projection onto the first k coordinates by π : Rn → Rk , and the one onto the last

n − k coordinates by π⊥ : Rn → Rn−k .
We denote by In×n the identity n × n matrix, while 0n×m denotes the null n × m matrix. For an

n × n matrix A we denote by A∗ the adjoint of A, that in the case the matrix is real reduces to the
transpose.

We consider a norm in Rn denoted by ‖ · ‖. Let Ψ be an n × n real matrix. Then ‖Ψ ‖ denotes the
operator norm, i.e. ‖Ψ ‖ = sup‖ξ‖=1 ‖Ψ ξ‖.

Let ξ ∈ Rn and Z ⊂ Rn be compact, then we denote by ρ(ξ, Z) = minζ∈Z ‖ξ − ζ‖ the distance
between ξ and Z . For δ > 0 and z ∈ Rn the ball in Rn centered in z of radius δ will be denoted
by Bδ(z).

For a subset U ⊂ Rn we denote by int(U), U and co U its interior, closure and closure of the convex
hull, respectively.

We denote by C i(Rn,Rm) the set of all continuous and i times continuously differentiable func-
tions from Rn into Rm .

Let F ∈ C0(Rn,Rn) be a function that does not have zeros on the boundary of some open bounded
set U ⊂ Rn . Then d(F , U) denotes the Brouwer topological degree of F on U (see [3] or [18, Ch. 1,
§ 3]).

For F ∈ C1(Rn,Rm), DF denotes the Jacobian matrix of F . If Rn = Rk × Rn−k and α ∈ Rk, β ∈
Rn−k , then DαF(·, β) denotes the Jacobian matrix of F(·, β). For F ∈ C2(Rn,R), H F denotes the
Hessian matrix of F , i.e. the Jacobian matrix of the gradient of F .

Let δ > 0 be sufficiently small. With o(δ) we denote a function of variable δ such that o(δ)/δ → 0
as δ → 0, while O (δ) denotes a function of δ such that O (δ)/δ is bounded as δ → 0. Besides these
classical notations, we introduce now õ(δ) for a function of variable δ such that õ(δ) → 0 as δ → 0.
Here the functions o, O or õ may depend also on other variables, but the above properties hold
uniformly when these variables lie in a fixed bounded region.

We say that the function Q : Rn × Rm → Rm is locally uniformly Lipschitz with respect to its first
variable if for each compact K ⊂ Rn × Rm there exists L > 0 such that ‖Q (z1, λ)− Q (z2, λ)‖ � L‖z1 −
z2‖ for all (z1, λ), (z2, λ) ∈ K .

For any Lebesgue measurable set M ⊂ [0, T ] we denote by mes(M) the Lebesgue measure of M .

3. Lyapunov–Schmidt reduction method for nonsmooth Lipschitz functions

If the continuously differentiable function P : Rn → Rn vanishes on some set Z ⊂ Rn , then suffi-
cient conditions for the existence of zeros near Z of the perturbed function

F (z, ε) = P (z) + εQ (z, ε), z ∈ Rn, ε > 0 small enough (3)
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can be expressed in terms of the restrictions to Z of the functions z �→ D P (z) and z �→ Q (z,0).
Roughly speaking, this is what is known in the literature as the Lyapunov–Schmidt reduction method,
as it is presented for instance in [6,4] or [18, §24.8]. In these references it is assumed that Q is a
continuously differentiable function. We show in this section that this last assumption can be relaxed
to just Lipschitz continuity, where the Lipschitz constant of Q must obey a suitable estimate.

Theorem 1. Let P ∈ C1(Rn,Rn), let Q ∈ C0(Rn × [0,1],Rn) be locally uniformly Lipschitz with respect to its
first variable, and let F : Rn × [0,1] → Rn be given by (3). Assume that P satisfies the following hypotheses.

(A1) There exist an invertible n × n matrix S, an open ball V ⊂ Rk with k � n, and a function β0 ∈
C1(V ,Rn−k) such that P vanishes on the set Z = ⋃

α∈V

{
S
( α

β0(α)

)}
.

(A2) For any z ∈ Z the matrix D P (z)S has in its upper right corner the null k × (n − k) matrix and in the
lower right corner the (n − k) × (n − k) matrix (z) with det((z)) �= 0.

For any α ∈ V we define

Q̂ (α) = π Q

(
S

(
α

β0(α)

)
,0

)
. (4)

Then the following statements hold.

(C1) For any sequences (zm)m�1 from Rn and (εm)m�1 from [0,1] such that zm → z0 ∈ Z , εm → 0 as
m → ∞ and F (zm , εm) = 0 for any m � 1, we have Q̂ (π S−1z0) = 0.

(C2) If Q̂ : V → Rk is such that Q̂ (α) �= 0 for all α ∈ ∂V and d(Q̂ , V ) �= 0, then there exists ε1 > 0 suf-
ficiently small such that for each ε ∈ (0, ε1] there exists at least one zε ∈ Rn with F (zε, ε) = 0 and
ρ(zε, Z) → 0 as ε → 0.

In addition we assume that there exists α0 ∈ V such that Q̂ (α0) = 0, Q̂ (α) �= 0 for all α ∈ V \ {α0} and
d(Q̂ , V ) �= 0, and we denote z0 = S

( α0
β0(α0)

)
. Moreover we also assume:

(A3) P is twice differentiable in the points of Z , and for each i ∈ 1,k and z ∈ Z the Hessian matrix H Pi(z) is
symmetric.

(A4) There exist δ1 > 0 and L Q̂ > 0 such that∥∥Q̂ (α1) − Q̂ (α2)
∥∥ � L Q̂ ‖α1 − α2‖ for all α1,α2 ∈ Bδ1(α0).

(A5) For δ > 0 sufficiently small we have that∥∥π Q (z1 + ζ, ε) − π Q (z1,0) − π Q (z2 + ζ, ε) + π Q (z2,0)
∥∥ � õ(δ)‖z1 − z2‖,

for all z1, z2 ∈ Bδ(z0) ∩ Z , ε ∈ [0, δ] and ζ ∈ Bδ(0).

Then the following conclusion holds.

(C3) There exists δ2 > 0 such that for each ε ∈ (0, ε1] there is exactly one zε ∈ Bδ2(z0) with F (zε, ε) = 0.
Moreover zε → z0 as ε → 0.

We note that a map that satisfies (A4) is usually called dilating map (cf. [1]).
For proving Theorem 1 we shall use the following version of the Implicit Function Theorem.

Lemma 2. Let P ∈ C1(Rn,Rn) and let Q ∈ C0(Rn × [0,1],Rn) be locally uniformly Lipschitz with respect to
its first variable. Assume that P satisfies the hypotheses (A1) and (A2) of Theorem 1. Then there exist δ0 > 0,
ε0 > 0 and a function β : V × [0, ε0] → Rn−k such that
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(C4) π⊥ F
(

S
( α

β(α,ε)

)
, ε

) = 0 for all α ∈ V and ε ∈ [0, ε0].
(C5) β(α,ε) = β0(α) + εμ(α,ε) where μ : V × (0, ε0] → Rn−k is bounded. Moreover for any α ∈ V and

ε ∈ [0, ε0], β(α,ε) is the only zero of π⊥ F
(

S
( α

·
)
, ε

)
in Bδ0(β0(α)) and β is continuous in V × [0, ε0].

In addition if P is twice differentiable in the points of Z , then

(C6) there exists Lμ > 0 such that ‖μ(α1, ε) −μ(α2, ε)‖ � Lμ‖α1 −α2‖ for all α1,α2 ∈ V and ε ∈ (0, ε0].

Proof. (C4) Let F̃ : Rk × Rn−k × [0,1] → Rn be defined by

F̃ (α,β, ε) = F

(
S

(
α
β

)
, ε

)
,

and let P̃ , Q̃ and ̃ be defined in a similar way. Now the assumptions (A1) and (A2) become
P̃ (α,β0(α)) = 0 and, respectively, the matrix D P̃ (α,β0(α)) has in its upper right corner the null
k × (n − k) matrix and in the lower right corner the (n − k) × (n − k) invertible matrix ̃(α,β0(α))

for any α ∈ V . Then

F̃
(
α,β0(α),0

) = 0 for any α ∈ V ,

and

det
(

Dβ

(
π⊥ F̃

)(
α,β0(α),0

)) = det
(
̃

(
α,β0(α)

)) �= 0 for any α ∈ V . (5)

It follows from (5) that there exists a radius δ > 0 such that

π⊥ F̃ (α,β,0) �= 0 for any β ∈ Bδ

(
β0(α)

)\{β0(α)
}
, α ∈ V . (6)

The relations (5) and (6) give (see [18, Theorem 6.3])

d
(
π⊥ F̃ (α, ·,0), Bδ

(
β0(α)

)) = sign
(
det

(
̃

(
α,β0(α)

))) �= 0, α ∈ V .

Hence, by the continuity of the topological degree with respect to parameters (using the compactness
of V ) there exists ε(δ) > 0 such that

d
(
π⊥ F̃ (α, ·, ε), Bδ

(
β0(α)

)) �= 0 for any ε ∈ [
0, ε(δ)

]
, α ∈ V .

This assures the existence of β(α,ε) ∈ Bδ(β0(α)) such that conclusion (C4) holds with δ0 = δ and
ε0 = ε(δ0).

Without loss of generality we can consider in the sequel that ε(δ) → 0 as δ → 0. The value of the
radius δ eventually may decrease in a finite number of steps during this proof (consequently, also the
value of ε(δ)). Sometimes we decrease only the value of ε(δ), letting δ maintaining its value. Without
explicitly mentioning it, finally, in the statement of the lemma, we replace δ0 by the least value of
the radius δ and ε0 by ε(δ).

(C5) Since P and β0 are C1 and V is bounded, there exists η > 0 such that the invertible ma-
trix  defined by (A2) satisfies ‖̃(α,β0(α))‖ � 2η for all α ∈ V . Using again that P is C1 and
̃(α,β0(α)) = Dβ(π⊥ P̃ )(α,β0(α)), we obtain that the radius δ > 0 found before at (C4) can be de-
creased, if necessary, in such a way that ‖̃(α,β0(α)) − Dβ(π⊥ P̃ )(α,β)‖ � η for all β ∈ Bδ(β0(α))

and α ∈ V . Then ‖Dβ(π⊥ P̃ )(α,β)‖ � η for all β ∈ Bδ(β0(α)), α ∈ V . Applying the generalized Mean
Value Theorem (see [7, Proposition 2.6.5]) to the function π⊥ P̃ (α, ·), we obtain∥∥π⊥ P̃ (α,β1) − π⊥ P̃ (α,β2)

∥∥ � η‖β1 − β2‖, β1, β2 ∈ Bδ

(
β0(α)

)
, α ∈ V . (7)
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We take M Q > 0 such that ‖Q̃ (α,β(α,ε), ε)‖ � M Q for all α ∈ V and ε ∈ [0, ε0]. Using (7) we
obtain for all α ∈ V and ε ∈ [0, ε(δ)]

0 = ∥∥π⊥ P̃
(
α,β(α,ε)

) − π⊥ P̃
(
α,β0(α)

) + επ⊥ Q̃
(
α,β(α,ε), ε

)∥∥
� η

∥∥β(α,ε) − β0(α)
∥∥ − εM Q .

From these last relations, denoting m = M Q /η, we deduce that∥∥μ(α,ε)
∥∥ � m for all α ∈ V , ε ∈ (

0, ε(δ)
]
. (8)

We choose L Q > 0 such that∥∥Q̃ (α2, β2, ε) − Q̃ (α1, β1, ε)
∥∥ � L Q

(‖α2 − α1‖ + ‖β2 − β1‖
)
, (9)

for all β1, β2 ∈ Bδ0(β0(V )), α1,α2 ∈ V , ε ∈ [0, ε0]. We decrease δ > 0 in such a way that η − εL Q > 0
for any ε ∈ [0, ε(δ)].

Let α ∈ V , ε ∈ [0, ε(δ)] and assume that β(α,ε) and β2 are two zeros of π⊥ F
(

S
( α

·
)
, ε

)
in

Bδ(β0(α)). Taking into account (7) and (9), we obtain

0 = ∥∥π⊥ P̃ (α,β2) − π⊥ P̃
(
α,β(α,ε)

) + επ⊥ Q̃ (α,β2, ε) − επ⊥ Q̃
(
α,β(α,ε), ε

)∥∥
� (η − εL Q )

∥∥β2 − β(α,ε)
∥∥.

Since η − εL Q > 0 for any ε ∈ [0, ε(δ)] we deduce from this last relation that β2 and β(α,ε) must
coincide.

We prove in the sequel the continuity of the function β : V × [0, ε(δ)] → Rn−k . Let (α1, ε1) ∈
V ×[0, ε(δ)] be fixed and (α, ε) ∈ V ×[0, ε(δ)] be in a small neighborhood of (α1, ε1). Consider L P > 0
such that ‖ P̃ (α1, β) − P̃ (α,β)‖ � L P ‖α1 − α‖ for all α1,α ∈ V and β ∈ Bδ0(β0(V )). We diminish
ε(δ) > 0, if necessary, and we consider α so close to α1 that β(α,ε) ∈ Bδ(β0(α1)). Then using (7) and
(9) we obtain

0 = ∥∥π⊥ P̃
(
α1, β(α1, ε1)

) − π⊥ P̃
(
α,β(α,ε)

)
+ ε1π

⊥ Q̃
(
α1, β(α1, ε1), ε1

) − επ⊥ Q̃
(
α,β(α,ε), ε

)∥∥
� η

∥∥β(α1, ε1) − β(α,ε)
∥∥ − L P ‖α1 − α‖

− ∥∥ε1π
⊥ Q̃

(
α1, β(α1, ε1), ε1

) − επ⊥ Q̃
(
α,β(α,ε), ε

)∥∥
and

−∥∥ε1π
⊥ Q̃

(
α1, β(α1, ε1), ε1

) − επ⊥ Q̃
(
α,β(α,ε), ε

)∥∥
� −ε1L Q ‖α1 − α‖ − ε1L Q

∥∥β(α1, ε1) − β(α,ε)
∥∥

− ∥∥ε1π
⊥ Q̃

(
α,β(α,ε), ε1

) − επ⊥ Q̃
(
α,β(α,ε), ε

)∥∥.

Combining these last two relations we obtain

(η − ε1L Q )
∥∥β(α1, ε1) − β(α,ε)

∥∥ � (L P + ε1L Q )‖α1 − α‖
+ ∥∥ε1π

⊥ Q̃
(
α,β(α,ε), ε1

) − επ⊥ Q̃
(
α,β(α,ε), ε

)∥∥,

from where it follows easily that β(α,ε) → β(α1, ε1) when (α, ε) → (α1, ε1).
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(C6) We define Φ(α, ξ) = π⊥ P̃ (α,β0(α) + ξ) for all α ∈ V and ξ ∈ Rn−k . From (7) we have that∥∥Φ(α, ξ1) − Φ(α, ξ2)
∥∥ � η‖ξ1 − ξ2‖ for all α ∈ V , ξ1, ξ2 ∈ Bδ(0). (10)

Since P̃ (α,β0(α)) = 0 for all α ∈ V , we have that Φ(α, ξ) = π⊥ P̃ (α,β0(α)+ ξ)−π⊥ P̃ (α,β0(α)) and
that

DαΦ(α, ξ) = Dα

(
π⊥ P̃

)(
α,β0(α) + ξ

) − Dα

(
π⊥ P̃

)(
α,β0(α)

)
+ [

Dβ

(
π⊥ P̃

)(
α,β0(α) + ξ

) − Dβ

(
π⊥ P̃

)(
α,β0(α)

)]
Dβ0(α).

From this expression, using that P̃ is twice differentiable in (α,β0(α)) and β0 is C1, we obtain for
some LΦ > 0 that the radius δ can be eventually decreased in a such way that∥∥DαΦ(α, ξ)

∥∥ � LΦ‖ξ‖ for all α ∈ V , ξ ∈ Bδ(0).

Hence using the mean value inequality we have∥∥Φ(α1, ξ) − Φ(α2, ξ)
∥∥ � Lφ‖ξ‖ · ‖α1 − α2‖ for all α1,α2 ∈ V , ξ ∈ Bδ(0). (11)

Now we use (10) with ξ1 = εμ(α1, ε), ξ2 = εμ(α2, ε) diminishing ε(δ), if necessary, in order that
ξ1, ξ2 ∈ Bδ(0) for all α1,α2 ∈ V and ε ∈ (0, ε(δ)]. Using also (C5), (8) and (11) we obtain

∥∥π⊥ P̃
(
α1, β(α1, ε)

) − π⊥ P̃
(
α2, β(α2, ε)

)∥∥ = ∥∥Φ(α1, ξ1) − Φ(α2, ξ2)
∥∥

� η‖ξ1 − ξ2‖ − LΦ‖ξ1‖ · ‖α1 − α2‖
� ηε

∥∥μ(α1, ε) − μ(α2, ε)
∥∥ − LΦmε‖α1 − α2‖,

(12)

for all α1,α2 ∈ V and ε ∈ (0, ε(δ)]. Also using (9) we have

∥∥π⊥ Q̃
(
α1, β(α1, ε), ε

) − π⊥ Q̃
(
α2, β(α2, ε), ε

)∥∥
� εL Q

∥∥μ(α1, ε) − μ(α2, ε)
∥∥ + L Q (1 + Lβ0)‖α1 − α2‖, (13)

for all α1,α2 ∈ V and ε ∈ (0, ε(δ)], where Lβ0 is the Lipschitz constant of β0 in V . By definition of
β(α,ε) we have π⊥ P̃ (αi, β(αi, ε)) + επ⊥ Q̃ (αi, β(αi, ε), ε) = 0 for i ∈ 1,2. Using (12) and (13) we
obtain

0 � ε[η − εL Q ] · ∥∥μ(α1, ε) − μ(α2, ε)
∥∥ − ε

[
LΦm + L Q (1 + Lβ0)

] · ‖α1 − α2‖,

for all α1,α2 ∈ V and ε ∈ (0, ε(δ)]. Therefore μ : V ×(0, ε(δ)] → Rn−k satisfies (C6) with Lμ = [LΦm+
L Q (1 + Lβ0)]/[η − ε(δ)L Q ]. Hence all the conclusions hold with δ0 = δ and ε0 = ε(δ). �

We remark that (C4) and the uniqueness part of (C5) can be obtained by means of the Lipschitz
generalization of the Inverse Function Theorem (see e.g. [16, Theorem 5.3.8]), but we provide a differ-
ent proof because the inequalities (7) and (8) are used for proving the rest of (C5) and (C6).

Proof of Theorem 1. Let δ0, ε0, β(α,ε) and μ(α,ε) be as in Lemma 2. We consider the notations
F̃ , P̃ and Q̃ like in the proof of Lemma 2.
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(C1) Let the sequences (zm)m�1 from Rn and (εm)m�1 from [0,1] be such that zm → z0 ∈
Z , εm → 0 as m → ∞ and F (zm, εm) = 0 for any m � 1. We define α0 ∈ Rk , the sequences
(αm)m�1 from Rk and (βm)m�1 from Rn−k by z0 = S

( α0
β0(α0)

)
and zm = S

( αm

βm

)
. Then we have that

α0 = limm→∞ αm , β0(α0) = limm→∞ βm and there exists m0 ∈ N such that βm ∈ Bδ0(β0(αm)) and
εm ∈ [0, ε0] for all m � m0. Therefore, since F (zm, εm) = 0, Lemma 2 implies βm = β(αm, εm) for any
m � m0. Since π P̃ (αm, β0(αm)) = 0 and Dβ(π P̃ )(αm, β0(αm)) = 0, we obtain that limm→∞ 1

εm
π P̃ (αm,

β(αm, εm)) = 0. Hence

0 = lim
m→∞

1

εm
π F̃

(
αm, β(αm, εm), εm

)
= lim

m→∞

[
1

εm
π P̃

(
αm, β(αm, εm)

) + π Q̃
(
αm, β(αm, εm), εm

)] = Q̂ (α0)

from where (C1) follows.
(C2) Using (C4) of Lemma 2, we note that it is enough to prove the existence of at least one zero

in V of the function α �→ π F̃ (α,β(α,ε), ε) for each ε ∈ (0, ε1] where ε1 with 0 < ε1 � ε0 has to be
found. This will follow from the claim that the Brouwer topological degree d( 1

ε π F̃ (·, β(·, ε), ε), V ) �= 0
for ε ∈ (0, ε1]. Now we prove this claim. Since β(α,ε) = β0(α)+εμ(α,ε) with μ : V × (0, ε0] → Rn−k

a bounded function, π P̃ (α,β0(α)) = 0 and Dβ(π P̃ )(α,β0(α)) = 0, we have

lim
ε→0

1

ε
π P̃

(
α,β(α,ε)

) = 0.

Therefore

lim
ε→0

1

ε
π F̃

(
α,β(α,ε), ε

) = lim
ε→0

[
1

ε
π P̃

(
α,β(α,ε)

) + π Q̃
(
α,β(α,ε), ε

)] = Q̂ (α).

Using the continuity of the Brouwer degree with respect to the parameter ε, and taking into account
that, by hypothesis, d(Q̂ , V ) �= 0, for each ε ∈ (0, ε1] there exists ε1 > 0 sufficiently small such that

d

(
1

ε
π F̃

(·, β(·, ε), ε
)
, V

)
= d(Q̂ , V ) �= 0.

Hence the claim is proved. Then for each ε ∈ (0, ε1] there exists αε ∈ V such that π F̃ (αε,

β(αε, ε), ε) = 0 and, moreover, using also (C4) of Lemma 2, we have that F̃ (αε,β(αε, ε), ε) = 0. De-
noting zε = S

( αε

β(αε,ε)

)
we have that F (zε, ε) = 0. From the definitions of zε and Z , and the continuity

of β , it follows easily that ρ(zε, Z) → 0 as ε → 0.
(C3) Since α0 ∈ V is an isolated zero of Q̂ , applying the topological degree arguments like

in (C2) for V that shrinks to {α0}, we obtain the existence of αε such that αε → α0 as ε → 0, and
π F̃ (αε,β(αε, ε), ε) = 0 for any ε ∈ (0, ε1]. Hence zε = S

( αε

β(αε,ε)

)
and z0 = S

( α0
β0(α0)

) ∈ Z are such
that F (zε, ε) = 0 and zε → z0 as ε → 0.

In order to prove that zε is the unique zero of F (·, ε) in a neighborhood of z0, we define

r1(α, ε) = 1

ε
π P̃

(
α,β(α,ε)

)
, r2(α, ε) = π Q̃

(
α,β(α,ε), ε

) − π Q̃
(
α,β0(α),0

)
,

for all α ∈ V and ε ∈ (0, ε1], and we study the Lipschitz properties with respect to α of these two
functions.

Since P̃ (α,β0(α)) = 0 for all α ∈ V , by taking the derivative with respect to α we obtain

Dα(π P̃ )
(
α,β0(α)

) + Dβ(π P̃ )
(
α,β0(α)

)
Dβ0(α) = 0 for all α ∈ V . (14)
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Assumption (A2) assures that Dβ(π P̃ )(α,β0(α)) = 0 for all α ∈ V . Taking the derivative with re-
spect to α, we have

Dβα(π P̃ )
(
α,β0(α)

) + Dββ(π P̃ )
(
α,β0(α)

)
Dβ0(α) = 0 for any α ∈ V . (15)

For any α ∈ V and ξ ∈ Rn−k we define Φ(α, ξ) = π P̃ (α,β0(α) + ξ). Taking into account the relations
(14) and (15) and that, by hypothesis (A3) we have that Dβα(π P̃ )(α,β0(α)) = Dαβ(π P̃ )(α,β0(α)),
we obtain

DαΦ(α, ξ) = Dα(π P̃ )
(
α,β0(α) + ξ

) + Dβ(π P̃ )
(
α,β0(α) + ξ

)
Dβ0(α)

− Dα(π P̃ )
(
α,β0(α)

) − Dβ(π P̃ )
(
α,β0(α)

)
Dβ0(α)

− Dαβ(π P̃ )
(
α,β0(α)

)
ξ − Dββ(π P̃ )

(
α,β0(α)

)
Dβ0(α)ξ.

From this last equality, using that Dα(π P̃ ) and, respectively, Dβ(π P̃ ) are differentiable at (α,β0(α)),
we deduce that DαΦ(α, ξ) = o(ξ) for all α ∈ V and ξ ∈ Rn−k with ‖ξ‖ sufficiently small. Hence the
mean value inequality assures that∥∥Φ(α1, ξ) − Φ(α2, ξ)

∥∥ � o(ξ)‖α1 − α2‖ for all α1,α2 ∈ V .

In the last inequality we replace ξ = εμ(α1, ε) (where μ is given by Lemma 2). We use that
DξΦ(α,0) = Dβπ P̃ (α,β0(α)) = 0 for any α ∈ V , and that μ is Lipschitz with respect to α ∈ V . Then
we obtain, considering that ε1 is small enough, for all ε ∈ (0, ε1]∥∥Φ

(
α1, εμ(α1, ε)

) − Φ
(
α2, εμ(α2, ε)

)∥∥ � o(ε)‖α1 − α2‖ for all α1,α2 ∈ V .

Now coming back to our notations and recalling that β(α,ε) = β0(α) + εμ(α,ε), we obtain for ε ∈
(0, ε1] ∥∥r1(α1, ε) − r1(α2, ε)

∥∥ � o(ε)

ε
‖α1 − α2‖ for all α1,α2 ∈ V . (16)

We will prove that a similar relation holds for the function r2. First we note that the hypothe-
sis (A5) and the fact that Q is locally uniformly Lipschitz with respect to the first variable imply
that ∥∥π Q (z1 + ζ1, ε) − π Q (z1,0) − π Q (z2 + ζ2, ε) + π Q (z2,0)

∥∥
� õ(δ)‖z1 − z2‖ + L Q ‖ζ1 − ζ2‖, (17)

for all z1, z2 ∈ Bδ(z0) ∩ Z , ε ∈ [0, δ] and ζ1, ζ2 ∈ Bδ(0). We diminish δ1 > 0 given in (A4) and ε1 > 0
in such a way that δ1 � δ, ε1 � δ, S

( α

β0(α)

) ∈ Bδ(z0) and S
( 0k×1
εμ(α,ε)

) ∈ Bδ(0) for any α ∈ Bδ1(α0),

ε ∈ (0, ε1]. Replacing zi = S
( αi

β0(αi)

)
, ζi = S

( 0k×1
εμ(αi ,ε)

)
, i ∈ 1,2, in (17) we obtain that

∥∥r2(α1, ε) − r2(α2, ε)
∥∥ � õ(δ)

(‖α1 − α2‖ + ∥∥β0(α1) − β0(α2)
∥∥) + εL Q

∥∥μ(α1, ε) − μ(α2, ε)
∥∥,

for all α1,α2 ∈ Bδ1 (α0) and ε ∈ (0, ε1]. By hypothesis, β0 is C1 in V and, by Lemma 2 (conclusion
(C6)), (α, ε) �→ μ(α,ε) is Lipschitz with respect to α ∈ V (with a Lipschitz constant that does not
depend on ε). Hence for δ1, ε1 � δ small enough,∥∥r2(α1, ε) − r2(α2, ε)

∥∥ � õ(δ)‖α1 − α2‖, α1,α2 ∈ Bδ1(α0), ε ∈ (0, ε1]. (18)
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Therefore we have proved that r1 and r2 satisfy the Lipschitz conditions (16) and, respectively, (18).
In what follows we define some constant δ2 > 0, and after we prove that it is the one that satisfies
the requirements of (C3).

We diminish δ1 > 0 in such a way that there exists δ3 > 0 such that δ3 � δ0 and Bδ3(β0(α0)) ⊂⋂
α∈Bδ1 (α0) Bδ0(β0(α)). We choose δ2 > 0 so small that S−1(Bδ2 (z0)) ⊂ Bδ1(α0) × Bδ3 (β0(α0)). We

diminish ε1 > 0, if necessary, such that zε ∈ Bδ2(z0) for any ε ∈ (0, ε1]. For any ε ∈ (0, ε1] we claim
that zε is the only zero of F (·, ε) in Bδ2(z0). Assume by contradiction that there exists ε2 ∈ (0, ε1]
such that zε2 and z2 are two different zeros of F (·, ε2) in Bδ2 (z0). Denoting α2 = π S−1z2 and β2 =
π⊥ S−1z2 we have that β2 ∈ Bδ0(β0(α2)). By (C5) of Lemma 2, since β2 is a zero of π⊥ F

(
S
( α2

·
)
, ε2

)
(using the notations introduced before, π⊥ F̃ (α2, ·, ε2)), we must have that β2 = β(α2, ε2). Therefore
αε2 and α2 are two different zeros of π F̃ (·, β(·, ε2), ε2) in Bδ1 (α0). We have the identity

1

ε
π F̃

(
α,β(α,ε), ε

) = Q̂ (α) + r1(α, ε) + r2(α, ε) for all α ∈ V , ε ∈ (0, ε1].

We denote r(α, ε) = r1(α, ε) + r2(α, ε). Then assumption (A4), properties (16) and (18) give

0 = ∥∥Q̂ (αε2) − Q̂ (α2) + r(αε2 , ε2) − r(α2, ε2)
∥∥ �

(
L Q̂ − o(ε2)/ε2 − õ(δ)

)‖αε2 − α2‖.

Since ε1 > 0 and δ > 0 are sufficiently small and 0 < ε2 � ε1, the constant (L Q̂ − o(ε2)/ε2 − õ(δ))

must be positive and, consequently, αε2 and α2 must coincide. Hence also zε2 and z2 must coincide
and we conclude the proof. �
4. Bifurcation of T -periodic solutions from T -periodic families in differential equations with
nonsmooth Lipschitz right-hand sides

In this section we provide a perturbation result for the T -periodic differential system

ẋ = f (t, x) + εg(t, x, ε), (19)

where f ∈ C2(R×Rn,Rn) and g ∈ C0(R×Rn ×[0,1],Rn) are T -periodic in the first variable and g is
locally uniformly Lipschitz with respect to its second variable. For z ∈ Rn we denote by x(·, z, ε) the
solution of (19) such that x(0, z, ε) = z. We consider the situation when the unperturbed system

ẋ = f (t, x) (20)

has a nondegenerate (in a sense that will be precised below) family of T -periodic solutions and prove
the existence and uniqueness of T -periodic solutions to (19) that emanate from this family.

The main tool for the proof of our main result is Theorem 1. We will show that the assumptions of
Theorem 1 can be expressed in terms of the function g and of the solutions of the linear differential
system

ẏ = Dx f
(
t, x(t, z,0)

)
y. (21)

The main result of this paper is Theorem 7 below, which is a Lipschitz analogue of the perturbation
results by Malkin [21], Loud [19] and Rhouma and Chicone [25]. The next theorem is an important
milestone step towards the proof of Theorem 7 and it can also be of independent interest.

Theorem 3. Assume that f ∈ C2(R×Rn,Rn) and g ∈ C0(R×Rn ×[0,1],Rn) are T -periodic in the first vari-
able, and that g is locally uniformly Lipschitz with respect to the second variable. Suppose that the unperturbed
system (20) satisfies the following conditions.
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(A6) There exist an invertible n × n real matrix S, an open ball V ⊂ Rk with k � n, and a C1 function β0 :
V → Rn−k such that any point of the set Z = ⋃

α∈V

{
S
( α

β0(α)

)}
is the initial condition of a T -periodic

solution of (20).
(A7) For each z ∈ Z there exists a fundamental matrix solution Y (·, z) of (21) such that Y (0, z) is C1 with

respect to z and such that the matrix (Y −1(0, z)− Y −1(T , z))S has in the upper right corner the null k ×
(n −k) matrix, while in the lower right corner has the (n −k)× (n −k) matrix (z) with det((z)) �= 0.

We define the function G : V → Rk by

G(α) = π

T∫
0

Y −1
(

t, S

(
α

β0(α)

))
g

(
t, x

(
t, S

(
α

β0(α)

)
,0

)
,0

)
dt. (22)

Then the following statements hold.

(C7) For any sequences (ϕm)m�1 from C0(R,Rn) and (εm)m�1 from [0,1] such that ϕm(0) → z0 ∈ Z ,
εm → 0 as m → ∞ and ϕm is a T -periodic solution of (19) with ε = εm for any m � 1, we have that
G(π S−1z0) = 0.

(C8) If G(α) �= 0 for any α ∈ ∂V and d(G, V ) �= 0, then there exists ε1 > 0 sufficiently small such that for
each ε ∈ (0, ε1] there is at least one T -periodic solution ϕε of system (19) such that ρ(ϕε(0), Z) → 0
as ε → 0.

In addition we assume that there exists α0 ∈ V such that G(α0) = 0, G(α) �= 0 for all α ∈ V \ {α0} and
d(G, V ) �= 0, and we denote z0 = S

( α0
β0(α0)

)
. Moreover we also assume:

(A8) There exist δ1 > 0 and LG > 0 such that∥∥G(α1) − G(α2)
∥∥ � LG‖α1 − α2‖, for all α1,α2 ∈ Bδ1(α0).

(A9) For δ > 0 sufficiently small there exists Mδ ⊂ [0, T ] Lebesgue measurable with mes(Mδ) = õ(δ) such
that ∥∥g(t, z1 + ζ, ε) − g(t, z1,0) − g(t, z2 + ζ, ε) + g(t, z2,0)

∥∥ � õ(δ)‖z1 − z2‖,
for all t ∈ [0, T ] \ Mδ and for all z1, z2 ∈ Bδ(z0), ε ∈ [0, δ] and ζ ∈ Bδ(0).

Then the following conclusion holds.

(C9) There exists δ2 > 0 such that for any ε ∈ (0, ε1], ϕε is the only T -periodic solution of (19) with initial
condition in Bδ2(z0). Moreover ϕε(0) → z0 as ε → 0.

To prove the theorem we need three preliminary lemmas that are interesting by themselves. For
example, in Lemma 5 we prove the existence of the derivative (in ε = 0) with respect to some pa-
rameter denoted ε of the solution of some initial value problem without assuming that the system
is C1. We also study the properties of this derivative.

Lemma 4. Let f ∈ C2(Rn,Rn) and K1, K2 be compact subsets of Rn. Then the following inequality holds for
all x0

1, x0
2 ∈ K1 , y1, y2 ∈ K2 and ε ∈ [0,1].∥∥ f

(
x0

1 + εy1
) − f

(
x0

1

) − f
(
x0

2 + εy2
) + f

(
x0

2

)∥∥ � O (ε)
∥∥x0

1 − x0
2

∥∥ + O (ε)‖y1 − y2‖. (23)

In addition for m > 0 sufficiently small and u1, u2, v1, v2 ∈ Bm(0) ⊂ Rn we have
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(
x0

1 + v1 + εy0
1 + εu1

) − f
(
x0

1 + v1
) − ε f ′(x0

1

)
y0

1

− f
(
x0

2 + v2 + εy0
2 + εu2

) + f
(
x0

2 + v2
) + ε f ′(x0

2

)
y0

2

∥∥
�

[
o(ε) + εO (m)

]∥∥x0
1 − x0

2

∥∥ + O (ε)‖v1 − v2‖
+ [

o(ε) + εO (m)
]∥∥y0

1 − y0
2

∥∥ + O (ε)‖u1 − u2‖. (24)

Proof. We define Φ(x0, y, ε) = f (x0 + εy) − f (x0) for all x0 ∈ coK1, y ∈ coK2 and ε ∈ [0,1]. Relation
(23) follows from the mean value inequality applied to Φi with i ∈ 1,n and the following estimations:

∂Φi

∂x0

(
x0, y, ε

) = ( f i)
′(x0 + εy

) − ( f i)
′(x0) = O (ε) and

∂Φi

∂ y

(
x0, y, ε

) = ε( f i)
′(x0 + εy

) = O (ε).

In order to prove relation (24) we define

Φ
(
x0, v, y0, u, ε

) = f
(
x0 + v + εy0 + εu

) − f
(
x0 + v

) − ε f ′(x0)y0,

for all x0 ∈ coK1, y0 ∈ coK2, u, v ∈ Bm(0) and ε ∈ [0,1]. We apply again the mean value inequality to
the components Φi , i ∈ 1,n, using the following estimations:

∂Φi

∂x0

(
x0, v, y0, u, ε

) = ( f i)
′(x0 + v + εy0 + εu

) − ( f i)
′(x0 + v

) − ε( f i)
′′(x0)y0

= o(ε) + ε( f i)
′′(x0 + v

)
u + ε

[
( f i)

′′(x0 + v
) − ( f i)

′′(x0)]y0

= o(ε) + εO (m) + εo(m)/m = o(ε) + εO (m),

∂Φ

∂v

(
x0, v, y0, u, ε

) = ( f i)
′(x0 + v + εy0 + εu

) − ( f i)
′(x0 + v

) = O (ε),

∂Φi

∂ y0

(
x0, v, y0, u, ε

) = ε( f i)
′(x0 + v + εy0 + εu

) − ε( f i)
′(x0)

= ε( f i)
′(x0 + v + εy0 + εu

) − ε( f i)
′(x0 + v

) + ε( f i)
′(x0 + v

) − ε( f i)
′(x0)

= o(ε) + εO (m),

∂Φ

∂u

(
x0, v, y0, u, ε

) = ε( f i)
′(x0 + v + εy0 + εu

) = O (ε). �
Lemma 5. We consider f ∈ C2(R × Rn,Rn) and g ∈ C0(R × Rn × [0,1],Rn) a locally uniformly Lipschitz
function with respect to the second variable. For z ∈ Rn and ε ∈ [0,1], we denote by x(·, z, ε) the unique
solution of

ẋ = f (t, x) + εg(t, x, ε), x(0) = z,

and by y(t, z, ε) = [x(t, z, ε) − x(t, z,0)]/ε (here ε �= 0). We assume that for a given T > 0 there exist a
compact set K ⊂ Rn with nonempty interior and δ > 0 such that x(t, z, ε) is well defined for all t ∈ [0, T ],
z ∈ K and ε ∈ [0, δ]. Then the following statements hold.

(C10) There exists y(t, z,0) = limε→0 y(t, z, ε) being the solution of the initial value problem

ẏ(t) = Dx f
(
t, x(t, z,0)

)
y + g

(
t, x(t, z,0),0

)
, y(0) = 0.

The above limit holds uniformly with respect to (t, z) ∈ [0, T ] × K .
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(C11) The functions x, y : [0, T ] × K × [0, δ] → Rn are continuous and uniformly Lipschitz with respect to
their second variable.

(C12) In addition if there exists z0 ∈ int(K ) such that assumption (A9) of Theorem 3 holds with the same small
δ > 0 as above, then∥∥y(t, z1 + ζ, ε) − y(t, z1,0) − y(t, z2 + ζ, ε) + y(t, z2,0)

∥∥ � õ(δ)‖z1 − z2‖,
for all t ∈ [0, T ], z1, z2 ∈ Bδ(z0), ε ∈ [0, δ] and ζ ∈ Bδ(0).

Proof. (C10) We define f̃ (t, z, ε) = f (t,x(t,z,ε))− f (t,x(t,z,0))
x(t,z,ε)−x(t,z,0)

for ε �= 0 and f̃ (t, z,0) = Dx f (t, x(t, z,0)).

In this way we obtain the continuous function f̃ : [0, T ] × K × [0, δ] → Rn . For ε �= 0, using the
definitions of x(t, z, ε) and y(t, z, ε) we deduce immediately that y(0, z, ε) = 0 and also that

ẏ(t, z, ε) = f̃
(
t, x(t, z, ε)

)
y(t, z, ε) + g

(
t, x(t, z, ε), ε

)
. (25)

Passing to the limit as ε → 0, we obtain that y(·, z,0) is the solution of the given initial value
problem. Hence (25) holds also for ε = 0. Since the right-hand side of (25) is given by a contin-
uous function, we have that the limit y(t, z,0) = limε→0 y(t, z, ε) holds uniformly with respect to
(t, z) ∈ [0, T ] × K .

(C11) The facts that the functions x, y : [0, T ] × K × [0, δ] → Rn are continuous, and that x is
Lipschitz with respect to its second variable can be obtained as a corollary of the general theo-
rem on the dependence of the solutions of an ordinary differential equation on the parameters (see
[2, Lemma 8.2]).

It remains to prove that y : [0, T ]× K ×[0, δ] → Rn is uniformly Lipschitz with respect to its second
variable.

There exist compact subsets K1 and K2 of Rn such that x(t, z, ε) ∈ K1 and y(t, z, ε) ∈ K2 for all
(t, z, ε) ∈ [0, T ] × K × [0, δ].

Moreover the representation x(s, z, ε) = x(s, z,0)+ εy(s, z, ε) allows to use Lemma 4, relation (23)
with x0

1 = x(s, z1,0), x0
2 = x(s, z2,0), y1 = y(s, z1, ε), y2 = y(s, z2, ε) in order to obtain∥∥ f

(
t, x(t, z1, ε)

) − f
(
t, x(t, z1,0)

) − f
(
t, x(t, z2, ε)

) + f
(
t, x(t, z2,0)

)∥∥
� O (ε)

∥∥x(t, z1,0) − x(t, z2,0)
∥∥ + O (ε)

∥∥y(t, z1, ε) − y(t, z2, ε)
∥∥,

for all t ∈ [0, T ], z ∈ K and ε ∈ [0, δ]. This last inequality and the fact that g is locally uniformly
Lipschitz, used together with the representation

y(t, z, ε) = 1

ε

t∫
0

[
f
(
s, x(s, z, ε)

) − f
(
s, x(s, z,0)

)]
ds +

t∫
0

g
(
s, x(s, z, ε), ε

)
ds,

imply that

∥∥y(t, z1, ε) − y(t, z2, ε)
∥∥ � õ(δ)

t∫
0

∥∥y(s, z1, ε) − y(s, z2, ε)
∥∥ds

+ õ(δ)

t∫
0

∥∥x(s, z1, ε) − x(s, z2, ε)
∥∥ds,

for all t ∈ [0, T ], z1, z2 ∈ K and ε ∈ [0, δ].
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We use now the fact that the function x(t, z, ε) is Lipschitz with respect to z and we deduce

∥∥y(t, z1, ε) − y(t, z2, ε)
∥∥ � õ(δ)‖z1 − z2‖ + õ(δ)

t∫
0

∥∥y(s, z1, ε) − y(s, z2, ε)
∥∥ds.

Applying Grönwall lemma (see [11, Lemma 6.2] or [8, Ch. 2, Lemma § 11]) we finally have for all
t ∈ [0, T ], z1, z2 ∈ K , ε ∈ [0, δ], ‖y(t, z1, ε) − y(t, z2, ε)‖ � õ(δ)‖z1 − z2‖.

(C12) First we note that assumption (A9) of Theorem 3 and the fact that g is locally uniformly
Lipschitz with respect to the second variable assure that the following relation holds

∥∥g(t, z1 + ζ1, ε) − g(t, z1,0) − g(t, z2 + ζ2, ε) + g(t, z2,0)
∥∥

� õ(δ)‖z1 − z2‖ + õ(δ)‖ζ1 − ζ2‖, (26)

for all t ∈ [0, T ] \ Mδ , z1, z2 ∈ Bδ(z0), ε ∈ [0, δ] and ζ1, ζ2 ∈ Bδ(0). We introduce the notations
v(t, z, ζ ) = x(t, z + ζ,0) − x(t, z,0), ζ̃ (s, z, ζ, ε) = v(s, z, ζ ) + εy(s, z + ζ, ε) and u(t, z, ζ, ε) = y(t, z +
ζ, ε)− y(t, z,0). Since the function x(·,·,0) is C1, v is Lipschitz with respect to z on [0, T ]× K × Bδ(0)

with some constant õ(δ), we have

u(t, z, ζ, ε) = y(t, z + ζ, ε) − y(t, z,0)

= 1

ε

t∫
0

[
f
(
s, x(s, z + ζ, ε)

) − f
(
s, x(s, z + ζ,0)

) − εDx f
(
s, x(s, z,0)

)
y(s, z,0)

]
ds

+
t∫

0

[
g
(
s, x(s, z + ζ, ε), ε

) − g
(
s, x(s, z,0),0

)]
ds.

Our aim is to estimate a Lipschitz constant with respect to z of the function u on [0, T ] × Bδ(z0) ×
Bδ(0) × [0, δ]. We will apply Lemma 4, relation (26), the fact that g is locally uniformly Lipschitz,
and using the following decompositions and estimations that hold for (s, z, ζ, ε) ∈ [0, T ] × Bδ(z0) ×
Bδ(0) × [0, δ],

x(s, z + ζ, ε) = x(s, z,0) + v(s, z, ζ ) + εy(s, z,0) + εu(s, z, ζ, ε),

x(s, z + ζ,0) = x(s, z,0) + v(s, z, ζ ),

x(s, z + ζ, ε) = x(s, z,0) + ζ̃ (s, z, ζ, ε),∥∥v(t, z, ζ )
∥∥ � õ(δ),

∥∥u(t, z, ζ, ε)
∥∥ � õ(δ),

∥∥ζ̃ (s, z, ζ, ε)
∥∥ � δõ(δ),

we obtain

∥∥u(t, z1, ζ, ε) − u(t, z2, ζ, ε)
∥∥

� 1

ε

t∫
0

[
o(ε) + εõ(δ)

]∥∥x(s, z1,0) − x(s, z2,0)
∥∥ + O (ε)

∥∥v(s, z1, ζ ) − v(s, z2, ζ )
∥∥

+ [
o(ε) + εõ(δ)

]∥∥y(s, z1,0) − y(s, z2,0)
∥∥ + O (ε)

∥∥u(s, z1, ζ, ε) − u(s, z2, ζ, ε)
∥∥ds
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+
∫

(0,t)\Mδ

õ(δ)
∥∥x(s, z1,0) − x(s, z2,0)

∥∥
+ õ(δ)

∥∥ζ̃ (s, z1, ζ, ε) − ζ̃ (s, z2, ζ, ε)
∥∥ds + õ(δ)‖z1 − z2‖.

Now we use that some Lipschitz constants with respect to z for the functions x and y on [0, T ] ×
Bδ(z0)×[0, δ] are õ(δ), while for the functions v on [0, T ]× Bδ(z0)×[0, δ] and ζ̃ on [0, T ]× Bδ(z0)×
Bδ(0) × [0, δ] are õ(δ), and finally we obtain that

∥∥u(t, z1, ζ, ε) − u(t, z2, ζ, ε)
∥∥ � õ(δ)‖z1 − z2‖ + õ(δ)

t∫
0

∥∥u(t, z1, ζ, ε) − u(t, z2, ζ, ε)
∥∥ds.

The conclusion follows after applying the Grönwall inequality. �
Lemma 6. We consider the C1 function Y acting from Rn into the space of n × n matrices, the C2 function
P̃ : Rn → Rn and z∗ ∈ Rn such that P̃ (z∗) = 0. We denote P : Rn → Rn the C1 function given by P (z) =
Y (z) P̃ (z) for all z ∈ Rn. Then D P (z∗) = Y (z∗)D P̃ (z∗), P is twice differentiable in z∗ and, for each i ∈ 1,n, the
Hessian matrix H Pi(z∗) is symmetric.

Proof. We have D P (z) = ( ∂Y
∂z1

(z) P̃ (z), . . . , ∂Y
∂zn

(z) P̃ (z)) + Y (z)D P̃ (z) for all z ∈ Rn . From this it follows

the formula for D P (z∗) since P̃ (z∗) = 0.
In order to prove that P is twice differentiable in z∗ , taking into account the above expression

of D P , it is enough to prove that for each i ∈ 1,n, z �→ ∂Y
∂zi

(z) P̃ (z) and z �→ Y (z)D P̃ (z) are differen-

tiable in z∗ . The last map is C1, hence it remains to prove the differentiability only for the first one.
We fix i ∈ 1,n. From the relation

∂Y

∂zi
(z∗ + h) P̃ (z∗ + h) − ∂Y

∂zi
(z∗) P̃ (z∗)

= ∂Y

∂zi
(z∗ + h)

(
P̃ (z∗ + h) − P̃ (z∗)

) = ∂Y

∂zi
(z∗ + h)D P̃ (z∗) + o(h),

we deduce that z �→ ∂Y
∂zi

(z) P̃ (z) is differentiable in z∗ and that

D

(
∂Y

∂zi
· P̃

)
(z∗) = ∂Y

∂zi
(z∗)D P̃ (z∗).

In order to prove that the Hessian matrix H Pi(z∗) is symmetric, for every j,k ∈ {1, . . . ,n} we must
prove that

∂2 Pi

∂z j∂zk
(z∗) = ∂2 Pi

∂zk∂z j
(z∗).

We denote by Yi(z) the i-th row of the n × n matrix Y (z). For all z ∈ Rn we have

∂ Pi

∂z j
(z) = Yi(z)

∂ P̃

∂z j
(z) + ∂Yi

∂z j
(z) P̃ (z).
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Then

∂2 Pi

∂z j∂zk
(z∗) = ∂Yi

∂zk
(z∗)

∂ P̃

∂z j
(z∗) + Yi(z∗)

∂2 P̃

∂z j∂zk
(z∗) + ∂Yi

∂z j
(z∗)

∂ P̃

∂zk
(z∗).

Since P̃ is C2 it is easy to check the symmetry of this last relation with respect to ( j,k). �
Proof of Theorem 3. We need to study the zeros of the function z �→ x(T , z, ε) − z, or equivalently of

F (z, ε) = Y −1(T , z)
(
x(T , z, ε) − z

)
.

The function F is well defined at least for any z in some small neighborhood of Z and any ε � 0
sufficiently small. We will apply Theorem 1. We denote

P (z) = Y −1(T , z)
(
x(T , z,0) − z

)
, Q (z, ε) = Y −1(T , z)y(T , z, ε),

where y(t, z, ε) = [x(t, z, ε) − x(t, z,0)]/ε, like in Lemma 5. Hence F (z, ε) = P (z) + εQ (z, ε).
The fact that f is C2 assures that the function z �→ x(T , z,0) is also C2 (see [24, Ch. 4, § 24]).

Since (see [8, Ch. III, Lemma § 12]) (Y −1(·, z))∗ is a fundamental matrix solution of the system

u̇ = −(
Dx f

(
t, x(t, z,0),0

))∗
u,

and f is C2, we have that the matrix function (t, z) �→ (Y −1(t, z))∗ is C1. Therefore the matrix func-
tion (t, z) �→ Y −1(t, z), and consequently also the function P are C1.

By Lemma 5 we now conclude that Q is continuous, locally uniformly Lipschitz with respect to z,
and

Q (z,0) =
T∫

0

Y −1(s, z)g
(
s, x(s, z,0),0

)
ds. (27)

Since, by our hypothesis (A6), x(·, z,0) is T -periodic for all z ∈ Z we have that x(T , z,0) − z = 0 for
all z ∈ Z , and consequently P (z) = 0 for all z ∈ Z . This means that hypothesis (A1) of Theorem 1
holds. Moreover applying Lemma 6 we have that

D P (z) = Y −1(T , z)

(
∂x

∂z
(T , z,0) − In×n

)
for any z ∈ Z,

and P satisfies hypothesis (A3) of Theorem 1. But (∂x/∂z)(·, z,0) is the normalized fundamental ma-
trix of the linearized system (21) (see [17, Theorem 2.1]). Therefore (∂x/∂z)(t, z,0) = Y (t, z)Y −1(0, z),
and we can write

D P (z) = Y −1(0, z) − Y −1(T , z) for any z ∈ Z. (28)

Using our hypothesis (A7) we see that also assumption (A2) of Theorem 1 is satisfied. From the
definition of G and relation (27) we have that

G(α) = π Q

(
S

(
α

β0(α)

)
,0

)
.

That is, the function denoted in Theorem 1 by Q̂ is here G , and it satisfies the hypotheses of Theo-
rem 1. Moreover, note that when G satisfies (A8) then assumption (A4) of Theorem 1 is fulfilled.
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(C7) follows from (C1) of Theorem 1.
(C8) follows from (C2) of Theorem 1.
(C9) In order to prove the uniqueness of the T -periodic solution, it remains only to check (A5) of

Theorem 1. For doing this we show that the function (z, ζ, ε) ∈ Bδ(z0)× Bδ(0)×[0, δ] �→ Q (z +ζ, ε)−
Q (z,0) is Lipschitz with respect to z with some constant õ(δ). We write

Q (z + ζ, ε) − Q (z,0) = Y −1(T , z + ζ )
[

y(T , z + ζ, ε) − y(T , z,0)
]

+ [
Y −1(T , z + ζ ) − Y −1(T , z)

]
y(T , z,0).

It is known that for proving that a sum of two functions is Lipschitz with some constant of order õ(δ),
it is enough to prove that each function is Lipschitz with such constant; while in order to prove that
a product of two functions is Lipschitz with some constant õ(δ), it is sufficient to prove that both
functions are Lipschitz and only one of them is bounded by some constant õ(δ) and Lipschitz with
respect to z with some constant õ(δ).

By Lemma 5 we know that the function z ∈ Bδ(z0) �→ y(T , z,0) is Lipschitz. The fact that z �→
Y −1(T , z) is C1 assures that (z, ζ ) ∈ Bδ(z0) × Bδ(0) �→ Y −1(T , z + ζ ) is Lipschitz with respect to z.

From Lemma 5 we have that the function

(z, ζ, ε) ∈ Bδ(z0) × Bδ(0) × [0, δ] �→ y(T , z + ζ, ε) − y(T , z,0)

is bounded by some constant õ(δ) and Lipschitz with some constant õ(δ). Since z �→ Y −1(T , z) is C1,
the same is true for the function

(z, ζ ) ∈ Bδ(z0) × Bδ(0) �→ [
Y −1(T , z + ζ ) − Y −1(T , z)

]
.

Hence Q satisfies (A5) of Theorem 1 and the conclusion holds. �
By using Theorem 3 we can finally prove the following Lipschitz analogue of the results by

Malkin [21], Loud [19] and Rhouma and Chicone [25].

Theorem 7. Assume that f ∈ C2(R×Rn,Rn) and g ∈ C0(R×Rn ×[0,1],Rn) are T -periodic in the first vari-
able, and that g is locally uniformly Lipschitz with respect to the second variable. Assume that the unperturbed
system (20) satisfies the following conditions.

(A10) There exist an open ball U ⊂ Rk with k � n and a function ξ ∈ C1(U ,Rn) such that for any h ∈ U the
n × k matrix Dξ(h) has rank k and ξ(h) is the initial condition of a T -periodic solution of (20).

(A11) For each h ∈ U the linear system (21) with z = ξ(h) has the Floquet multiplier +1 with the geometric
multiplicity equal to k.

Let u1(·,h), . . . , uk(·,h) be linearly independent T -periodic solutions of the adjoint linear system

u̇ = −(
Dx f

(
t, x

(
t, ξ(h),0

)))∗
u, (29)

such that u1(0,h), . . . , uk(0,h) are C1 with respect to h and define the function M : U → Rk (called the
Malkin’s bifurcation function) by

M(h) =
T∫

0

( 〈u1(s,h), g(s, x(s, ξ(h),0),0)〉
· · ·

〈uk(s,h), g(s, x(s, ξ(h),0),0)〉

)
ds.

Then the following statements hold.
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(C13) For any sequences (ϕm)m�1 from C0(R,Rn) and (εm)m�1 from [0,1] such that ϕm(0) → ξ(h0) ∈
ξ(U ), εm → 0 as m → ∞ and ϕm is a T -periodic solution of (19) with ε = εm, we have that M(h0) = 0.

(C14) If M(h) �= 0 for any h ∈ ∂U and d(M, U ) �= 0, then there exists ε1 > 0 sufficiently small such
that for each ε ∈ (0, ε1] there is at least one T -periodic solution ϕε of system (19) such that
ρ(ϕε(0), ξ(U )) → 0 as ε → 0.

In addition we assume that there exists h0 ∈ U such that M(h0) = 0, M(h) �= 0 for all h ∈ U \ {h0} and
d(M, U ) �= 0. Moreover we assume that hypothesis (A9) of Theorem 3 holds with z0 = ξ(h0) and that:

(A12) There exist δ1 > 0 and LM > 0 such that∥∥M(h1) − M(h2)
∥∥ � LM‖h1 − h2‖, for all h1,h2 ∈ Bδ1(h0).

Then the following conclusion holds.

(C15) There exists δ2 > 0 such that for any ε ∈ (0, ε1], ϕε is the only T -periodic solution of (19) with initial
condition in Bδ2 (z0). Moreover ϕε(0) → ξ(h0) as ε → 0.

Remark 1. The existence of k linearly independent T -periodic solutions of the adjoint linear sys-
tem (29) follows by hypothesis (A10) (see e.g. [8, Ch. III, § 23, Theorem 2]). Indeed, we have that
yi(t,h) = Dzx(t, ξ(h),0)Dhi ξ(h) for i ∈ 1,k are solutions of (21) and they are linearly independent on
the base of (A10). The assertion follows by the fact that a linear system and its adjoint have the same
number of linearly independent solutions. Moreover, hypothesis (A11) assures that there is no other
T -periodic solution to (21) linearly independent of these.

Remark 2. When the function g is of class C1 and the zero h0 of M is simple, all the hypotheses on g
of the above theorem and the hypothesis (A12) on M are automatically satisfied.

Proof of Theorem 7. We apply Theorem 3. For the moment we describe the set Z that appear in
hypothesis (A6) as Z = ⋃

h∈U {ξ(h)}. First we find the matrix S such that hypothesis (A7) holds. In
order to achieve this, for each z ∈ Z we denote by U (t, z) some fundamental matrix solution of (29)
that has in its first k columns the T -periodic solutions u1, . . . , uk and such that z �→ U (0, z) is C1.
Then the first k columns of the matrix U (0, z) − U (T , z) are null vectors. The matrix Y (t, z) such that
Y −1(t, z) = [U (t, z)]∗ is a fundamental matrix solution of (21), i.e. of the system (z = ξ(h) ∈ Z )

ẏ = Dx f
(
t, x

(
t, ξ(h),0

))
y. (30)

Then the first k lines of the matrix Y −1(0, z) − Y −1(T , z) are null vectors. Since the Floquet multi-
plier 1 of (21) has geometric multiplicity k we have that the matrix Y −1(0, z) − Y −1(T , z) has range
n − k. Hence this matrix has n − k linearly independent columns. We claim that there exists an in-
vertible matrix S such that the matrix (Y −1(0, z) − Y −1(T , z))S has in the first k lines null vectors
and in the lower right corner some (n − k) × (n − k) invertible matrix (z). With this we prove that
(A7) holds. In order to justify the claim we note first that whatever the matrix S would be, the first
k lines of (Y −1(0, z) − Y −1(T , z))S are null vectors. Now we choose an invertible matrix S such that
its last (n − k) columns are vectors of the form

ei =
(0(i−1)×1

1
0(n−i)×1

)
, i ∈ 1,n,

distributed in such a way that the n−k linearly independent columns of Y −1(0, z)−Y −1(T , z) become
the last n − k columns of (Y −1(0, z) − Y −1(T , z))S . Now it is easy to see that the (n − k) × (n − k)

matrix from the lower right corner of (Y −1(0, z) − Y −1(T , z))S is invertible.
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Now we come back to prove (A6). By taking the derivative with respect to h ∈ U of ẋ(t, ξ(h)) =
f (t, x(t, ξ(h))) we obtain that Dξ x(·, ξ(h)) · Dξ(h) is a matrix solution for (30). But x(·, ξ(h)) is
T -periodic for any h ∈ U , therefore Dξ x(·, ξ(h)) · Dξ(h) is T -periodic. This fact assures that each
column of Dξ(h) is the initial condition of some T -periodic solution of (30) and these T -periodic
solutions are the columns of Y (t, ξ(h))Y −1(0, ξ(h))Dξ(h). Then Y (T , ξ(h))Y −1(0, ξ(h))Dξ(h) = Dξ(h),
that further gives [

Y −1(0, ξ(h)
) − Y −1(T , ξ(h)

)]
S S−1 Dξ(h) = 0.

Hence the columns of S−1 Dξ(h) belong to the kernel of[
Y −1(0, ξ(h)

) − Y −1(T , ξ(h)
)]

S.

Since (A7) holds we have that the kernel of [Y −1(0, ξ(h)) − Y −1(T , ξ(h))]S contains vectors whose
last n − k components are null. We deduce that there exists some k × k matrix, denoted by Ψ , such
that

S−1 Dξ(h) =
(

Ψ

0(n−k)×k

)
. (31)

Since by the assumption (A10) the matrix Dξ(h) has rank k and S−1 is invertible, we have that the
matrix S−1 Dξ(h) should also have rank k, that is only possible if

detΨ �= 0. (32)

We fix some h∗ ∈ U and we denote α∗ = π S−1ξ(h∗). Using (31) and (32), and applying the Implicit
Function Theorem we have that there exist an open ball, neighborhood of α∗ , denoted V ⊂ Rk , and a
C1 function h̃ : V → U such that

π S−1ξ
(
h̃(α)

) = α for any α ∈ V . (33)

Now we define the C1 function β0 : V → Rn−k as β0(α) = π⊥ S−1ξ(h̃(α)). Note that S
( α

β0(α)

) =
ξ(h̃(α)). Hence the assumption (A6) of Theorem 3 is satisfied with S , V and β0 defined as above.

The bifurcation function G defined in Theorem 3 can be written using our notations as

G(α) = π

T∫
0

Y −1(s, ξ
(
h̃(α)

))
g
(
s, x

(
s, ξ

(
h̃(α)

)
,0

))
ds. (34)

Since Y −1(s, ξ(h)) = [U (t,h)]∗ (see the beginning of the proof) we have that in the first k lines of
Y −1(s, ξ(h)) there are the vectors (u1(s,h))∗ , . . . , (un(s,h))∗ and so

G(α) =
T∫

0

( 〈u1(s, h̃(α)), g(s, x(s, ξ(h̃(α)),0),0)〉
· · ·

〈uk(s, h̃(α)), g(s, x(s, ξ(h̃(α)),0),0)〉

)
ds.

From here one can see that there is the following relation between G and the Malkin bifurcation
function M ,

G(α) = M
(
h̃(α)

)
for any α ∈ V . (35)
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(C13) follows from (C7) of Theorem 3.
(C14) Without loss of generality (we can diminish U , if necessary) we can consider that h̃

is a homeomorphism from V onto U and taking into account that C is an invertible matrix by
[18, Theorem 26.4] we have

deg(G, V ) = deg(M, U ).

Thus (C14) follows applying conclusion (C8) of Theorem 3.
(C15) We need only to prove assumption (A8) of Theorem 3 provided that our hypothesis (A12)

holds. First, taking the derivative of (33) with respect to α and using (31), we obtain that Dh̃(α∗) =
Ψ −1, hence it is invertible and, moreover, Lh = ‖Dh̃(α∗)‖/2 �= 0. We have that there exists δ > 0
sufficiently small such that ‖Dh̃(α) − Dh̃(α∗)‖ � Lh for all α ∈ Bδ(α∗). Using the generalized Mean
Value Theorem (see [7, Proposition 2.6.5]), we have that∥∥h̃(α1) − h̃(α2)

∥∥ � Lh‖α1 − α2‖ for all α1,α2 ∈ Bδ(α0).

Since C is invertible, M satisfies (A10) and (35), we deduce that G satisfies hypothesis (A8) of Theo-
rem 3. �
5. Conclusions

In this paper we provide a perturbation result about the unique response of a normally nondegenerate
family of periodic solutions to a Lipschitz perturbation g . Despite possible nondifferentiability of g we
succeeded to construct suitable projectors that reduced the dimension of the analysis to the dimen-
sion of this family. This result suggests that, under the conditions of Theorem 7, the manifold of the
fixed points of the Poincaré map of the unperturbed system transforms into an invariant manifold of
the Poincaré map of the perturbed system. This fact is well known for smooth differential equations
(see e.g. Wiggins [28]), but we do not know whether or not the latter is completely correct in the
case where g is only Lipschitz. Understanding the stability of the aforementioned invariant manifold
could allow to access asymptotic stability of periodic solutions given by Theorem 7.

Another question that this paper raises is whether assumption (A9) implies continuous differen-
tiability of the bifurcation function Q̂ , so that (A12) is just the requirement for the derivative of the
bifurcation function M to have all its eigenvalues in the left half-plane. This is the case in particular
examples, but in general the answer is unknown to us.
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