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Abstract The goal of this paper is to study bifurcations of asymptotically stable 2π-periodic
solutions in the forced asymmetric oscillator ü +εcu̇ +u +εau+ = 1+ελ cos t by means of
a Lipschitz generalization of the second Bogolubov’s theorem due to the authors. The small
parameter ε > 0 is introduced in such a way that any solution of the system corresponding
to ε = 0 is 2π-periodic. We show that exactly one of these solutions whose amplitude is

λ√
a2+c2 generates a branch of 2π -periodic solutions when ε > 0 increases. The solutions of

this branch are asymptotically stable provided that c > 0.

Keywords Asymptotic stability · Periodic solutions · Jumping nonlinearity ·
Method of averaging

Introduction

The differential equation for the coordinate u of the mass attached via nonlinear spring to an
immovable beam drawn at Fig. 1 reads as

mü + cu̇ + k1u + k2u+ = f (t), (1)

where f is a force applied to the mass in the vertical direction, see [1,15,11].
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Fig. 1 a A driven mass attached to an immovable beam via a spring with piecewise linear stiffness, b the
jumping nonlinearity u �→ u+

The case where Eq. (1) takes the form

mü + εcεu̇ + k1u + k2u+ = ε f (t), (2)

where cε → 0 as ε → 0, the bifurcation of asymptotically stable periodic solutions
is studied in Glover–Lazer–McKenna [8]. In the setting where the unperturbed system
mü + k1u + k2u+ = 0 has a T -periodic orbit u0, these authors related the existence of
asymptotically stable T -periodic solutions near u0([0, T ]) to the existence of α ∈ [0, T ]
such that

∫ T
0 u̇0(τ ) f (τ −α)dτ = 0 and d = ∫ T

0 ü0(τ ) f (τ −α)dτ > 0. By the other words,
the authors of [8] showed that the conclusion of the second Bogolubov’s theorem holds for
Eq. (2), even though it is not C1. We quote this theorem for completeness, see [4].

Second Bogolubov’s theorem Consider the perturbed system

ẋ = εg(t, x, ε), (3)

where g ∈ C1(R × R
n × [0, 1], R

n) is T -periodic in the first variable. If v0 ∈ R
n is a zero

of the bifurcation function

g0(v) =
T∫

0

g (τ, v, 0) dτ (4)

and det (g0)
′(v0) �= 0, then for any ε > 0 sufficiently small system (3) has a unique

T -periodic solution xε such that xε(0) → v0 as ε → 0. If, in addition, all the eigenval-
ues of the matrix (g0)

′(v0) have negative real part, then xε is asymptotically stable.
Note, the change of variables

(
u(t)
u̇(t)

)

=
(

cos t sin t
− sin t cos t

) (
x1(t)
x2(t)

)

transforms Eq. (2) to the standard form (3) of averaging theory (see a similar example in
“Bifurcations of Asymptotically Stable Periodic Solutions in Differential Equations with
Jumping Nonlinearities” section).

In the next section of the paper we discuss a general class of Lipschitz systems [which
includes, in particular, Eq. (2)] for which the conclusion of the second Bogolubov’s theorem
holds. The Lipschitz analogue of the second Bogolyubov’s theorem (Theorem 1) is then
applied to the asymmetric oscillator

ü + εcu̇ + u + εau+ = ελ cos t (5)
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in “Bifurcations of Asymptotically Stable Periodic Solutions in Differential Equations with
Jumping Nonlinearities” section, where we obtain (Theorem 2) explicit conditions for the
coefficients c, a and λ that guarantee the bifurcation of a branch of asymptotically stable
2π-periodic solutions.

Our Theorem 2 complements the previous studies. Indeed, Eq. (5) is formally different
from (2), so the result from [8] cannot be readily applied. The existence and stability of
2π-periodic solutions of (1) are also discussed in Lazer–McKenna [10] and Fabry [7]. How-
ever, it is assumed in [10] that the amplitude of the forcing term f is sufficiently large, while
the authors of [7] address those periodic solutions whose amplitude tends to +∞ as a suitable
small parameter ε > 0 approaches 0. A degree theoretic approach is developed in [12]. See
our survey [11] for a broad analysis of the research around equations of type (5). Extending
the range of conclusions about the dynamics of (5) is important as this equation occurs in a
variety of applications, e.g. offshore structures [15], resonant screening [16], drilling [6] and
others (see [5]).

Lipschitz Generalization of the Second Bogolubov’s Theorem

Throughout the paper � ⊂ R
k is some open set. For any δ > 0 we denote Bδ(v0) ={

v ∈ R
k : ‖v − v0‖ ≤ δ

}
. For any set M ⊂ [0, T ] measurable in the sense of Lebesgue we

denote by mes(M) the Lebesgue measure of M . We proved the following result in [5].

Theorem 1 Let g ∈ C0(R × � × [0, 1], R
k). Let g0 be the averaging function given by (4)

and consider v0 ∈ � such that g0(v0) = 0. Assume that:

(i) For some L > 0 we have that ‖g(t, v1, ε) − g(t, v2, ε)‖ ≤ L ‖v1 − v2‖ for any t ∈
[0, T ], v1, v2 ∈ �, ε ∈ [0, 1] ;

(ii) given any γ > 0 there exist δ > 0 and M ⊂ [0, T ] measurable in the sense of Lebesgue
with mes(M) < γ such that for every v ∈ Bδ(v0), t ∈ [0, T ] \ M and ε ∈ [0, δ] we
have that g(t, ·, ε) is differentiable at v and ‖g′

v(t, v, ε) − g′
v(t, v0, 0)‖ ≤ γ ;

(iii) g0 is continuously differentiable in a neighborhood of v0 and the real parts of all the
eigenvalues of (g0)

′(v0) are negative.

Then there exists δ1 > 0 such that for every ε ∈ (0, δ1], system (3) has exactly one
T -periodic solution xε with xε(0) ∈ Bδ1(v0). Moreover the solution xε is asymptotically
stable and xε(0) → v0 as ε → 0.

We briefly outline the proof of this theorem (see [5, Theorem 2.5] for details). To prove
Theorem 1 we represent the Poincaré map Pε of (3) as

Pε(v) = v + ε

T∫

0

g(τ, x(τ, v, ε), ε)dτ,

where x(·, v, ε) is the solution x of (3) with the initial condition x(0) = v. We then show
that condition (iii) ensures that the map

Pε(v) = v + ε

T∫

0

g(τ, v, 0)dτ

contracts in a neighborhood of v0, which, in combination with (i) and (ii), allows to con-
clude that Pε contracts in a neighborhood of v0 too. The later is known to be equivalent to the
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existence of such a T -periodic solution to (3) which originates in the above-mentioned neigh-
borhood of v0 and which attracts all other solutions of (3) that originate in this neighborhood.
Thus the statement of Theorem 1.

Bifurcations of Asymptotically Stable Periodic Solutions in Differential Equations
with Jumping Nonlinearities

In this section we apply Theorem 1 to studying the bifurcation of asymptotically stable
2π-periodic solutions in Eq. (5). A function u is a solution of (5) if and only if (z1, z2) = (u, u̇)

is a solution of the system

ż1 = z2 ,

ż2 = −z1 + ε[−az+
1 − cz2 + λ cos t] . (6)

After the change of variables
(

z1(t)
z2(t)

)

=
(

cos t sin t
− sin t cos t

)(
x1(t)
x2(t)

)

,

system (6) takes the form

ẋ1 = ε sin t
[
a(x1 cos t + x2 sin t)+ + c(−x1 sin t + x2 cos t) − λ cos t

]
,

ẋ2 = ε cos t
[−a(x1 cos t + x2 sin t)+ + c(x1 sin t − x2 cos t) + λ cos t

]
.

(7)

The corresponding averaging function g0, calculated according to the formula (4), is

g0(x1, x2) =
( −πc πa/2

−πa/2 −πc

) (
x1

x2

)

+
(

0
πλ

)

.

It can be easily checked that the unique zero of g0 is
(

2aλ

a2 + 4c2 ,
4cλ

a2 + 4c2

)

and

the eigenvalues of (g0)
′ are − πc ± iπa . (8)

The amplitude of this zero is

A = 2|λ|√
a2 + 4c2

. (9)

To apply Theorem 1 it remains to prove the following proposition.

Proposition 1 Let v0 ∈ R
2 \ {0}. Then the right hand side of (7) satisfies (ii) for any

c, a, λ ∈ R.

Proof Let [v]i be the i-th component of the vector v ∈ R
2. Let g(t, v) = ([v]1 cos t +

[v]2 sin t)+ and notice that it is enough to prove that g : [0, 2π] × R
2 → R satisfies (ii).

Define θ(v) = arctan(−[v]1/[v]2), if [v0]2 �= 0, and put

θ(v) =
⎧
⎨

⎩

arctan(−[v]1/[v]2) if [v0]1[v]2 < 0,

π/2 if v = v0,

arctan(−[v]1/[v]2) + π if [v0]1[v]2 > 0,

123



Differ Equ Dyn Syst

if [v0]2 = 0. In any case notice that the function v �→ θ(v) is continuous in every sufficiently
small neighborhood of v0. Fix γ > 0. Let M be the union of the interval M1 centered in
θ(v0) (when θ(v0) < 0, take θ(v0) + 2π instead of θ(v0)) and of the interval M2 centered
in θ(v0) + π , each of length γ /2. Take δ > 0 such that θ(v) ∈ M1 for all v ∈ Bδ(v0). Of
course, also θ(v) + π ∈ M2 for all v ∈ Bδ(v0). This implies that for fixed t ∈ [0, 2π] \ M ,
[v]1 cos t + [v]2 sin t has constant sign for all v ∈ Bδ(v0). Therefore, g(t, ·) is differentiable
and g′

v(t, v) = g′
v(t, v0) for all v ∈ Bδ(v0). Hence (ii) is fulfilled. �


The result of this section can be now summarized as follows.

Theorem 2 Assume that c > 0 and A = 2|λ|/√a2 + 4c2 �= 0 and take arbitrary 0 < δ <

R. Then for each ε > 0 sufficiently small, Eq. (5) has an asymptotically stable 2π-periodic
solution whose amplitude goes to A as ε → 0. Moreover, (5) doesn’t have 2π-periodic
solutions with amplitudes in

(δ, R]\ (A − δ, A + δ) . (10)

Proof The hypotheses (i) of Theorem 1 is immediate to verify, (ii) is proved in Proposition 1
and (iii) follows from (8). Hence, the existence of a unique branch of asymptotically stable
2π-periodic solutions whose amplitudes approache A as ε → 0 follows from Theorem 1.

To prove that none of 2π -periodic solutions of (5) have amplitudes within (10), we recall
that the initial conditions of 2π -periodic solutions of (5) must converge to a zero of the averag-
ing function g0 as ε → 0, see Buică–Llibre–Makarenkov [2, Theorem 7 (C13)] (same result
under a formal assumption of analiticity was proved in Makarenkov–Ortega [14, Lemma 2]).
This completes the proof because we earlier noticed that the only zero of g0 is that of the
amplitute A. �


Theorem 2 allows deriving the curves of the dependence of the amplitudes of asymp-
totically stable 2π-periodic oscillations in (5) upon the parameters, that we have drawn in
Fig. 2. In particular, one can see that, for any fixed λ ∈ R \ {0}, the amplitude tends to +∞
as

√
a2 + 4c2 → 0.
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Fig. 2 The curves of dependence of the amplitude of asymptotically stable 2π -periodic oscillations in (5)
upon the parameter a ∈ R drawn for fixed λ = 1 and varying values of c
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Finally, we note that the case where the period of the perturbation in (5) deviates from
π slightly (i.e. when we have a detuning, as in the classical Van der Pol oscillator) can be
approached over Theorem 2 too. Indeed, the change of the variables

v(t) = u((1 + γ ε)t)

brings the equation with detuning in time

ü + εcu̇ + u + εau+ = ελ cos
t

1 + γ ε

to the equation with detuning in the rest of the coefficients

v̈ + εc(1 + εγ )v̇ + (1 + εγ )2v + εa(1 + εγ )2v+ = ελ(1 + εγ )2 cos t. (11)

Literally same arguments as in “Bifurcations of Asymptotically Stable Periodic Solutions in
Differential Equations with Jumping Nonlinearitiessection” apply to investigate asymptoti-
cally stable π-periodic oscillations of Eq. (11). The only difference is that (11) gives a simple
additional term −γ z1 in the square brackets of system (6), thus formula (9) will contain the
parameter γ now.

Theorem 1 can be also used for establishing stable resonance oscillations in the case where
the unperturbed oscillator is Hamiltonian, e.g. when (5) is of more generic form

ü + εcu̇ + sin u + εau+ = ελ cos t

or

ü + sin u = εF(t, u, u̇, ε), (12)

where F is continuous and piecewise smooth in a suitable sense (see Makarenkov [13]). This
can be done alone the same lines as the classical Second Bogolyubov’s theorem is used for
establishing stable resonance oscillations in mechanical oscillators (12) with smooth F , see
Greenspan–Holmes [9] or Burd [3].
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5. Buică, A., Llibre, J., Makarenkov, O.: Asymptotic stability of periodic solutions for nonsmooth differential
equations with application to the nonsmooth van der Pol oscillator. SIAM J. Math. Anal. 40(6), 2478–2495
(2009)

123



Differ Equ Dyn Syst

6. Cao, Q.-J., Wiercigroch, M., Pavlovskaia, E., Yang, S.-P.: Bifurcations and the penetrating rate analysis
of a model for percussive drilling. Acta Mech. Sinica 26, 467–475 (2010)

7. Fabry, C.: Large-amplitude oscillations of a nonlinear asymmetric oscillator with damping. Nonlinear
Anal. 44(5), 613–626 ((2001))

8. Glover, J., Lazer, A.C., McKenna, P.J.: Existence and stability of large scale nonlinear oscillations in
suspension bridges. Z. Angew. Math. Phys. 40(2), 172–200 (1989)

9. Greenspan, B.D., Holmes, P.J.: Homoclinic orbits, subharmonics and global bifurcations in forced oscilla-
tions. In: Barenblatt, G.I., Looss, G., Joseph, D.D. (eds.) Nonlinear dynamics and turbulence, pp. 172–214.
Pitman Advanced Publishing Program, New York (1983). Interaction Mech. Math. Ser., Pitman, Boston,
MA

10. Lazer, A.C., McKenna, P.J.: Existence, uniqueness, and stability of oscillations in differential equations
with asymmetric nonlinearities. Trans. Amer. Math. Soc. 315(2), 721–739 (1989)

11. Makarenkov, O., Lamb, J.S.W.: Dynamics and bifurcations of nonsmooth systems: a survey. Phys. D
241(22), 1826–1844 (2012)

12. Makarenkov, O., Nistri, P.: Periodic solutions for planar autonomous systems with nonsmooth periodic
perturbations. J. Math. Anal. Appl. 338(2), 1401–1417 (2008)

13. Makarenkov, O.: The asymptotic stability of the oscillations of a two-mass resonance sifter. J. Appl. Math.
Mech. 77(3), 287–295 (2013)

14. Makarenkov, O., Ortega, R.: Asymptotic stability of forced oscillations emanating from a limit cycle. J.
Differ. Eq. 250(1), 39–52 (2011)

15. Thompson, J.M.T., Stewart, H.B.: Nonlinear dynamics and chaos, 2nd edn, p. xxii+437. Wiley, Chichester
(2002)

16. Wen, B.: Recent development of vibration utilization engineering. Front. Mech. Eng. China 3(1), 1–9
(2008)

123


	A Note on Forced Oscillations in Differential Equations with Jumping Nonlinearities
	Abstract
	Introduction
	Lipschitz Generalization of the Second Bogolubov's Theorem
	Bifurcations of Asymptotically Stable Periodic Solutions in Differential Equations with Jumping Nonlinearities
	Acknowledgments
	References


