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Abstract

In this paper we study the limit cycles of the system ẋ = −y(x+a)(y+b)+εP (x, y),
ẏ = x(x + a)(y + b) + εQ(x, y) for ε sufficiently small, where a, b ∈ R \ {0}, and P, Q

are polynomials of degree n. We obtain that 3[(n−1)/2]+4 if a 6= b and, respectively,
2[(n − 1)/2] + 2 if a = b, up to first order in ε, are upper bounds for the number of
the limit cycles that bifurcate from the period annulus of the cubic center given by
ε = 0. Moreover, there are systems with at least 3[(n− 1)/2] + 2 limit cycles if a 6= b

and, respectively, 2[(n− 1)/2] + 1 if a = b.
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1 Introduction and statement of the main results

One of the main problems in the qualitative theory of real planar differential systems is

the study of their limit cycles. Probably, the more classical way to produce limit cycles is

by perturbing a system which has a center, in such a way that limit cycles bifurcate in the

perturbed system from some of the periodic orbits of the period annulus of the unperturbed

system (see [1, 2, 10]).

Perturbing the linear center by arbitrary polynomials P and Q of degree n, i.e. consid-

ering ẋ = −y + ε p(x, y), ẏ = x + ε q(x, y), we can obtain at most [(n − 1)/2] bifurcated

limit cycles up to first order in ε, where [·] denotes the integer part function (see [5]). Also

it is known that perturbing the quadratic center ẋ = −y(1+x), ẏ = x(1+x) (note that es-

sentially it is the linear center with a straight line of singular points) inside the polynomial

differential systems of degree n we can obtain at most n limit cycles up to first order in ε
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(see [8]). The perturbation of the linear center with a conic of singular points inside the

class of all cubic polynomial differential systems has been studied in [6]. The authors of [12]

studied the perturbation of the cubic center ẋ = −y(1+x)(2+x), ẏ = x(1+x)(2+x) inside

the polynomial differential systems of degree n and they obtained that 2n+2− (−1)n is an

upper bound for the number of limit cycles that bifurcate, up to first order in ε, from the

period annulus. We notice that, a lower upper bound can be obtained using the variation

of the argument principle, like we used here.

In this paper we are interested in the maximum number of limit cycles that can bifurcate

from the period annulus surrounding the origin of the cubic polynomial differential systems

of the form

ẋ = −y(x + a)(y + b), ẏ = x(x + a)(y + b), (1)

when we perturb them inside the class of all polynomial differential systems of degree n

having the origin as a singular point, that is, we want to study the maximum number of

limit cycles for the systems

ẋ = −y(x + a)(y + b) + εP (x, y) ,

ẏ = x(x + a)(y + b) + εQ (x, y) ,
(2)

which bifurcate from the period annulus of system (1) up to first order in ε. Here P, Q ∈
Pn(R2), where Pn(R2) denotes the set of all real polynomials in two variables of degree at

most n ≥ 3 such that P (0, 0) = Q(0, 0) = 0, a, b ∈ R \ {0} and |ε| a sufficiently small real

number.

Note that system (1) is mainly the linear center with two straight lines of singular points.

It has the first integral H(x, y) = x2+y2 and the integrating factor R(x, y) =
1

(x + a)(y + b)
.

We describe the period annulus of (1) as

Γh : x2 + y2 = h, 0 < h < a2.

The periodic orbit Γh of (1) is called a generating periodic orbit if the perturbed system (2)

has at least one limit cycle which depends continuously on ε for small |ε| and which tends

to Γh as ε → 0. This problem of bifurcation of limit cycles from the periodic annulus can

be reduced to the problem of bifurcation of zeros of a real function in the following way (for

more details see [1, 2, 10]). We consider the Poincaré return map r 7→ P(r, ε) for system

(2) defined on the transversal section given by the positive semiaxis. The corresponding

displacement map is defined by d(r, ε) = P(r, ε) − r, for r ∈ (0, a) and |ε| small. It is

known that some r(ε) is an isolated zero of d(·, ε) if and only if the trajectory of (2) passing

through the point r(ε) of the positive semiaxis is a limit cycle. Also, it is known that d is an

analytic function and, consequently, whenever d(·, ε) has a zero, it is isolated. In the case

that the function f 0 : (0, a) → R given by d(r, ε) = εf 0(r) + O(ε2) is not identically zero,
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by the Weierstrass Preparation Theorem, the function d(·, ε) has at most as many zeros as

the function f 0 (counting multiplicities). In our work, we will study only the case that the

coefficients of the polynomials P and Q are such that the corresponding function f 0 is not

the zero function. This is what is called in the literature, the study of bifurcation of limit

cycles up to first order in ε. The function f 0 is called a first–order Melnikov function and

it is given by the formula

f 0(
√

h) =

∮

Γh

P (x, y)dy −Q(x, y)dx

(x + a)(y + b)
, h ∈ (0, a2). (3)

The integral representation (3) is called Abelian integral (although the system (1) is not

Hamiltonian).

We present now the main result of our work.

Theorem 1 An upper bound for the number of zeros of the Abelian integral (3) and also

for the number of limit cycles of system (2) that bifurcate from the period annulus of system

(1) up to first order in ε is 3[(n − 1)/2] + 4 if a 6= b and, respectively, 2[(n − 1)/2] + 2 if

a = b. Moreover, there are systems (2) with at least 3[(n − 1)/2] + 2 limit cycles if a 6= b

and, respectively, 2[(n− 1)/2] + 1 if a = b.

The structure of the paper is the following. In Section 2 we give the main ideas for the proof

of Theorem 1, while Sections 3 and 4 contain the proof of two lemmas used in Section 2.

By direct but tedious calculations we will find the exact expression of the Abelian integral

(3). In order to give the upper bound for the number of its zeros we use the variation of

the argument principle (see [7, 11]) . As far as we know this method has been used very

few times for studying the zeros of Abelian integrals, see for instance [4, 9, 13].

2 Main ideas for the proof of Theorem 1

A direct calculation of the Abelian integral (3) gives the formula (h = r2)

f 0(r) =

∫ 2π

0

r cos θP (r cos θ, r sin θ) + r sin θQ(r cos θ, r sin θ)

(a + r cos θ)(b + r sin θ)
dθ, r ∈ (0, a). (4)

From now on we will denote

N = [(n− 1)/2].

We notice that, due to symmetry, it is sufficient if, with respect to the real parameters

a, b ∈ R \ {0}, we study only two cases: 0 < a < b and, respectively, 0 < a = b.

Case 0 < a < b. The exact expression of the function f 0 is given in the following lemma

that will be proved in Section 3.
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Lemma 2 The following system of 3N + 3 linearly independent functions

1− a√
a2 − r2

, 1− b√
b2 − r2

,
ab−√a2 − r2

√
b2 − r2

(b2 + a2 − r2)
√

a2 − r2
, r2, r4, ..., r2N ,

r2

√
a2 − r2

,
r4

√
a2 − r2

, ... ,
r2N

√
a2 − r2

,
r2

√
b2 − r2

,
r4

√
b2 − r2

, ... ,
r2N

√
b2 − r2

,

(5)

is a basis of the linear space

{
f 0 : f 0 given by (4) where P,Q ∈ Pn(R2)

}
. (6)

In order to give an upper bound for the number of zeros of f 0 in (0, a), we write f 0 as

a linear combination of the functions (5) and we obtain that, for each r ∈ (0, a),

(b2 + a2 − r2)f 0(r) =
1√

b2 − r2
R(r2) +

1√
a2 − r2

S(r2) + (b2 + a2 − r2)T (r2),

where R and S are polynomials of degree N +1 and T is a polynomial of degree N . Hence,

an upper bound for the number of zeros of f 0 is an upper bound for the number of solutions

of the equation obtained by putting h = r2,

R(h)
√

a2 − h + S(h)
√

b2 − h + (b2 + a2 − h)T (h)
√

a2 − h
√

b2 − h = 0, h ∈ (0, a2). (7)

In what follows we will obtain an upper bound for the number of complex roots of equation

(7). In order to do this, we need the complex extension of the function defined by the

left–hand side of (7). Throughout this paper we consider the following holomorphic branch

of the complex square root function

√
z =

{ √
(|z|+ Re z)/2 + i

√
(|z| − Re z)/2, if 0 ≤ arg z < π,√

(|z|+ Re z)/2− i
√

(|z| − Re z)/2, if − π < arg z < 0,

in the domain C\{z ∈ C : Im z = 0 and Re z ≤ 0}. Now it is easy to see that the complex

function

f(z) = R(z)
√

a2 − z + S(z)
√

b2 − z + (b2 + a2 − z)T (z)
√

a2 − z
√

b2 − z (8)

is holomorphic in the domain Ω = C \ {z ∈ C : Im z = 0 and Re z ≥ a2}. In Section 4 we

prove the following lemma.

Lemma 3 Let f : Ω → C be the complex function defined by (8) and N0(f) be the number

of zeros of f in Ω. Then N0(f) ≤ 3N + 5.

Since f 0(0) = 0, the following relation must hold
1

b
R(0) +

1

a
S(0) + (b2 + a2)T (0) = 0.

Hence, also f(0) = 0 and we deduce that an upper bound for the number of zeros of

f 0 = f 0(r) in (0, a) is 3N + 4.
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In order to prove the last part of Theorem 1, it is sufficient to prove that there is a

function f 0 in the linear space (6) having at least 3N + 2 simple zeros because, by using

the Implicit Function Theorem, one obtains that the displacement map d(·, ε) has at least

3N + 2 different zeros for |ε| small enough. We will use Lemma 4.5 from [3] that is stated

in the following.

Lemma 4 [3] Consider p + 1 linearly independent analytical functions fi : U → R, i =

0, 1, ..., p, where U ⊂ R is an interval. Suppose that there exists j ∈ {0, 1, ..., p} such

that fj has constant sign. Then there exist p + 1 constants Ci, i = 0, 1, ..., p such that

f(x) =

p∑
i=0

Cifi(x) has at least p simple zeros in U .

In order to apply this lemma, we use again that f 0 is an arbitrary linear combination of the

3N + 3 linearly independent functions (5). All these functions are analytic in U = (0, a)

and we can see that there are some of them which are strictly positive on U . Hence, the

hypotheses of the above lemma are fulfilled. It follows that there exist coefficients such

that f 0 has at least 3N + 2 simple zeros.

Case 0 < a = b. We will follow some of the ideas from the study of the previous case.

Now, a basis of the linear space (6) is formed by the following 2N + 2 linearly independent

functions

1− a√
a2 − r2

,
r2

(2a2 − r2)
√

a2 − r2
, r2, r4, ..., r2N ,

r2

√
a2 − r2

,
r4

√
a2 − r2

, ... ,
r2N

√
a2 − r2

,

(9)

In order to give an upper bound for the number of zeros of f 0 in (0, a), we write f 0 as

a linear combination of the functions (9) and we obtain that, for each r ∈ (0, a),

(2a2 − r2)f 0(r) =
1√

a2 − r2
S(r2) + (2a2 − r2)T (r2),

where S is a polynomial of degree N + 1 and T is a polynomial of degree N . Hence, an

upper bound for the number of zeros of f 0 is an upper bound for the number of solutions

of the equation obtained by putting h = r2,

S(h) + (2a2 − h)T (h)
√

a2 − h = 0, h ∈ (0, a2). (10)

Any solution of (10) is also a solution of

S2(h) = (2a2 − h)2T 2(h)(a2 − h), h ∈ (0, a2), (11)

which is a polynomial equation of degree at most 2N + 3. Since f 0(0) = 0, we obtain that

an upper bound for the number of zeros of f 0 = f 0(r) in (0, a) is 2N + 2. Using Lemma

4, like in the previous case, we also obtain that there exist some function f 0 with at least

2N + 1 simple zeros.
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3 Proof of Lemma 2

We write the polynomials P and Q as P (x, y) =
n∑

k=1

Pk(x, y) and Q(x, y) =
n∑

k=1

Qk(x, y),

with Pk(x, y) =
∑

i+j=k

pij xiyj and Qk(x, y) =
∑

i+j=k

qij xiyj. We define

fk(θ) = cos θPk(cos θ, sin θ) + sin θQk(cos θ, sin θ)

and we write

f 0 = f 0(r) =
n∑

k=1

rk+1

∫ 2π

0

fk(θ)

(a + r cos θ)(b + r sin θ)
dθ, for all r ∈ (0, a).

Moreover,

f 0(r) =
n∑

k=1

Ck(r)r
k+1, (12)

where

Ck = Ck(r) =
∑

i+j=k

(pij Ii+1,j (r) + qij Ii,j+1 (r)) (13)

and

Ip,q = Ip,q(r) =

∫ 2π

0

cosp θ sinq θ

(a + r cos θ)(b + r sin θ)
dθ . (14)

From (13), we write Ck = pk,0Ik+1,0 +
∑

i+j=k,j 6=0

(pi,j + qi+1,j−1) Ii+1,j + q0,kI0,k+1. Without

loss of generality, we rename the coefficients of Ck as

Ck(r) =
k+1∑
j=0

pk−j,jIk−j+1,j(r). (15)

Hence the set (6) is the space of all linear combinations of the functions

rk+1Ik−j+1,j(r), 1 ≤ k ≤ n, 0 ≤ j ≤ k + 1, (16)

or we also say that f 0 is a linear combination with arbitrary coefficients of these functions.

In order to prove that (5) is a basis in (6), since they are linearly independent, it is sufficient

to show that f 0 is also a linear combination with arbitrary coefficients of (5).

From now on we consider that n ≥ 3 is an odd number. The case when n is even can

be studied in a similar way. Since N = [(n − 1)/2] we have that n = 2N + 1 and N ≥ 1.

We also denote,

Yp,q = Yp,q(r) =

∫ 2π

0

cosp θ sinq θ

a + r cos θ
dθ, (17)
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Zp,q = Zp,q(r) =

∫ 2π

0

cosp θ sinq θ

b + r sin θ
dθ. (18)

The recurrence relation

Ip,q =
1

r
(Yp,q−1 − bIp,q−1) , (19)

will be used in the following to replace in (12) all the integrals of the form Ip,2t+1. Thus,

for N = 1 we have f 0(r) = r2C1(r) + r3C2(r) + r4C3(r) and, using (15) and (19) we write:

r2C1 = p0,1r (Y1,0 − bI1,0) + r2 (p1,0I2,0 + p−1,2I0,2) ,

r3C2 = r2 (p1,1Y2,0 + p−1,3Y0,2) + r2 (−bp1,1I2,0 − bp−1,3I0,2) + r3 (p2,0I3,0 + p0,2I1,2) ,

r4C3 = r3 (p2,1Y3,0 + p0,3Y1,2) + r3 (−bp2,1I3,0 − bp0,3I1,2) + r4 (p3,0I4,0 + p1,2I2,2 + p−1,4I0,4) .

Then

f 0 = p0,1r (Y1,0 − bI1,0) + r2 (p1,1Y2,0 + p−1,3Y0,2) + r3 (p2,1Y3,0 + p0,3Y1,2) +

r2 [(p1,0 − bp1,1)I2,0 + (p−1,2 − bp−1,3)I0,2] + r3 [(p2,0 − bp2,1)I3,0 + (p0,2 − bp0,3)I1,2] +

r4 (p3,0I4,0 + p1,2I2,2 + p−1,4I0,4) .

It is not difficult to notice that the coefficients of the functions of the form rkIi,j and rkYi,j

are independent. For example, since p1,0 does not appear anywhere else, we will write as

coefficient of r2I2,0 only p1,0 instead of p1,0 − bp1,1. Hence, for N = 1 we can write

f 0 = p0,1r (Y1,0 − bI1,0) + r2 (p1,1Y2,0 + p−1,3Y0,2) + r3 (p2,1Y3,0 + p0,3Y1,2) +

+r2 (p1,0I2,0 + p−1,2I0,2) + r4 (p3,0I4,0 + p1,2I2,2 + p−1,4I0,4) + r3 (p2,0I3,0 + p0,2I1,2) .

It can be proved inductively, in a similar way, that for all N ≥ 1,

f 0 = p0,1r (Y1,0 − bI1,0) +
N∑

s=1

s∑
i=0

p2s−2i−1,2i+1r
2sY2s−2i,2i +

N∑
s=1

s∑
i=0

p2s−2i,2i+1r
2s+1Y2s−2i+1,2i + (20)

N+1∑
s=1

s∑
i=0

p2s−2i−1,2ir
2sI2s−2i,2i +

N∑
s=1

s∑
i=0

p2s−2i,2ir
2s+1I2s−2i+1,2i,

and the coefficients are independent.

For each q ≥ 2 even, by replacing (sin2 θ)q/2 = (1 − cos2 θ)q/2 in the formula (17) one

obtains Yp,q =

q/2∑
s=0

(−1)s

(
q/2

s

)
Yp+2s,0. Using this, we replace Y2s−2i,2i in the first sum

appearing in f 0 and obtain:

N∑
s=1

r2s

s∑
i=0

p2s−2i−1,2i+1Y2s−2i,2i = Y0,0

(
N∑

s=1

cs,0r
2s

)
+

N∑
t=1

r2tY2t,0

(
N∑

s=t

cs,tr
2(s−t)

)
,
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where

cs,t =
s∑

j=s−t

(−1)j−s+tp2s−2j−1,2j+1

(
j

j − s + t

)
, 1 ≤ s ≤ N, 0 ≤ t ≤ s. (21)

It is possible to proceed in a similar way for the remaining sums appearing in f 0 and finally

we obtain

f 0 = p0,1r (Y1,0 − bI1,0) + I0,0Q0(r
2) + rI1,0Q1(r

2) + Y0,0P0(r
2) + rY1,0P1(r

2)+
N∑

t=1

[
r2tY2t,0P2t(r

2) + r2t+1Y2t+1,0P2t+1(r
2) + r2tI2t,0Q2t(r

2) + r2t+1I2t+1,0Q2t+1(r
2)

]
,

(22)

where P2t, P2t+1, Q2t+1 are real polynomials of degree N − t, Q2t is a real polynomial of

degree N +1−t for each t = 0, ..., N . Moreover, the polynomials P0, P1, Q0 and Q1 have no

free term. In order to see that the coefficients of the functions of the form rkIi,j and rkYi,j

in (22) are independent, we go back to (20) and first notice that each sum appearing there

has a different set of coefficients. Then it is sufficient if we study only the first sum, for

example, whose new coefficients are cs,t and they satisfy (21). We notice that p2t−1,2s−2t+1

appears in cs,t but not in cs∗,t∗ for s∗ ≤ s and t∗ < t. From this we deduce that the

coefficients cs,t can be taken as arbitrary real numbers.

In the next step we use the recurrences

Ip,0 =
1

r
(Zp−1,0 − aIp−1,0) , (23)

Yp,0 =
1

r
(2πmp−1 − aYp−1,0) , (24)

where mp =
(p− 1)!!

p!!
for p ≥ 1 and m0 = 1 (with (2t)!! is denoted the product of all even

natural numbers less or equal with 2t, and analogously for (2t− 1)!!). Using (23) and (24)

we replace all the integrals I2t+1,0 and Y2t+1,0 in (22). We obtain the expression

f 0 = p0,1 (2π − aY0,0 − bZ0,0 + abI0,0) +

[
2πP1(r

2) + 2π
N∑

t=1

r2tm2tP2t+1(r
2)

]
+

Y0,0

[
P0(r

2)− aP1(r
2)

]
+

N∑
t=1

r2tY2t,0

[
P2t(r

2)− aP2t+1(r
2)

]
+

Z0,0Q1(r
2) + I0,0

[
Q0(r

2)− aQ1(r
2)

]
+

N∑
t=1

r2tZ2t,0Q2t+1(r
2) +

N∑
t=1

r2tI2t,0

[
Q2t(r

2)− aQ2t+1(r
2)

]
.

Since the coefficients of the polynomials involved in this expression are arbitrary, we can
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write

f 0 = p0,1 (2π − aY0,0 − bZ0,0 + abI0,0) + P1(r
2) + Y0,0P0(r

2) +
N∑

t=1

r2tY2t,0P2t(r
2)+

Z0,0Q1(r
2) + I0,0Q0(r

2) +
N∑

t=1

r2tZ2t,0Q2t+1(r
2) +

N∑
t=1

r2tI2t,0Q2t(r
2),

(25)

where Pi and Qi are new polynomials with arbitrary coefficients, like above.

Using the recurrences (23) and (24) we obtain for each even p ≥ 2 that

rpIp,0 = ap−1 (aI0,0 − Z0,0)−
(
ap−3Z2,0r

2 + ... + aZp−2,0r
p−2

)
, (26)

rpYp,0 = ap−1 (aY0,0 − 2π)− 2π
(
ap−3m2r

2 + ... + amp−2r
p−2

)
. (27)

Now we use them for replacing I2t,0 and Y2t,0 in (25). One can easily obtain

f 0(r) = p0,1 (2π − aY0,0) + p1,0 (aI0,0 − Z0,0) + P1(r
2) + Y0,0P0(r

2)+

Z0,0Q1(r
2) + I0,0Q0(r

2) +
N∑

t=1

r2tZ2t,0Q2t+1(r
2),

(28)

where Pi and Qi are again new polynomials with arbitrary coefficients.

Using recursively that for each even p ≥ 2 we have

Zp,0 = − 1

r2

(
(b2 − r2)Zp−2,0 − 2πbmp−2

)
,

we obtain

(−1)p/2rpZp,0 = ρp−2
(
ρ2Z0,0 − 2πb

)
+ 2πb

(
ρp−4m2r

2 − ... + (−1)p/2mp−2r
p−2

)
(29)

where ρ =
√

b2 − r2. After replacing Z2t,0 with formula (29) in (28), we have

f 0(r) = p0,1 (2π − aY0,0) + p1,0 (aI0,0 − Z0,0) + p0,0 (2π − bZ0,0) +

P1(r
2) + Y0,0P0(r

2) + Z0,0Q1(r
2) + I0,0Q0(r

2),
(30)

where p0,1, p1,0, p0,0 are arbitrary real numbers, P1, P0, Q1, Q0 are new polynomials with

arbitrary coefficients but without free term, the first three polynomials have degree N and

the last one has degree N + 1.

Using the Residue Theorem [7, 11] we find the formulas

I0,0(r) = 2π
a
√

a2 − r2 + b
√

b2 − r2

(b2 + a2 − r2)
√

a2 − r2
√

b2 − r2
, (31)

Y0,0(r) = 2π
1√

a2 − r2
, (32)

Z0,0(r) = 2π
1√

b2 − r2
. (33)
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It follows that

r2I0,0(r) = (b2 + a2)I0,0(r)− aZ0,0(r)− bY0,0(r).

We use this formula in a recursive way to find r4I0,0(r), ..., r2N+2I0,0(r) and obtain

r2k+2I0,0(r) = (b2 + a2)kr2I0,0(r) + Z0,0Q2(r
2) + Y0,0P2(r

2),

where P2 and Q2 are polynomials of degree k without constant term. Now we notice that,

moreover,

r2I0,0(r) =
b

a
(2π − aY0,0) +

b2 + a2

a
(aI0,0 − Z0,0)− b

a
(2π − bZ0,0) .

We replace these last two expressions in (30) and obtain

f 0(r) = p0,1 (2π − aY0,0) + p1,0 (aI0,0 − Z0,0) + p0,0 (2π − bZ0,0) +

P1(r
2) + Y0,0P0(r

2) + Z0,0Q1(r
2),

(34)

where p0,1, p1,0, p0,0, P1, P0, Q1 are new, but with the same qualities as before. We use again

the expressions of I0,0, Y0,0 and Z0,0 given by (31), (32) and (33), respectively, and obtain

that, indeed, f 0 is an arbitrary linear combination of the functions (5). Hence, Lemma 2

is proved.

4 Proof of Lemma 3

In the beginning of this section we state some useful results of complex analysis, see [7, 11].

A continuous function γ : [0, 1] → C\{0} is called a path in C\{0}. The index (or winding

number) of the path γ in C \ {0} with respect to 0 is defined by

w(γ, 0) =
1

2πi

∫

γ

dz

z
.

The next theorem is known as the variation of the argument principle.

Theorem 5 Let G be a Jordan closed curve and we denote by D its interior. Let f be

a holomorphic function in a neighborhood of D and such that it has no zeros on G. We

denote N0(f) the number of zeros of f in D. Then

N0(f) = w(f(G), 0) =
1

2πi

∫

f(G)

dz

z
=

1

2πi

∫

G

f ′(z)

f(z)
dz.

Another useful result is the following.
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Proposition 6 Let γ and γ1 be two paths in C \ {0} such that

|γ(t)− γ1(t)| ≤ |γ1(t)| for all t ∈ [0, 1]. (35)

Then, connecting the points P = γ(0) with P1 = γ1(0), and Q = γ(1) with Q1 = γ1(1) by a

segment having these endpoints, we obtain a closed curve that does not contain the origin

inside. Moreover,

w(γ, 0) = w(γ1, 0) + w(PP1, 0)− w(QQ1, 0). (36)

Proof. We define the continuous function φ : [0, 1] × [0, 1] → C by φ(t, λ) = γ1(t) +

λ (γ(t)− γ1(t)). It is not difficult to see that the relation (35) assures that φ has values

in C \ {0}. This means that any straight segment connecting γ(t) with γ1(t) does not

contain the origin. Hence, indeed, the closed curve obtained by connecting with segments

the endpoints of the curves γ and γ1, does not contain the origin in the interior. This

implies that the index of this curve is 0 and from this we obtain (36). ¤

In the case that γ is piecewise smooth, using that ln z = ln |z| + i arg z, the index can

be calculated with the formula

w(γ, 0) =
1

2πi

∫

γ

dz

z
=

1

2πi
ln
|γ(1)|
|γ(0)| +

1

2π
∆ arg γ, (37)

where ∆ arg γ denotes the increasing of the argument on the curve γ. If, moreover, γ is a

closed curve then we have

w(γ, 0) =
1

2π
∆ arg γ.

Proof of Lemma 3. The zeros of the function f are among the zeros of some polynomial of

degree 4N + 8. This can be seen after noticing that any zero of f also satisfies

R2(z)(a2−z)+2R(z)S(z)
√

a2 − z
√

b2 − z+S2(z)(b2−z) = (b2+a2−z)2T 2(z)(a2−z)(b2−z)

and, moreover,

4R2(z)S2(z)(a2 − z)(b2 − z) =

[(b2 + a2 − z)2T 2(z)(a2 − z)(b2 − z)−R2(z)(a2 − z)− S2(z)(b2 − z)]
2
.

Then N0(f) ≤ 4N + 8, but we will use only that N0(f) is finite in order to choose a closed

curve whose interior is included in Ω and contains all the zeros of f .

From now on ρ will denote a sufficiently large positive constant and ε a sufficiently

small positive constant. We denote by Cρ the circle centered at the origin and having the

radius ρ and consider the points A,A′ ∈ Cρ, A = (xA, ε), A′ = (xA,−ε), B = (a2, ε) and

B′ = (a2,−ε). By Cρ,ε we denote the curve obtained by removing the arc AA′ from the
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circle Cρ, and by Cε we denote the arc BB′ from the circle with center at (a2, 0) and radius

ε (the one contained in Ω). The segments that join A and B, respectively B′ and A′, are

denoted by Lε
+, respectively Lε

−, and we denote also Iρ,ε = Lε
+ ∪ Cε ∪ Lε

−. Now we define

the following closed curve in the complex plane,

G = Gρ,ε = Cρ,ε ∪ Iρ,ε, (38)

and denote its interior by D. The counterclockwise orientation is considered on G. Since

N0(f) is finite, ρ is sufficiently large and ε is sufficiently small, all the zeros of f are in D.

We apply Theorem 5 and deduce that

N0(f) =
1

2πi

∮

f(G)

dz

z
. (39)

We denote by

Z1 =
1

2πi

∫

f(Cρ,ε)

dz

z
, Z2 =

1

2πi

∫

f(Iρ,ε)

dz

z
, (40)

and we have that N0(f) = Z1 + Z2.

In order to estimate Z1 we use that there exist α0 ∈ C and an integer m ≥ 0 such that

m/2 ≤ N + 2 and

lim
|z|→∞

f(z)

zm/2
= α0. (41)

Then the following inequality also holds,

|f(z)− α0z
m/2| ≤ |α0z

m/2| for z ∈ Cρ,ε.

The hypotheses of Proposition 6 are fulfilled for the curves f(Cρ,ε) and g(Cρ,ε), where we

denoted g : C→ C, g(z) = α0z
m/2. Here P = f(A) and Q = f(A′), respectively P1 = g(A)

and Q1 = g(A′) are conjugate. From this we have that |P | = |Q|, |P1| = |Q1| and the

angles ^POP1 and ^QOQ1 are equal. Using relation (41) we get that f(A)/g(A) → 1 as

ρ →∞. The argument of f(A)/g(A) is equal to the measure of the angle ^POP1 and we

have that it tends to 0 when ρ → ∞. These facts assure that, by applying the formula

(37), w(PP1, 0) − w(QQ1, 0) = O(1/ρ), where O(1/ρ) denotes some function that goes to

0 when ρ →∞. A direct calculation gives that

w(g(Cρ,ε), 0) =
1

2πi

∫

Cρ,ε

g′(z)

g(z)
dz =

m

2
+ O(ε),

where O(ε) denotes some function that goes to 0 as ε → 0. Now we replace all these in

(36) of Proposition 6 and obtain the following estimation

Z1 ≤ N + 2 + O(ε) + O(1/ρ). (42)
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In order to continue our analysis we need to consider the functions γ+, γ− : [a2,∞) → C
given by γ+(x) = lim

ε↘0
f(x + iε) and γ−(x) = lim

ε↘0
f(x− iε) for all x ≥ a2. A direct calcula-

tion gives for γ+(x) the expressions

iR(x)
√

x− a2 + S(x)
√

b2 − x + i(b2 + a2 − x)T (x)
√

x− a2
√

b2 − x, for a2 ≤ x ≤ b2,

(43)

iR(x)
√

x− a2 + iS(x)
√

x− b2 − (b2 + a2 − x)T (x)
√

x− a2
√

x− b2, for x > b2,

and γ−(x) = γ+(x) for all x ≥ a2. In the case that γ+(x) 6= 0 for all x ∈ [a2,∞) we will be

able to give an estimation for Z2. We will call this Case 1. Otherwise we need to write the

function f as f(z) = h(z)f1(z) such that f and f1 have the same zeros and f1 fits in Case

1.

Case 1. γ+(x) 6= 0 for all x ∈ [a2,∞). For the curve f(Lε
+) we have the parametrization

x ∈ [a2, ρ] 7→ f(x + iε), while the parametrization x ∈ [a2, ρ] 7→ f(x − iε) is good for the

(oriented) curve −f(Lε
−). Since γ+ is continuous on [a2, ρ], γ+(x) 6= 0 for all x ∈ [a2, ρ] and

the convergence f(x + iε) → γ+(x) as ε ↘ 0 is uniform on [a2, ρ], we have

|f(x + iε)− γ+(x)| < |γ+(x)| for all x ∈ [a2, ρ].

The hypotheses of Proposition 6 are fulfilled for the curves f(·+ iε) and γ+ and, using also

that the endpoints are ε–closed, we obtain the relation

w
(
f(Lε

+), 0
)

= w (γ+, 0) + O(ε).

Analogously,

w
(
f(Lε

−), 0
)

= −w (γ−, 0) + O(ε).

If we write γ+(x) = r(x) exp(iθ(x)) then γ−(x) = r(x) exp(−iθ(x)) and, using the formula

(37) we have

w(γ+, 0) =
1

2πi
ln

r(ρ)

r(a2)
+

1

2π
[θ(ρ)− θ(a2)],

and

w(γ−, 0) =
1

2πi
ln

r(ρ)

r(a2)
− 1

2π
[θ(ρ)− θ(a2)].

Since

Z2 = w
(
f(Lε

+), 0
)

+ w
(
f(Lε

−), 0
)

+
1

2πi

∫

Cε

f ′(z)

f(z)
dz,

using the above relations we obtain

Z2 =
1

π

[
θ(ρ)− θ(a2)

]
+ O(ε), (44)

where [θ(ρ)− θ(a2)] is the variation of the argument on the curve γ+ ([a2, ρ]). From the

formula (43) we have that the number of zeros of Re γ+ has the upper bound 2N + 3.
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We notice that in the case that T has degree less then N we can provide a lower upper

bound. It is also useful to notice that the starting point of the curve γ+ ([a2, ρ]) is on the

real axis. About its ending point we can say that either is very close to the real axis, i.e.

Im γ+(ρ)/Re γ+(ρ) = O(1/ρ), or to the imaginary one. This last case can happen only if T

has degree less then N . From all these we deduce that

|θ(ρ)− θ(a2)| ≤ (2N + 3)π + O(1/ρ).

Hence,

|Z2| ≤ 2N + 3 + O(1/ρ) + O(ε),

and we obtain the conclusion of the lemma by using also (42).

Case 2. There exists some x∗ ∈ [a2,∞) such that γ+(x∗) = 0.

For each such x∗ ∈ (a2, b2) ∪ (b2,∞), we consider h∗(z) = (z − x∗)k∗ , where k∗ is the

multiplicity of x∗ as zero of γ+. Note that γ+ is analytic on (a2, b2) ∪ (b2,∞).

If x∗ = a2 then we take h∗(z) = (
√

a2 − z)ka , where ka = 2 min{ka1, ka2 + 1/2}, ka1

being the multiplicity of a2 as zero of S and ka2 being the multiplicity of a2 as zero of the

function x 7→ R(x) + (b2 + a2 − x)T (x)
√

b2 − x. A necessary condition for the fact that a2

is a zero of γ+ is that ka1 ≥ 1.

If x∗ = b2 then we take h∗(z) = (
√

b2 − z)kb , where kb = 2 min{kb1 +1/2, kb2, kb3 +1/2},
kb1 being the multiplicity of b2 as zero of S, kb2 the multiplicity of b2 as zero of R and kb3

the multiplicity of b2 as zero of T . A necessary condition for the fact that b2 is a zero of

γ+ is that kb2 ≥ 1.

Clearly γ+ has finitely many zeros in [a2,∞). So, we can choose ρ sufficiently large in

order that all the zeros of γ+ in [a2,∞) are contained in [a2, ρ]. We consider a function h

as the product of all the functions h∗ defined as before for each x∗ ∈ [a2,∞) zero of γ+,

and another function f1 by

f1(z) =
f(z)

h(z)
.

Both h and f1 are holomorphic in Ω, and the number of zeros of f in D is equal to the

number of zeros of f1 in D, i.e.

N0(f) = N0(f1) =
1

2πi

∮

f1(G)

dz

z
. (45)

We denote by

Y1 =
1

2πi

∫

f1(Cρ,ε)

dz

z
, Y2 =

1

2πi

∫

f1(Iρ,ε)

dz

z
, (46)

and we have that N0(f1) = Y1 + Y2.

Since f(z) = h(z)f1(z) and h is the product of the functions h∗, the integral Z1 defined by
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the formula (40) can be written as

Z1 = Y1 +
∑
x∗

1

2πi

∫

Cρ,ε

(h∗)′(z)

h∗(z)
dz.

Moreover, the expression (h∗)′/h∗ is either k∗/(z−x∗), or ka/ (2(z − a2)), or kb/ (2(z − b2)).

In particular, we notice that (h∗)′/h∗ is continuous on Cρ. Then, we can write

1

2πi

∫

Cρ,ε

(h∗)′(z)

h∗(z)
dz =

1

2πi

∮

Cρ

(h∗)′(z)

h∗(z)
dz + O(ε) = k∗

(
or

ka

2
or

kb

2

)
+ O(ε).

We denote with k the sum with respect to all zeros of γ+ of all positive numbers of the

form k∗, ka/2, kb/2. Using also the estimation (42) for Z1, we deduce that

Y1 ≤ N + 2− k + O(ε). (47)

In order to give an estimation for Y2, we define h+(x) = lim
ε↘0

h(x + iε), h−(x) = lim
ε↘0

h(x− iε),

β+(x) = lim
ε↘0

f1(x + iε) and β−(x) = lim
ε↘0

f1(x− iε) for all x ≥ a2. It is easy to check that

h−(x) = h+(x) and, as a consequence, β−(x) = β+(x). In what follows, we will justify that

β+ is continuous and it has no zeros in the interval [a2,∞). Since β+(x) = γ+(x)/h+(x) for

all x ∈ [a2,∞) it is sufficient to study this function in the points x∗, the zeros of γ+ which,

in fact, are also the zeros of h+. We will do here an analysis only at the point x∗ = b2 in the

case kb = 1, i.e. the corresponding factor of h is h∗(z) =
√

b2 − z. Since the other factors

of h do not influence our analysis, for simplicity, we write h(z) =
√

b2 − z. We have that

h+(x) =

{ √
b2 − x for a2 ≤ x ≤ b2,

i
√

x− b2 for x > b2,

and, using formula (43), we obtain that β+(x) has the expressions

i
R(x)√
b2 − x

√
x− a2 + S(x) + i(b2 + a2 − x)T (x)

√
x− a2, for a2 ≤ x ≤ b2,

(48)

R(x)√
x− b2

√
x− a2 + S(x) + i(b2 + a2 − x)T (x)

√
x− a2, for x > b2.

From the fact that b2 is a zero of R (we already emphasized that this is a necessary condition

from the fact that b2 is a zero of γ+) we obtain that β+ is continuous at b2. We have that

β+(b2) 6= 0 because kb = 1, which assures that b2 is not a zero for both polynomials S and

T .

The discussions for the other zeros with their multiplicities are similar, but we will not

write them here. Hence, β+ is continuous and it has no zeros in the interval [a2,∞). This
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assures that, by repeating the arguments performed for obtaining the formula (44), we also

obtain that

Y2 =
1

π

[
θ(ρ)− θ(a2)

]
+ O(ε),

where [θ(ρ)− θ(a2)] is the variation of the argument on the curve β+ ([a2, ρ]). We claim

that

|θ(ρ)− θ(a2)| ≤ (2N + 3)π + O(1/ρ), (49)

that gives

|Y2| ≤ 2N + 3 + O(ε) + O(1/ρ),

and, moreover, using the estimation (47) for Y1 and that N0(f) = Y1 + Y2, we obtain that

N0(f) ≤ 3N + 5.

In order to justify the claim (49), again we consider only the case when h(z) =
√

b2 − z

and, consequently, k = 1/2 and β+ is given by (48). Therefore, the number of zeros of

Reβ+ in the interval [a2, b2] has the upper bound N + 1, while that of Imβ+ in the interval

[b2, ρ] has the upper bound N + 1. The starting point, β+(a2), is on the real axis. From all

these facts we can deduce that, indeed, the increasing of the argument satisfies (49). The

other cases can be treated in a similar manner. ¤
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author is partially supported by a MCYT grant number MTM 2005-06098-C02-01 and by

a CIRIT grant number 2001SGR00173.

References

[1] T.R. Blows, L.M. Perko, Bifurcation of limit cycles from centers and separatrix cycles

of planar analytic systems, SIAM Rev. 36(1994) 341–376.

[2] S.N. Chow, C. Li, D. Wang, Normal forms and bifurcation of planar vector fields,

Cambridge University Press, 1994.

[3] B. Coll, A. Gasull, R. Prohens, Bifurcation of limit cycles from two families of centers,

Dyn. Contin. Discrete Impuls. Syst., in press.

[4] A. Gasull, W. Li, J. Llibre, Z. Zhang, Chebyshev property of complete elliptic integrals

and its application to Abelian integrals, Pacific J. Math. 202(2002) 341–361.

16



[5] H. Giacomini, J. Llibre, M. Viano, On the nonexistence, existence and uniqueness of

limit cyles, Nonlinearity 9(1996) 501–516.
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