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Abstract

We study quadratic perturbations of the integrable system (1 + x)dH , where H = (x2 + y2)/2. We
prove that the first three Melnikov functions associated to the perturbed system give rise at most to three
limit cycles.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction and statement of the main result

Planar vector fields ẋ = X(x,y), ẏ = Y(x, y) defined in the real plane, when X(x,y) = 0
and Y(x, y) = 0 are arbitrary conics, are usually called quadratic systems. The Hilbert sixteenth
problem [5] restricted to them asks for the number and distribution of limit cycles inside this
family. It is known that each limit cycle must surround a unique singularity of focus type, that at

✩ The first author is partially supported by Agence universitaire de la Francophonie; the second author is partially
supported by a MCYT grant MTM2005-06098-C02-01 and by a CIRIT grant number 2005SGR 00550; the third author
is partially supported by the NSFC project number 10571002 of China. This paper is also supported by the CRM Research
Programme: On Hilbert’s 16th Problem.

* Corresponding author.
E-mail addresses: abuica@math.ubbcluj.ro (A. Buica), gasull@mat.uab.es (A. Gasull), jyang@math.pku.edu.cn

(J. Yang).
0022-247X/$ – see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2006.09.008



444 A. Buica et al. / J. Math. Anal. Appl. 331 (2007) 443–454
most two nests of limit cycles can coexist and that the following distributions of limit cycles exist:
(0,0), (1,0), (2,0), (3,0), (1,1), (2,1) and (3,1), see [1–3,8]. It has been recently proved that
(2,m) distribution is only possible for m ∈ {0,1}, see [10,11]. It is also generally believed that
no more distributions of limit cycles than the ones listed above can exist and so, that quadratic
systems have at most four limit cycles. Nevertheless the proof of this assertion turns out to be a
very elusive problem. So, nowadays some people pretend to prove this result while other people
study different degenerate bifurcations inside quadratic systems to check whether there appear or
not more limit cycles. This paper goes in this second direction. We study how many limit cycles
can appear in the following quadratic system

ẋ = −y(1 + x) − εP (x, y),

ẏ = x(1 + x) + εQ(x, y), (1)

where ε > 0 is a small parameter and P and Q are arbitrary polynomials of degree two given
by P(x, y) = a00 + a10x + a01y + a20x

2 + a11xy + a02y
2 and Q(x,y) = b00 + b10x + b01y +

b20x
2 + b11xy + b02y

2. The unperturbed system (i.e. for ε = 0) has a center at the origin and
the first integral H = (x2 + y2)/2 in the region x2 + y2 < 1. Using the energy level H = h as a
parameter, we can express the Poincaré map P of (1) in terms of h and ε. For the corresponding
displacement function d(h, ε) = P(h, ε) − h we obtain the following representation as a power
series in ε:

d(h, ε) = εM1(h) + ε2M2(h) + ε3M3(h) + · · · , (2)

which is convergent for small ε. The Melnikov functions Mk(h) are defined for h ∈ (0,1/2).
Each simple zero h0 ∈ (0,1/2) of the first non-vanishing coefficient in (2) corresponds to a limit
cycle of (1) emerging from the circle x2 + y2 = 2h0. We compute these functions by using the
algorithm developed in [4,7]. Our main result is:

Theorem 1. For i = 1,2,3, let Mi(h) be the first Melnikov functions associated to system (1).
Then M1 has at most 2 zeros, taking into account their multiplicities. If M1(h) ≡ 0 then M2 has
also at most 2 zeros, taking into account their multiplicities. If M1(h) ≡ M2(h) ≡ 0 then M3
has at most 3 zeros, taking account their multiplicities, and all these upper bounds are sharp.
Moreover, the functions Mi(h), i = 1,2,3, can be explicitly obtained from the coefficients of the
polynomials P and Q given in (1) and are elementary functions of h.

We have the following corollary:

Corollary 2. For system (1) at most three limit cycles can bifurcate from the set of periodic orbits
of the unperturbed system, when considering the expansion of the displacement map (2) up to
third order in ε. Furthermore this upper bound is reached.

2. Proof of Theorem 1

We consider the following 1-form

ω = Q(x,y)

1 + x
dx + P(x, y)

1 + x
dy, (3)

such that we rewrite (1) in a Pfaffian form

dH = εω.
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The Melnikov functions will be calculated using the ideas of Françoise [4] and Iliev [7]. For
example, the first order Melnikov function is given by

M1(h) =
∮

H=h

ω.

In order to go further with the calculation of M1 and, after, to give the integral expression of M2,
we need the relative cohomology decomposition of ω (see [4,6]). We denote

ωij = xiyj

1 + x
dx, δij = xiyj

1 + x
dy, 0 � i + j � 2,

and we give first the decomposition of these forms.

Lemma 3. All the 1-forms ωij and δij , for 0 � i + j � 2, can be expressed as follows:

δ01 = 1

1 + x
dH − d

(
x − ln(1 + x)

)
, δ10 = dy − δ00, δ02 = y

1 + x
dH − ω11,

δ11 = x

1 + x
dH − d

(
x2

2
− x + ln(1 + x)

)
, δ20 = 2Hδ00 − y

1 + x
dH + ω11,

and

ω00 = d
(
ln(1 + x)

)
, ω10 = d

(
x − ln(1 + x)

)
, ω20 = d

(
x2

2
− x + ln(1 + x)

)
,

ω01 = d(xy) − dy + y

1 + x
dH + (1 − 2H)δ00 − 2ω11,

ω02 = 2d
(
H ln(1 + x)

) − 2 ln(1 + x)dH − d

(
x2

2
− x + ln(1 + x)

)
.

Proof. First of all, by definition, we have

δ01 = dy2

2(1 + x)
= d(2H − x2)

2(1 + x)
= 1

1 + x
dH − d

(
x − ln(1 + x)

)
.

In a similar way, we can check one by one the following relations, where we omit some relations
whose validity is obvious.

δ02 = y d(y2)

2(1 + x)
= y

1 + x
dH − xy

1 + x
dx = y

1 + x
dH − ω11,

δ11 = xy

1 + x
dy = x

1 + x
dH − x2

1 + x
dx,

δ20 = 2H − y2

1 + x
dy = 2Hδ00 − δ02 = 2Hδ00 − y

1 + x
dH − ω11,

and

ω01 = y

1 + x
dx = d(xy) − dy + y

1 + x
dH + (1 − 2H)δ00. �

With the above notations, the 1-form ω given by (3) becomes ω = a00δ00 + a10δ10 + a01δ01 +
a20δ20 + a11δ11 + a02δ02 + b00ω00 + b10ω10 + b01ω01 + b20ω20 + b11ω11 + b02ω02. Replac-
ing these with the expressions given in Lemma 4 and collecting the terms correspondingly, the
following result can be found.
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Lemma 4. The 1-form ω given by (3) can be expressed in the following way

ω = r1 dH + dS1 + N1, (4)

where r1 = r1(x, y), dS1 = dS1(x, y,H) and N1 are given as follows:

r1 = a01 + a11x + (a02 − a20 + b01)y

1 + x
− 2b02 ln(1 + x),

dS1 = (a10 − b01) dy + b01 d(xy) + 2b02 d
(
H ln(1 + x)

)

+ b00 + (b10 − a10)x + (b20 − b02 − a11)x
2

1 + x
dx,

N1 = (b11 + a20 − a02 − 2b01)ω11 + 2(a20 − b01)Hδ00 + (a00 − a10 + b01)δ00.

Using (4) the expression of the first order Melnikov function M1(h) = ∮
H=h

ω follows as

M1(h) = (b11 + a20 − a02 − 2b01)J1(h) + 2(a20 − b01)hJ0(h)

+ (a00 − a10 + b01)J0(h), (5)

where

J0(h) =
∮

H=h

δ00, J1(h) =
∮

H=h

ω11.

The explicit expressions of J0(h) and J1(h) are

J0(h) = 2π

(
1 − 1√

1 − 2h

)
, J1(h) = 2π(1 − h) − 2π

√
1 − 2h.

We notice that, for each z ∈ (0,1),

M1
((

1 − z2)/2
) = 1 − z

z

(
A + Bz + Cz2),

where A = 2π(a10 − a00 − a20), B = π(b11 + a20 − a02 − 2b01) and C = π(a20 − b11 + a02).
Then, the equation M1(h) = 0, h ∈ (0,1/2), is equivalent through the change 2h = 1 − z2 with
A + Bz + Cz2 = 0, z ∈ (0,1). Now it is clear that M1 has at most 2 zeros, taking into account
their multiplicities, and there are some coefficients such that M1 has exactly 2 simple zeros.

Since J0(h), hJ0(h) and J1(h) are linearly independent, M1(h) ≡ 0 if and only if all the
coefficients of J0(h), hJ0(h) and J1(h) vanish, namely,

b01 = a20, a10 = a20 + a00, b11 = a20 + a02. (6)

From now on we assume that

M1(h) =
∮

H=h

ω ≡ 0.

Then, from (4) and (6) we have the decomposition

ω = r1 dH + dS1,

where r1 and dS1 are given in Lemma 5. This assures that Assertion 2.1 from [7] holds true. On
the basis of this assertion, it is proved in [7] that the second order Melnikov function is given by

M2(h) =
∮

r1ω.
H=h



A. Buica et al. / J. Math. Anal. Appl. 331 (2007) 443–454 447
In order to go further with the calculation of M2 and, after, to give the integral expression of
M3, we need the relative cohomology decomposition of r1ω. Before stating this result, we make
some notations.

c0 = a01 − a11, c1 = b00 − b10 + a01 + b20 − b02 − a11, c2 = b00 − c1,

c3 = b20 − b02 − a11.

Lemma 5. The following decomposition holds,

r1ω = r2 dH + dS2 + N2, (7)

where

N2 = (a00c0 + a02c1 + a02c2 + 2a00b02)δ00 + 2(a02b02 − a20c0 − a02c2 − 2a00b02)Hδ00

+ (a02c3 + 2a20b02 − 2a20c0 − 2a02c2 − 4a00b02)ω11,

and where r2 = r2(x, y) and dS2 = dS2(x, y,H) are given by the following relations

r2 = r2
1 + a02a20 + (2c0b02 + a02a00 − a02a20)

1

1 + x
− 2b2

02

(
ln(1 + x)

)2

− 2a02a20 ln(1 + x) + 2c0b02
ln(1 + x)

1 + x
+ 2a02b02

y ln(1 + x)

1 + x

+ (c0a20 + c2a02 + 2a00b02 + 2a02b02)
y

1 + x
,

dS2 = (a11c2 + c0c3 − 2a02a20 + a02a00) dx + (a11c3 − 2a02a20)x dx

+ (a11c1 + c0c2 − c0c3 + a00a02 − 2a02a20)
1

1 + x
dx

+ c0c1
1

(1 + x)2
dx − 2b02c2 ln(1 + x)dx − 2b02c3x ln(1 + x)dx

− 2b02c1
ln(1 + x)

1 + x
dx + 2a11b02 d

(
H ln(1 + x)

) − 2b02c0 d

(
H

1 + x

)

− 2b2
02 d

(
H

(
ln(1 + x)

)2) − a02c1 d

(
y

1 + x

)
− 2b02a00 d

(
y ln(1 + x)

)

− 2b02a20 d
(
xy ln(1 + x)

) + (a00a11 − a02c2 − 2a00b02) dy

− 2a02b02 d

(
Hy

1 + x

)
+ (a20a11 + a20c0 + a02c2 + 2a00b02) d(xy).

Proof. First we notice that r1ω = r2
1 dH + r1 dS1. We sketch in the sequel how the decomposi-

tion of r1 dS1 can be obtained.

r1 dS1 = a11 dS1 + a00c0δ00 + c0c2ω00 + c0c3ω10 + c0a20δ10 + c0a20ω01

+ 2c0b02
H

(1 + x)2
dx + 2c0b02

ln(1 + x)

1 + x
dH + c0c1

1

(1 + x)2
dx

+ a00a02δ01 + a02c2ω01 + a02c3ω11 + a02a20δ11 + a02a20ω02

+ 2a02b02
Hy

2
dx + 2a02b02

y ln(1 + x)
dH + a02c1

y

2
dx
(1 + x) 1 + x (1 + x)
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− 2b02a00 ln(1 + x)dy − 2b02c2 ln(1 + x)dx − 2b02c3x ln(1 + x)dx

− 2b02a20 ln(1 + x)d(xy) − 4b2
02

H ln(1 + x)

1 + x
dx − 4b2

02

(
ln(1 + x)

)2
dH

− 2c1b02
ln(1 + x)

1 + x
dx.

In the above relation, we replace all the expressions of these 1-forms given in Lemma 4 and also
the following equalities

y

(1 + x)2
dx = δ00 − d

(
y

1 + x

)
,

ln(1 + x)dy = d
(
y ln(1 + x)

) − ω01,

ln(1 + x)d(xy) = d
(
xy ln(1 + x)

) − ω11,

and

Hy

(1 + x)2
dx = Hδ00 − d

(
Hy

1 + x

)
+ y

1 + x
dH.

Then the decomposition follows by collecting these terms correspondingly. �
Using (7), the expression of the second order Melnikov function, M2(h) = ∮

H=h
r1ω, is given

by

M2(h) = (a00c0 + a02c1 + a02c2 + 2a00b02)J0(h)

+ 2(a02b02 − a20c0 − a02c2 − 2a00b02)hJ0(h)

+ (a02c3 + 2a20b02 − 2a20c0 − 2a02c2 − 4a00b02)J1(h).

It is not difficult to see that the coefficients of J0(h), hJ0(h) and J1(h) involved in the above
expression of M2 are independent and, hence, they can be considered like three arbitrary real
numbers. The discussion concerning the number of zeros of M2 is the same as for M1. Thus, the
statement of Theorem 1 about M2 is proved.

The relation M2(h) ≡ 0 holds if and only if one of the following three cases holds.

a02 = a20 = a00 = 0, (8)

a02 = b02 = c0 = 0, (9)

a02 �= 0, a02c1 = a20c0 − a00c0 − a02b02,

a02c2 = a02b02 − c0a20 − 2a00b02, a02c3 = −2b02(a20 − a02). (10)

From now on we assume also that

M2(h) =
∮

H=h

r1ω ≡ 0.

Then, from (7), in each of the three cases listed above, we have the decomposition

r1ω = r2 dH + dS2,
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where r2 and dS2 are given in Lemma 5. Since this decomposition holds true, according to
Remark 2.3 from [7], the third order Melnikov function is given by

M3(h) =
∮

H=h

r2ω.

Theorem 6. We assume that M1(h) = M2(h) ≡ 0. Then, when (8) or (9) holds true,

Mk(h) ≡ 0, k � 3.

When (10) holds true, the third order Melnikov function has the following general form:

M3(h) = (α0 + β0h)J0(h) + α1J1(h) + α2J2(h), (11)

where

J2(h) =
∮

H=h

xy ln(1 + x)

(1 + x)2
dx (12)

and

α0 = 2a00a
2
02 − 6b2

02a00 − 4a2
02a20 + a2

00a02 − 3c0b02a00 + a02a20a00,

β0 = −2
(
3a02a20a00 + a00a

2
02 − 6b2

02a00 − a02a
2
20 − 2a2

02a20 + 3a02a11b02

+ 6c0a02b02 − 3a02b02a20 − 3a02b02a00 − 3b02c0a20
)
,

α1 = −2
(−6b2

02a00 + a00a
2
02 + 3b2

02a20 − a2
02a20 − 2a02a

2
20 − 3b2

02a02 + 3a02a11b02

+ 6c0a02b02 + 3a02a20a00 − 3a02b02a20 − 3a02b02a00 − 3b02c0a20
)
,

α2 = −2a02b02(−c0 − a11 + a20 + a00).

Proof. We denote s2 = r2 − r2
1 and we write r2ω = r2

1 ω + s2ω = r1r2 dH + r1 dS2 +
s2r1 dH + s2 dS1. Then, the third order Melnikov function can be calculated as

M3(h) =
∮

H=h

r2ω =
∮

H=h

r1 dS2 + s2 dS1.

Now we notice that we can write

r1(x, y) = f1(x) + g1(x)y, dS1 = F1(x) dx + dG1(x,H) + d
(
R1(x)y

)
s2(x, y) = f2(x) + g2(x)y, dS2 = F2(x) dx + dG2(x,H) + d

(
R2(x,H)y

)
,

where

f1(x) = a01 + a11x

1 + x
− 2b02 ln(1 + x), g1(x) = (a02 − a20 + b01)

1 + x
,

R1(x) = (a10 − b01) + b01x, G1(x,H) = 2b02H ln(1 + x),

F1(x) = b00 + (b10 − a10)x + (b20 − b02 − a11)x
2

1 + x
,

and
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f2(x) = a02a20 + (2c0b02 + a02a00 − a02a20)
1

1 + x
− 2b2

02

(
ln(1 + x)

)2

− 2a02a20 ln(1 + x) + 2c0b02
ln(1 + x)

1 + x
,

g2(x) = 2a02b02
ln(1 + x)

1 + x
+ (c0a20 + c2a02 + 2a00b02 + 2a02b02)

1

1 + x
,

F2(x) = (a11c2 + c0c3 − 2a02a20 + a02a00) + (a11c3 − 2a02a20)x

+ (a11c1 + c0c2 − c0c3 + a00a02 − 2a02a20)
1

1 + x

+ c0c1
1

(1 + x)2
− 2b02c2 ln(1 + x) − 2b02c3x ln(1 + x)

− 2b02c1
ln(1 + x)

1 + x
,

G2(x,H) = 2a11b02H ln(1 + x) − 2b02c0
H

1 + x
− 2b2

02H
(
ln(1 + x)

)2
,

R2(x,H) = −a02c1
1

1 + x
− 2b02a00 ln(1 + x) − 2b02a20x ln(1 + x)

+ (a00a11 − a02c2 − 2a00b02) − 2a02b02
H

1 + x

+ (a20a11 + a20c0 + a02c2 + 2a00b02)x.

Then ∮
H=h

r1 dS2 =
∮

H=h

f1(x)F2(x) dx + f1(x) dG2(x,H) + f1(x) d
(
R2(x,H)y

)

+ g1(x)yF2(x) dx + g1(x)y dG2(x,H) + g1(x)y d
(
R2(x,H)y

)
= −

∮
H=h

f ′
1(x)R2(x,H)y dx + g1(x)F2(x)y dx + g1(x)y dG2(x,H)

and, analogously,∮
H=h

s2 dS1 = −
∮

H=h

f ′
2(x)R1(x,H)y dx + g2(x)F1(x)y dx + g2(x)y dG1(x,H).

Taking into account the conditions between the coefficients that guarantee that M1(h) ≡
M2(h) ≡ 0 and the notations (7) we make the following substitutions:

b01 = a20, a10 = a20 + a00, b11 = a20 + a02, a01 = c0 + a11,

b10 = b00 + a01 + b20 − b02 − a11 − c1, b00 = c2 + c1, b20 = c3 + b02 + a11

and, moreover,

Case (i): a02 = a20 = a00 = 0,

Case (ii): a02 = b02 = c0 = 0,

Case (iii): c1 = (a20c0 − a00c0 − a02b02)/a02,

c = (a b − c a − 2a b )/a , c = −2b (a − a )/a .
2 02 02 0 20 00 02 02 3 02 20 02 02
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After these substitutions, all the remaining coefficients are independent.
In Case (i) we have g1 ≡ g2 ≡ R1 ≡ R2 ≡ 0, while in Case (ii) we have r1 = a11 and s2 ≡ 0.

From all these we deduce that, in both cases, M3(h) ≡ 0. Moreover, going further with the pro-
cedure of Françoise [4] and Iliev [7] for finding higher order Melnikov functions (described for
example in Remark 2.3 from [7]), it can be seen that all the Melnikov functions vanish in these
cases.

In Case (iii), the expression of M3 is found as linear combination of J2(h) and the integrals
of the following 1-forms:

ω11, ω01,
y

(1 + x)2
dx,

xy

(1 + x)2
dx,

yH

(1 + x)2
dx,

x2y

(1 + x)2
dx.

Using the following relations∮
H=h

ω11 = J1(h),

∮
H=h

ω01 = (1 − 2h)J0(h) − 2J1(h),

∮
H=h

y

(1 + x)2
dx = J0(h),

∮
H=h

xy

(1 + x)2
dx = −2hJ0(h) − 2J1(h),

∮
H=h

x2y

(1 + x)2
dx = 2hJ0(h) + 3J1(h),

the expression (11) is obtained. �
The function J2 given in the integral form (12) can be expressed in terms of elementary

functions as

J2(h) = 2π√
1 − 2h

[
2h − (

1 + √
1 − 2h

)2 ln
1 + √

1 − 2h

2
+ 4(1 − h) ln

√
1 − 2h

]
. (13)

Since the method of calculating J2 is not a standard one, we will present it in Appendix A at the
end of the paper. It remains to study the number of zeros of M3. Through the change 2h = 1−z2,
the equation

M3(h) = 0, h ∈ (0,1/2),

is equivalent with

A + Bz + Cz2 = 1

2π

z

1 − z
J2

((
1 − z2)/2

)
, z ∈ (0,1),

where A = (2α0 + β0)/2α2, B = −α1/2α2 and C = (−β0 + α1)/2α2.
We denote

f (z) = 1

2π

z

1 − z
J2

((
1 − z2)/2

)
,

and g(z) = f (z)−A−Bz−Cz2 such that we need to study the number of zeros of the function g.
We have

f (z) = 1 + z − (1 + z)2

ln
1 + z + 2

1 + z2

ln z

1 − z 2 1 − z
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and g′′′(z) = f ′′′(z) = 24
(1−z)4 P(z), where

P(z) = z6 − z5 − 19z4 + 7z3 + 22z2 − 14z + 4

24z3(z + 1)
− ln

z + 1

2z
.

After noticing that limz→0 P(z) = ∞, P(1) = 0 and that for all z ∈ (0,1),

P ′(z) = (z4 + 4z3 + 8z2 + 12z + 6)(z − 1)3

12z4(z + 1)2
< 0,

we deduce that, for all z ∈ (0,1), P(z) > 0 and, as a consequence, g′′′(z) > 0. By applying the
Rolle’s rule we have that g has at most 3 zeros, taking into account their multiplicities. Hence,
M3 has also at most 3 zeros, taking into account their multiplicities, as we wanted to prove.

We consider now the system (1) with the following coefficients a00 = 0, a10 = 3/4, a01 =
−√

3759/358 + 3/4, a20 = 3/4, a11 = −3
√

3759/1253 + 3/4, a02 = −1, b00 = 0, b10 =
−√

3759/1432, b01 = 3/4, b20 = 75
√

3759/716 + 3/4, b11 = −1/4 and b02 = √
3759/42. By

direct calculations, it can be seen that relations (6) and (10) hold, i.e. M1(h) = M2(h) ≡ 0. The
coefficients from the expression (11) of M3 are α0 = −3, β0 = 0, α1 = −25, α2 = 1/2 and, more-
over, A = −6, B = 25, C = −25. It can be easily seen that g(0.01) < 0, g(0.1) > 0, g(0.4) < 0
and g(0.8) > 0. Hence, g has at least 3 zeros. Since we have proved before that g has at most
3 zeros, it follows that it has exactly 3 zeros. Then, the corresponding M3 has exactly simple 3
zeros and the theorem follows.

Appendix A

This appendix is devoted to proving that the function J2(h) defined in (12) is given by (13),
i.e. that

J2(h) =
∮

H=h

xy ln(1 + x)

(1 + x)2
dx

= 2π√
1 − 2h

[
2h − (

1 + √
1 − 2h

)2 ln
1 + √

1 − 2h

2
+ 4(1 − h) ln

√
1 − 2h

]
. (A.1)

First denote for each −1 < r < 1,

J (r) =
2π∫

0

sin2 θ cos θ ln(1 + r cos θ)

(1 + r cos θ)2
dθ.

Once the expression of J is known, we calculate J2 as

J2(h) = −2h
√

2hJ
(√

2h
)
, for 0 < h < 1/2.

In order to find J we will find first the expression of

Fk(r) =
2π∫

cosk θ ln(1 + r cos θ)

1 + r cos θ
dθ,
0
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for k = 0 and k = 2. We will prove that for each −1 < r < 1,

(i) F0(r) = 2π√
1 − r2

ln
2(1 − r2)

1 + √
1 − r2

,

(ii) F2(r) = 2π

r2

(
1 − √

1 − r2
) − 2π

r2
ln

1 + √
1 − r2

2
+ 2π

r2
√

1 − r2
ln

2(1 − r2)

1 + √
1 − r2

.

Proof of (i): Mainly, we use the Poisson’s formula [9]. A function f that is harmonic in the
unit disk of the complex plain can be calculated using only its values on the boundary of the disk
according to the formula:

f
(
ρeit

) = 1

2π

2π∫
0

f
(
eiθ

) 1 − ρ2

|1 − ρeit e−iθ |2 dθ,

for all 0 < ρ < 1 and 0 � t < 2π . For t = 0 we have

2π∫
0

f (eiθ )

1 + ρ2 − 2ρ cos θ
dθ = 2π

f (ρ)

1 − ρ2
.

Now let fs(ρeit ) = ln |1 − sρeit | which is a harmonic function in the unit disk of the complex
plain for each fixed 0 < s < 1 and we write the above equality for this function:

2π∫
0

ln(1 + s2 − 2s cos θ)

1 + ρ2 − 2ρ cos θ
dθ = 2π

ln(1 − sρ)2

1 − ρ2
.

Taking s = ρ in this last formula, we have

2π∫
0

ln(1 + ρ2 − 2ρ cos θ)

1 + ρ2 − 2ρ cos θ
dθ = 4π

ln(1 − ρ2)

1 − ρ2
.

Using this we obtain

F0

(
− 2ρ

1 + ρ2

)
= 4π

(1 + ρ2)

1 − ρ2
ln

(
1 − ρ2) − 2π

(1 + ρ2)

1 − ρ2
ln

(
1 + ρ2),

where we have also used that

2π∫
0

1

1 + ρ2 − 2ρ cos θ
dθ = 2π

1

1 − ρ2
.

Then (i) follows now for −1 < r < 0 and, using that it is an even function, also for −1 < r < 1.

Proof of (ii): Denote

f (r) =
2π∫

cos θ ln(1 + r cos θ) dθ and g(r) =
2π∫

ln(1 + r cos θ) dθ.
0 0
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Then

F2(r) = 1

r
f (r) − 1

r2
g(r) + 1

r2
F0(r).

In order to find f and g we notice that

f ′(r) =
2π∫

0

cos2 θ

1 + r cos θ
dθ = 2π

r2
√

1 − r2

(
1 −

√
1 − r2

)
,

g′(r) =
2π∫

0

cos θ

1 + r cos θ
dθ = −rf ′(r).

Then, taking also into account that f (0) = g(0) = 0 we obtain

f (r) = 2π

r

(
1 −

√
1 − r2

)
and g(r) = 2π ln

1 + √
1 − r2

2
,

and (ii) follows.
The last step in finding the expression of J is noticing that

J (r) = F ′
2(r) − F ′

0(r) + h(r),

where

h(r) =
2π∫

0

sin2 θ cos θ

(1 + r cos θ)2
dθ = − 2π

r3
√

1 − r2

(
1 −

√
1 − r2

)2
.

Hence we obtain

J (r) = − 2π

r3
√

1 − r2

[
r2 − (

1 +
√

1 − r2
)2 ln

1 + √
1 − r2

2
+ 2

(
2 − r2) ln

√
1 − r2

]
.

From the above formula the expression (A.1) follows.
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