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Abstract. We study several properties of inverse Jacobi multipliers V around
Hopf singularities of analytic vector fields X in Rn which are relevant to the
study of the local bifurcation of periodic orbits. When n = 3 and the singu-
larity is a saddle–focus we show that: (i) any two locally smooth and non–flat
linearly independent inverse Jacobi multipliers have the same Taylor expan-
sion; (ii) any smooth and non–flat V has associated exactly one smooth center
manifold W c of X such that W c ⊂ V −1(0). We also study whether the prop-
erties of the vanishing set V −1(0) proved in the 3–dimensional case remain
valid when n ≥ 4.

1. Introduction

We consider three–dimensional systems

(1) ẋ = −y + F1(x, y, z), ẏ = x+ F2(x, y, z), ż = λ z + F3(x, y, z),

where λ ∈ R \ {0}, F = (F1,F2,F3) : U → R3 is real analytic on the open
neighborhood U ⊂ R3 of the origin, and F satisfies F(0) = 0 and DF(0) = 0.
We let X = (−y+F1(x, y, z))∂x+(x+F2(x, y, z))∂y+(λz+F3(x, y, z))∂z denote
the vector field associated to system (1).

The origin is a Hopf singularity of system (1) since its associated eigenvalues
are {±i, λ} with i2 = −1, see [13]. In a neighborhood of a Hopf point there exists
a Cr (local) center manifold for any r ∈ N, which need not be either unique or
analytic. We remind that, when the singularity of (1) restricted to some local
center manifold is a center, the local center manifold is unique and analytic.
Moreover, when the singularity of (1) restricted to some local center manifold is
a focus, the same is true for any local center manifold. In this case it is said that
the singularity is a saddle-focus of (1). A Hopf singularity of an analytic system
like (1) is either a center on the center manifold or a saddle–focus.

A C1 function V : U → R is said to be an inverse Jacobi multiplier in U of
X , if it is not locally null and it satisfies the linear first order partial differential
equation XV = V divX in U , where divX is the divergence of the vector field
X .

In the planar case (i.e. vector fields of the form F1(x, y)∂x+F2(x, y)∂y), inverse
Jacobi multipliers are called inverse integrating factors. The vanishing set of an
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inverse integrating factor is well studied. The fundamental relation between this
vanishing set and the location of limit cycles was proved in [12], but many other
properties of this set have been found, see [11]. In [7] it is showed that the
Poincaré return map associated to a limit cycle can be determined in terms of
the inverse integrating factor. See [9] for a survey of the properties of this helpful
function.

In the light of these results it looks interesting to study inverse Jacobi multipli-
ers and expect that some of the properties of inverse integrating factors could be
generalized to higher dimensions. There are some recent papers in this direction.
The relation between inverse Jacobi multipliers of system (1) and center mani-
folds is studied in [3]. In particular it is discussed under what conditions a local
center manifold is included in the vanishing set of an inverse Jacobi multiplier.
Moreover, it is given another solution to the center problem in R3, formulated in
terms of an inverse Jacobi multiplier, apart from the classical Lyapunov solution
formulated in terms of a first integral.

The cyclicity of a saddle–focus singularity at the origin of system (1) is the
maximum number of limit cycles that can bifurcate from the origin, considering
any analytic perturbation that keeps the location and the monodromic nature of
this singularity. In [4] the authors found that the cyclicity of a saddle–focus of
system (1) is determined by an inverse Jacobi multiplier of the same system.

One can see [1] for a modern reference of both the classical theory and also
new advances about inverse Jacobi multipliers, and [5] for a very recent survey.

This work can be considered as an enlargement of the above mentioned pa-
pers [3, 4]. We present here some new properties of inverse Jacobi multipliers.
Through this work, whenever we say that an object is “non–flat” we mean “non–
flat at the origin”. Recall that any smooth and non–flat center manifold has a
unique Taylor expansion. In Theorem 2 we show that this property is shared by
any smooth and non–flat inverse Jacobi multiplier near a saddle–focus of (1).

Using normal form theory, it is proved in [3] that there exist a smooth and

non–flat inverse Jacobi multiplier V̂ and a smooth center manifold Ŵ c of system
(1) such that Ŵ c ⊂ V̂ −1(0). In Theorem 4 we improve this property showing that
associated to each smooth and non–flat inverse Jacobi multiplier V of (1) there is
exactly one smooth center manifold W c such that W c ⊂ V −1(0). Based on these
new results, we succeeded to give a shorter proof of some results from [3, 4]. For
example, we present here a new proof for the relation between the cyclicity of
the saddle–focus at the origin and the vanishing multiplicity of any smooth and
non–flat inverse Jacobi multiplier of system (1). In the last section we present
a counter–example to support the idea that there is no direct extension of this
relation to higher dimensions. Finally we present additional properties of the
vanishing set V −1(0) in this higher dimensional setting.

2. New properties of inverse Jacobi multipliers and their zero set

In this section we present several results concerning system (1) that comple-
ment those obtained in [4].
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Remark 1. In [4] it is proved that, given a system (1), there exists an integer
p ≥ 2 such that any local C∞ and non–flat inverse Jacobi multiplier of (1)
near a saddle–focus at the origin has the following Taylor expansion (up to a
multiplicative constant)

(2) z(x2 + y2)p + · · · .
Here the dots denote higher order terms.

The next theorem is a key point in the determination given in [10] of a basis
of the Lie algebra of formal commutators of a formal normal form of system (1)
when the origin is a saddle–focus.

Theorem 2. Assume that the origin is a saddle–focus for system (1). Then any
two locally smooth and non–flat linearly independent inverse Jacobi multipliers
of (1) have the same Taylor expansion at the origin.

Proof. Let V (x, y, z) and V̄ (x, y, z) be two locally smooth and non–flat linearly
independent inverse Jacobi multipliers of (1). From equation (2) in Remark
1 we have that V (x, y, z) = v2p+1(x, y, z) +

∑
i≥2p+2 vi(x, y, z) and V̄ (x, y, z) =

v2p+1(x, y, z) +
∑

i≥2p+2 v̄i(x, y, z) where v2p+1(x, y, z) = z(x2 + y2)p. Then V̂ =

V − V̄ is another smooth and inverse Jacobi multiplier. When we assume that V̂
is non–flat, we obtain a contradiction since the order at the origin of V̂ is greater
than 2p+ 1. Hence V̂ = V − V̄ is flat at the origin. �

Let us consider the following example in order to illustrate the above result.
The system

ẋ = −y − x(x2 + y2), ẏ = x− y(x2 + y2), ż = z

with a saddle–focus at the origin has the analytic inverse Jacobi multiplier

V0(x, y, z) = z(x2 + y2)2

and the C∞ and non–flat inverse Jacobi multipliers (for all a ∈ R∗)

Va(x, y, z) =

(
z − a exp

(
− 1

2(x2 + y2)

))
(x2 + y2)2.

Their diference

V̂ (x, y, z) = V0(x, y, z)− Va(x, y, z) = a exp

(
− 1

2(x2 + y2)

)
(x2 + y2)2

is a flat function.

Remark 3. Let V be a smooth and non–flat inverse Jacobi multiplier of (1)
around its saddle–focus at the origin, such that there exists a smooth center
manifold W c satisfying W c ⊂ V −1(0). In [3] it is proved that such a V and W c

always exists. Actually, [3] shows that in this case there exists a C∞ function
F (x, y, z) such that F (x, y, h(x, y)) ̸≡ 0 and the following factorization occurs

(3) V (x, y, z) = (z − h(x, y))F (x, y, z)

where W c = {z = h(x, y)}.
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In fact, given a smooth and non–flat inverse Jacobi multiplier V of (1), there
is at most one smooth center manifold W c of (1) such that W c ⊂ V −1(0). To
justify this, suppose to the contrary that there are two different center manifolds
W c = {z = h(x, y)} and Ŵ c = {z = ĥ(x, y)} of (1) such that W c ⊂ V −1(0)

and also Ŵ c ⊂ V −1(0). Then, following Remark 3, the factorization V (x, y, z) =

(z − h(x, y)) (z − ĥ(x, y))F̂ (x, y, z) must hold, which is incompatible with (2).
In the next result we improve this property.

Theorem 4. Assume that the origin is a saddle–focus for system (1). Let V
be a locally smooth and non–flat inverse Jacobi multiplier of (1). Then there is
exactly one smooth center manifold W c of (1) such that W c ⊂ V −1(0).

Proof. First of all we introduce polar coordinates performing the polar blow-up
(x, y, z) 7→ ϕ(x, y, z) = (r, θ, w) defined as x = r cos θ, y = r sin θ and z = rw.
For r in a sufficiently small neighborhood of the origin, and w in an arbitrary
fixed compact set we have θ̇ > 0, hence we can write system (1) as the following
system

(4)
dr

dθ
= R(θ, r, w),

dw

dθ
= λw +W (θ, r, w),

defined on the cylinder {(θ, r, w) ∈ S1×R} where S1 = R/2πZ, since the functions
R andW are 2π–periodic in θ. Taking into account how inverse Jacobi multipliers
are transformed under changes of variables and time rescalings we obtain that

(5) Ṽ (θ, r, w) =
V (r cos θ, r sin θ, rw)

r2(1 + Θ(θ, r, w))
,

is an inverse Jacobi multiplier of system (4) in a region with r ̸= 0. From Remark
1 and equation (5) it follows that Ṽ has, up to a multiplicative constant, the
Taylor expansion

(6) Ṽ (θ, r, w) = w rm + O(rm+1)

around r = 0 where the leading exponent m = 2p− 1 ≥ 3 is an odd number.
Let X be the associated vector field to system (1). First of all we claim that

any invariant manifold M = {(θ, r, w) : w = Ω(θ, r)} of the pushed forward
vector field ϕ∗X , given by a smooth function Ω near r = 0 which is 2π-periodic
in the variable θ and such that Ω(θ, 0) = 0 corresponds to a smooth center mani-
fold of system (1). The claim follows recalling that the polar blow–up (x, y, z) 7→
(θ, r, w) defined above brings any smooth center manifold {(x, y, z) : z = h(x, y)}
of (1) into a smooth invariant manifold {(θ, r, w) : w = rh̄(θ, r)} of ϕ∗X where
h(r cos θ, r sin θ) = r2h̄(θ, r).

Secondly we claim that, given a smooth and non–flat at r = 0 inverse Jacobi
multiplier Ṽ (θ, r, w) of (4), there is a unique smooth function Ω(θ, r) near r = 0
which is 2π-periodic in the variable θ such that Ω(θ, 0) = 0 and moreover satisfies

(7) Ṽ (θ, r,Ω(θ, r)) ≡ 0
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for all θ ∈ S1 and for any r near the origin. All the properties of Ω, except its 2π-
periodicity, are immediate consequence of the Implicit Function Theorem applied
to the function Ṽ (θ, r, w)/rm = w+O(r). So we only need to see the periodicity
of Ω. Since identity (7) is true for all θ it follows that Ṽ (θ+2π, r,Ω(θ+2π, r)) ≡ 0
or equivalently

(8) Ṽ (θ, r,Ω(θ + 2π, r)) ≡ 0

due to the 2π-periodicity in the variable θ of V . Comparing (7) and (8) and
taking into account the uniqueness of the function Ω predicted by the Implicit
Function Theorem we reach that Ω(θ + 2π, r) = Ω(θ, r) and hence that Ω is
2π-periodic in θ.

Of course from (7) follows the factorization Ṽ (θ, r, w) = rm(w + O(r)) =
rm(w−Ω(θ, r))F (θ, r) implying that {(θ, r, w) : w = Ω(θ, r)} is a smooth invari-
ant manifold of ϕ∗X that corresponds to a smooth center manifold {(x, y, z) :
z = h(x, y)} of system (1). Therefore the smooth and non–flat inverse Ja-
cobi multiplier V (x, y, z) of (1) associated to Ṽ (θ, r, w) via (5) factorizes like
V (x, y, z) = (z − h(x, y))F (x, y, z).

In summary, we have shown that given a locally smooth and non–flat inverse
Jacobi multiplier V of (1) there is exactly one smooth center manifold W c =
{z = h(x, y)} of (1) such that W c ⊂ V −1(0). �

In [3] is proved a stronger version of the following result, which is independent
of the nature of the singularity. Based on Theorem 4 we give now a shorter proof
of it.

Proposition 5. Assume that the origin is a saddle–focus for system (1). Let V
be a local C∞ and non–flat inverse Jacobi multiplier of (1) and W c = {z = h(x, y)}
be a C∞ local center manifold at the origin. Then the restricted function V |W c :
(x, y) 7→ V (x, y, h(x, y)) is flat at the origin.

Proof. By Theorem 4, there is a unique smooth center manifoldW c
0 = {z = h0(x, y)}

of (1) such that W c
0 ⊂ V −1(0), that is, V (x, y, h0(x, y)) ≡ 0. Therefore the fac-

torization V (x, y, z) = (z − h0(x, y))F (x, y, z) holds with F smooth at the ori-
gin. Hence V (x, y, h(x, y)) = (h(x, y) − h0(x, y))F (x, y, h(x, y)) which is clearly
flat at (x, y) = (0, 0) because of the property of center manifolds stating that
h(x, y)− h0(x, y) is flat at the origin. �

3. The cyclicity problem

We remark that any 2π–periodic solution of (4) corresponds to a periodic orbit
of (1) near (x, y, z) = (0, 0, 0) and conversely.

Let Ψ(θ; r0, w0) = (r(θ; r0, w0), w(θ; r0, w0)) be the solution of system (4) with
initial condition Ψ(0; r0, w0) = (r0, w0). We define the Poincaré translation map
Π(r0, w0) associated to (4) as Π(r0, w0) = (r(2π; r0, w0), w(2π; r0, w0)). We de-
fine now the displacement map d(r0, w0) = (d1(r0, w0), d2(r0, w0)) = Π(r0, w0) −
Id(r0, w0) where Id denotes the identity map. Doing a Lyapunov–Schmidt reduc-
tion to the Poincaré map, in [4] it is proved that there exists a unique analytic
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function w̄(r0) defined near r0 = 0 such that w̄(0) = 0 and d2(r0, w̄(r0)) = 0.
Thus, consider the analytic reduced displacement map δ(r0) defined as

(9) δ(r0) := d1(r0, w̄(r0))

and reduce the problem of looking for zeros of the displacement map d(r0, w0)
around r0 = 0 with r0 > 0 to the problem of searching for zeros of the reduced
displacement map δ(r0) around r0 = 0 with r0 > 0. Writing the Taylor expansion
δ(r0) =

∑
i≥k cir

i
0 with ck ̸= 0, we say that k is the order at the origin of δ. In

[4] it is showed that k ≥ 3 is odd and the maximum number of limit cycles that
can bifurcate from a saddle–focus of system (1) under any analytic perturbation
that keeps the location and monodromic nature of the singularity is (k − 1)/2.
More precisely, the cyclicity of a saddle–focus of system (1) is studied in [4]
without using any center manifold reduction, thus without computing Poincaré–
Lyapunov constants of X|W c. The following example was one of the original
motivations that led us to write the work [4]. It suggests that the cyclicity can
be given in terms of the order at the origin of a C∞ and non–flat inverse Jacobi
multiplier.

Example 6. Consider a special system (1) decoupled in the form

(10) ẋ = −y + F1(x, y), ẏ = x+ F2(x, y), ż = λz + zF3(x, y),

and having a saddle–focus at the origin. Due to the nature of the singularity
we recall from the results of [6] and [8] that there exists a smooth and non–flat
inverse integrating factor v(x, y) of the planar subsystem ẋ = −y + F1(x, y),
ẏ = x+ F2(x, y) in a neighborhood of its focus at the origin.

Taking into account that F3 does not depend on z, it is easy to see that
V (x, y, z) = zv(x, y) is an inverse Jacobi multiplier of (10). Moreover, in the
variables (θ, r, w), the associated system (4) on the cylinder has the inverse Jacobi
multiplier

Ṽ (θ, r, w) =
V (r cos θ, r sin θ, rw)

r2 θ̇
=

r w v(r cos θ, r sin θ)

r2 θ̇
= w v̂(θ, r).

From the results of [8] it follows that v̂(θ, r) = v̂m(θ)r
m+O(rm+1) with v̂m(θ) ̸= 0

for all θ ∈ [0, 2π) and m ∈ Z+ is odd.
Now we claim that m coincides with the order at the origin of the associated

reduced displacement map δ(r0). To see this, first we notice that the center
manifold at the origin of system (10) is W c = {z = 0} and the orbits of (10) on
W c spiral around the origin. Thus, since the initial conditions (r0, w0) = (r0, 0)
corresponds with initial conditions (x0, y0, z0) = (x0, y0, 0) on W c, it is clear that
d2(r0, 0) ≡ 0. Hence w̄(r0) ≡ 0. This implies that the reduced displacement map
δ(r0) = d1(r0, 0) coincides with the displacement map associated to the focus
at the origin of the planar system ẋ = −y + F1(x, y), ẏ = x + F2(x, y). Hence
δ(r0) = δmr

m
0 +O(rm+1) with δm ̸= 0 from the results in the plane of [8] and the

claim is proved.

In what follows we present a different proof of Theorem 2 of [4]. This new
proof is based on Theorem 4 proved in Section 2 and the result in the plane
stated in Theorem 1 of [8].
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Theorem 7. Assume that the origin is a saddle–focus for system (1) and let
k ≥ 3 be the order at the origin of its associated reduced displacement map
δ(r0) =

∑
i≥k cir

i
0 with ck ̸= 0. Let V (x, y, z) = z(x2 + y2)p + · · · with p ≥ 2 be

any smooth and non–flat inverse Jacobi multiplier of (1). Then k = 2p− 1.

Proof. From Theorem 4, there is a unique smooth center manifoldW c
0 = {z = h0(x, y)}

of (1) such that V (x, y, h0(x, y)) ≡ 0 or equivalently

(11) V (x, y, z) = (z − h0(x, y))F (x, y, z)

for some smooth function F at the origin. Notice that

(12) F (x, y, z) = (x2 + y2)p + · · ·

due to (2) and (11) and taking into account that the order at the origin of h0(x, y)
is at least 2.

Theorem 8 from [4] assures that the restricted function v(x, y) = F |W c
0
=

F (x, y, h0(x, y)) is an inverse integrating factor of the smooth restricted vector
field X|W c

0 . Hence v is smooth, and from (12) we deduce that it is non–flat. In
fact,

(13) v(x, y) = (x2 + y2)p + · · · .

Denote ∆(r0) the displacement map associated to the focus at the origin of
the planar vector field X|W c

0 . We claim that the order of ∆ is k.
At this point we want to remark that the results stated in [8] about smooth

and non–flat inverse integrating factors of analytic planar vector fields around
non-degenerate foci remain true if we change the analytic planar vector field with
a smooth planar vector field having a non–flat displacement map at the focus.

Therefore, using (13) and the results in [8], we deduce that k = 2p−1 finishing
the proof. It remains to justify the claim.

As a consequence of the invariance of W c
0 with respect to the flow of X , it is

clear that doing the near identity smooth change of variables

(14) (x, y, z) 7→ (x, y, Z) where Z = z − h0(x, y),

the analytic vector field X is pulled back into a smooth vector field X̃ hav-
ing a saddle–focus at the origin with the associated center manifold {Z =
0}. More precisely X̃ = (−y + F̃1(x, y, Z))∂x + (x + F̃2(x, y, Z))∂y + (λZ +

F̃3(x, y, Z))∂Z where F̃i are nonlinear terms and F̃3(x, y, 0) ≡ 0. Therefore the

Lyapunov–Schmidt reduction of the associated displacement map d̃(r0, w0) =

(d̃1(r0, w0), d̃2(r0, w0)) of X̃ is trivial and produces the reduced displacement map

δ̃(r0) = d̃1(r0, 0) which is clearly smooth. In [4] it is proved that the change of
variables (14) keeps invariant the order of the reduced displacement maps δ(r0)

and δ̃(r0) of X and X̃ , respectively. Hence δ̃(r0) has order k. But one can see

that δ̃(r0) is the displacement map of X̃ |{Z=0}. In addition, X|W c
0 = X̃ |{Z=0}.

Then ∆ = δ̃ and the claim is proved. �
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Example 8. The next example shows how Theorem 7 works. The planar poly-
nomial system ẋ = −y + xfs(x, y), ẏ = x + yfs(x, y), where fs is an homo-
geneous polynomial of degree s has a center at the origin if s is odd. Taking
f2(x, y) = ax2+bxy+cy2 it follows that the origin is a focus if and only if a+c ̸= 0.
Moreover, it always has the inverse integrating factor v(x, y) = (x2 + y2)2. The
system in R3 defined by

ẋ = −y + x(ax2 + bxy + cy2),

ẏ = x+ y(ax2 + bxy + cy2),

ż = λz + z(c1x+ c2y),

has the inverse Jacobi multiplier V (x, y, z) = zv(x, y) = z(x2 + y2)2. Then
p = 2. Taking polar coordinates (θ, r, w) we get d1(r0, w0) = (a+ c)πr30 +O(r40),
d2(r0, w0) = (exp(2πλ) − 1)w0 − (a + c)π exp(2πλ)w0r

2
0 +O(r30) and w̄(r0) ≡ 0.

Finally, δ(r0) = (a+c)πr30+O(r40). Then k = 3. This example validates Theorem
7 since, indeed, k = 2p− 1.

4. Extension to higher dimensions

The cyclicity of a saddle–focus of system (1) in R3 can be obtained from the
knowledge of the order at the origin of any locally smooth and non–flat inverse
Jacobi multiplier. Moreover, the vanishing set V −1(0) of any smooth inverse Ja-
cobi multiplier always contains the center manifold W c when the origin of system
(1) is a center, see [3]. In the saddle–focus case we have Theorem 4 relating the
sets V −1(0) and W c. So the natural question that arises is whether or not these
properties of inverse Jacobi multipliers of (1) are valid to higher dimensions. We
have a partial answer to this question.

First we define a higher dimensional version of system (1). We consider the
family of n–dimensional systems

(15) ξ̇ = C ξ + F(ξ),

with space state variable ξ = (x, y, z) ∈ R × R × Rn−2 and where F is a local
analytic function defined near the origin satisfying F(0) = 0 and whose Jacobian
matrix DF(0) = 0. Moreover, C is a constant square matrix of order n having
the block diagonal representation

C =

(
A 0
0 B

)
, A =

(
0 −1
1 0

)
,

where the (n− 2)× (n− 2) matrix B has no eigenvalues on the imaginary axis.
In particular, B is non-singular, that is detB ̸= 0.

Let V (ξ) be a locally smooth and non–flat inverse Jacobi multiplier of system
(15) having the Taylor expansion around the origin V (ξ) =

∑
j≥q Vj(ξ) with Vj

homogeneous polynomials of degree j and Vq(ξ) ̸≡ 0. Thus q ∈ N is the order
of V at the origin. We will see that, in general, when n ≥ 4 the order q is not
unique, contrary to what happens in the case n = 3.
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Proposition 9. Assume that the origin is a saddle–focus for system (15) with
n ≥ 4. Let Vi(ξ) be two different smooth and non–flat inverse Jacobi multipliers
of (15) having order qi at the origin with i = 1, 2. Then q1 and q2 need not be
equal.

Proof. We present a counter-example. Consider the special system (15) in R4

defined as

(16) ẋ = −y + F1(x, y), ẏ = x+ F2(x, y) , ż1 = λ1z1, ż2 = λ2z2.

We assume that the origin is a focus for the planar subsystem ẋ = −y+F1(x, y),
ẏ = x + F2(x, y). Then this subsystem has a smooth and non–flat inverse in-
tegrating factor v(x, y) in a neighborhood of the origin. On the other hand,
the linear subsystem ż1 = λ1z1, ż2 = λ2z2, has the inverse integrating factor
v1(z) = z1z2. Furthermore, it has the polynomial first integral H(z) = zn1

1 zn2
2

provided that the eigenvalues λ1 and λ2 are resonant, that is, n1λ1 + n2λ2 = 0
for some nonnegative integers n1 and n2 such that n1 + n2 ≥ 1. In this way,
taking λ1 = n2 and λ2 = −n1, the linear subsystem has another inverse in-
tegrating factor v2(z) = v1(z)H(z) = z1+n1

1 z1+n2
2 . Thus it is easy to see that

Vi(x, y, z) = v(x, y) vi(z) for i = 1, 2 are two different smooth and non–flat in-
verse Jacobi multipliers of (16) having different orders at the origin. �

From Proposition 9 we conclude that there is no direct extension of Theorem
7 to higher dimensions.

The following system in Rn is such that the vanishing set of an inverse Jacobi
multiplier around the origin contains the local center manifold. Consider the
following decoupled system (15)

(17) ẋ = −y + F1(x, y), ẏ = x+ F2(x, y), ż = Bz + F3(z).

with (x, y) ∈ R2 and z ∈ Rn−2. It is easy to see that if v(x, y) is an inverse
integrating factor of the planar subsystem ẋ = −y + F1(x, y), ẏ = x + F2(x, y)
and V1(z) is an inverse Jacobi multiplier of the other subsystem ż = Bz+F3(z),
then V (x, y, z) = v(x, y)V1(z) is an inverse Jacobi multiplier of (17). Consid-
ering the simple case F3(z) ≡ 0, the center manifold at the origin of system
(17) is W c = {z = 0}. Moreover, assuming B = diag{λ1, . . . , λn−2} we have
V1(z) =

∏n−2
i=1 zi. Hence W c ⊂ V −1(0).

We show that, when the extra condition Tr(B) ̸= 0 holds, additional properties
are derived for system (15).

First we generalize statement (iii) of Theorem 8 in [3] related to centers of (1).

Proposition 10. Consider system (15) with Tr(B) ̸= 0. Assume that the origin
is a center on the center manifold W c of system (15). Let V be a local C1 inverse
Jacobi multiplier of (15). Then W c ⊂ V −1(0).

Proof. The proof follows the same lines as those of the proof of the analogous
result in [3], so we only outline it. Denote X the vector field associated to (15).
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Since the origin is a center of (15), it is known that there is a unique local
center manifold W c and this is the graph of an analytic function z = h(x, y). See
for example [2]. The curve C = {(x, 0, h(x, 0)) : x ∈ (0, ϵ]} ⊂ W c with ϵ > 0
sufficiently small, is a transversal section to the orbits of X|W c. By hypothesis,
these orbits are closed.

Let ϕt(x, y, z) be the solution of (15) with initial condition ϕ0(x, y, z) = (x, y, z).
Then, using the characteristics method, one obtains an expression for V along
the orbits of X as

V (ϕt(x, 0, h(x, 0))) = V (x, 0, h(x, 0))×

exp

(∫ t

0

divX (ϕs(x, 0, h(x, 0))) ds

)
.(18)

See [1] for a proof of this formula. For each x ∈ (0, ϵ], let T (x) > 0 be the
minimal period of ϕt(x, 0, h(x, 0)). Thus ϕT (x)(x, 0, h(x, 0)) = (x, 0, h(x, 0)) for
all x ∈ (0, ϵ]. Since ϕt is a diffeomorphism we get that

(19)

∫ T (x)

0

divX (ϕs(x, 0, h(x, 0))) ds = Tr(B)T (x) +O(x) = 2πTr(B) +O(x),

where we have used that divX = Tr(B) + · · · and that T (x) = 2π + O(x).
Evaluating (18) at t = T (x) we have

V (x, 0, h(x, 0)) = V (x, 0, h(x, 0))× exp (2πTr(B) +O(x))

which gives V (x, 0, h(x, 0)) ≡ 0 since Tr(B) ̸= 0. Finally, using (18) and the fact
that C is a transversal section leads V (x, y, h(x, y)) ≡ 0 finishing the proof. �

It is known from [1] that, in general, a limit cycle γ need not be contained in
the zero set of inverse Jacobi multipliers well defined in a neighborhood of γ. We
will see that the small amplitude limit cycles of (15) with Tr(B) ̸= 0 have this
property.

Proposition 11. Consider system (15) with Tr(B) ̸= 0. Let γ be a limit cycle
around the origin of system (15) with sufficiently small amplitude. Let V be a C1

inverse Jacobi multiplier of (15) defined in a neighborhood of the origin. Then,
γ ⊂ V −1(0).

Proof. Let X be the associated vector field of system (15). We have divX (0) =
Tr(B) ̸= 0. Thus, from the continuity of the function divX , there is a ball Br(0)
of radius r sufficiently small with center at the origin such that divX (x, y, z) ̸= 0
for all (x, y, z) ∈ Br(0). Hence when the T–periodic limit cycle γ satisfies γ ⊂
Br(0), we get that

∆(γ) :=

∫ T

0

divX ◦ γ(t) dt ̸= 0.

Since ∆(γ) ̸= 0, from the results of [1], we obtain that γ ⊂ V −1(0) finishing the
proof. �
Remark 12. After the completion of this work we found that Prof. X. Zhang
has a recent preprint entitled “Inverse Jacobian multipliers and Hopf bifurcation
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on center manifolds” where several results of [3] and [4] have been generalized to
the higher dimensional context.
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[9] I.A. Garćıa and M. Grau, A survey on the inverse integrating factor, Qual. Theory
Dyn. Syst. 9 (2010), 115–166.
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