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Abstract

In this paper we study the maximum number of limit cycles that can bifurcate from a singular point of
saddle-focus type of an analytic, autonomous differential system in R

3 under any analytic perturbation that
keeps the location and nature of the singularity. We only consider those foci on center manifolds having as-
sociated two nonzero purely imaginary and one nonzero real eigenvalues. Our approach is different from the
classical one in the sense that we do not use any center manifold reduction to compute Poincaré–Lyapunov
constants. Instead, we study the multiple Hopf bifurcation first doing a Lyapunov–Schmidt reduction to the
associated Poincaré map, obtaining in this way an analytic reduced displacement map. Next we prove that
the order of this displacement map coincides with the vanishing multiplicity (denoted m) of any locally
smooth and non-flat inverse Jacobi multiplier. Finally the cyclicity of the focus is given in terms of m.
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1. Introduction and statement of the results

Let us consider the real analytic autonomous differential system

ẋ = −y +F1(x, y, z), ẏ = x +F2(x, y, z), ż = λz +F3(x, y, z), (1)

defined in a neighborhood U ⊂R
3 of the origin and with an isolated singular point at the origin.

Here, λ ∈ R\{0}. We will also define the analytic function F = (F1,F2,F3) in U . It will be
assumed that F only contains nonlinear terms in (1) or equivalently that F(0) = 0 and whose
Jacobian matrix DF(0) = 0. We will also denote by X0 the associated vector field to system (1),
that is, X0 = (−y +F1(x, y, z))∂x + (x +F2(x, y, z))∂y + (λz +F3(x, y, z))∂z.

It is well known that the local dynamics of (1) around the origin on an invariant center mani-
fold can be of two types. We say that the origin is a center of (1) if all the orbits on the local center
manifold at the origin are periodic. Otherwise the origin is called a saddle-focus and the orbits
spiral around the origin on any center manifold, hence one has a focus on each two-dimensional
center manifold.

A C1 function V0 : U → R is said to be an inverse Jacobi multiplier of X0 if it is not locally
null and it satisfies the linear first order partial differential equation X0V0 = V0 divX0, where
divX0 is the divergence of the vector field X0. For a nice survey on inverse Jacobi multipliers
one can see [2] and also [7].

We consider now an analytic perturbation of system (1) of the form

ẋ = −y + G1(x, y, z; ε),
ẏ = x + G2(x, y, z; ε),
ż = λz + G3(x, y, z; ε), (2)

where ε ∈ R
p is a finite dimensional perturbation parameter, that is, 0 < ‖ε‖ � 1 and

Gi (x, y, z;0) ≡ Fi (x, y, z) for all i. We will assume that the vector field G = (G1,G2,G3) is
analytic for both (x, y, z) and ε in a neighborhood of the origin. Additionally we will assume
that the position and monodromic nature of the singularity at the origin is not affected by such
perturbation imposing that G(0,0,0; ε) = 0 for all ε. More precisely, the allowed perturbation
is made so that DG(0,0,0; ε) = diag{μ(ε),μ(ε), ν(ε)} with analytic functions μ and ν near
the origin such that μ(0) = ν(0) = 0. Equivalently the eigenvalues at the origin of (2) must be
μ(ε) ± i and λ + ν(ε). We associate to the perturbed system (2) the vector field Xε .

A limit cycle γε of system (2) bifurcates from the origin if it tends to it (in the Hausdorff
distance) as ε → 0. We will study the existence of periodic orbits of (2) in a neighborhood of
(x, y, z, ε) = (0,0,0,0). A Hopf bifurcation, also denoted by Poincaré–Andronov–Hopf bifurca-
tion, is a bifurcation in a neighborhood of an isolated singular point like the origin of system (2).
If the stability type of this point changes when ε varies near 0, then this change is usually ac-
companied with either the appearance or disappearance of a small amplitude periodic orbit close
to the equilibrium point. A classical reference for such kind of bifurcation is the textbook [9].

Here we are interested in giving a sharp upper bound for the number of limit cycles which
can bifurcate from a saddle-focus at the origin of system (1) under any analytic deformation (2)
with a finite number p of parameters and ‖ε‖ sufficiently small. In this context, the word sharp
means that there exists a perturbation (2) with exactly that number of limit cycles bifurcating
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from the origin. In other words, this upper bound is realizable. This sharp upper bound is called
the cyclicity of the origin of system (1) and will be denoted by Cycl(Xε,0) all along this paper.

The next theorem is our main result.

Theorem 1. Assume that the origin of (1) is a saddle-focus. Let V0(x, y, z) be a smooth and
non-flat at the origin inverse Jacobi multiplier of the unperturbed analytic system (1). Then up
to a multiplicative constant we have V0(x, y, z) = z(x2 + y2)n + · · · with n � 2 fixed and where
the dots denote higher order terms. Moreover, the cyclicity of the origin in system (1) under any
perturbation (2) is Cycl(Xε,0) = n − 1.

It is worth to point out that Theorem 5 of [3] states that there exists a function V0 that appears
in the hypothesis of Theorem 1.

In order to prove Theorem 1 it is natural to introduce polar coordinates in the following form.
We perform the polar blow-up (x, y, z) 	→ (θ, r,w) defined by

x = r cos θ, y = r sin θ, z = rw, (3)

bringing system (2) into a system of the form

ṙ =R(θ, r,w; ε),
θ̇ = 1 + Θ(θ, r,w; ε),
ẇ = λw +W(θ, r,w; ε). (4)

We observe that Θ(θ,0,w;0) = 0 so that θ̇ > 0 for (r, ε) in a sufficiently small neighborhood
of the origin and w in an arbitrary fixed compact set. Therefore, under these conditions we can
write system (4) as the following system

dr

dθ
= R(θ, r,w; ε), dw

dθ
= λw + W(θ, r,w; ε), (5)

defined on the cylinder C = {(θ, r,w) ∈ S
1 ×R

2 with |r| sufficiently small} where S1 =R/2πZ.
We remark that any 2π -periodic solution of (5) corresponds to a periodic orbit of (2) near
(x, y, z) = (0,0,0) through the transformation (3) and conversely.

Let Ψ (θ; r0,w0; ε) = (r(θ; r0,w0; ε),w(θ; r0,w0; ε)) denote the solution of (5) with initial
condition Ψ (0; r0,w0; ε) = (r0,w0). We define the Poincaré translation map Π(r0,w0; ε) asso-
ciated to (5) as Π(r0,w0; ε) = Ψ (2π; r0,w0; ε). We denote the components of the Poincaré map
Π = (Π1,Π2).

Define now the displacement map d(r0,w0; ε) = Π(r0,w0; ε) − Id(r0,w0) where Id denotes
the identity map and denote its components by d = (d1, d2). Now applying a Lyapunov–Schmidt
reduction to the displacement map, see Lemma 3, we reduce the problem of looking for zeroes
of the displacement map d(r0,w0; ε) around (r0, ε) = (0,0) and with r0 > 0 to the problem of
searching zeroes of the analytic reduced displacement map �(r0; ε) around (r0, ε) = (0,0) with
r0 > 0. As far as we know, this approach is new. We define the reduced displacement map of the
unperturbed system (1) as δ(r0) = �(r0;0) and we call k the order at the origin of δ, that is, we
can write the Taylor expansion at r0 = 0 of the form δ(r0) = ∑

i�k cir
i
0 with ck 
= 0. Notice that

δ 
≡ 0 because the origin is a saddle-focus rather than a center in (1).
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We associate to system (5)ε=0 the vector field X̂0 = ∂θ + R(θ, r,w;0)∂r + (λw +
W(θ, r,w;0))∂w defined on the cylinder C. We define an inverse Jacobi multiplier V (θ, r,w)

of system (5)ε=0 as a function V : C → R of class C1(C), which is non-locally null and which
satisfies the linear partial differential equation X̂0V = V div X̂0. We remark that since V (θ, r,w)

is a continuous function defined over the cylinder C it needs to be 2π -periodic in θ . Thus we
have V (θ + 2π, r,w) = V (θ, r,w).

Throughout the rest of this paper, we will only consider a smooth and non-flat at r = 0 inverse
Jacobi multiplier V (θ, r,w) of system (5)ε=0 which comes from a given smooth and non-flat at
the origin inverse Jacobi multiplier V0(x, y, z) of system (1). In Lemma 8 we prove that they are
related by the following formula

V (θ, r,w) = V0(r cos θ, r sin θ, rw)

r2(1 + Θ(θ, r,w;0))
, (6)

where Θ is the function defined in (4). In addition Lemma 8 also proves that the function
V (θ, r,w) defined via (6) has the Taylor series representation

V (θ, r,w) = wrm +O
(
rm+1), (7)

up to a multiplicative constant, and the leading exponent m � 1 is an odd number which we
call the vanishing multiplicity of V (θ, r,w) on r = 0. Here and throughout this paper O(rm+1)

denotes a smooth function of variables (θ, r,w) whose Taylor series around r = 0 starts with a
term of order m + 1 in r .

The next result reveals an important phenomenon that stays behind the understanding of The-
orem 1.

Theorem 2. Assume that the origin of (1) is a saddle-focus. Let V0(x, y, z) be a smooth and
non-flat at the origin inverse Jacobi multiplier of the analytic system (1) and V (θ, r,w) defined
in (6) be the corresponding inverse Jacobi multiplier of system (5)ε=0 having vanishing multi-
plicity m at r = 0. Let k be the order at the origin of the reduced displacement map δ(r0) of the
unperturbed system (1). Then m = k � 3 and they are odd numbers.

In order to prove our results, we shall need a fundamental relation between Poincaré maps
and inverse Jacobi multipliers of system (5)ε=0. We remark that this relation was proved in a
particular case in [5] but we need a generalized version to higher dimensions as it is proved in
[4]. In our notation, this fundamental relation is given by

V
(
0,Π(r0,w0)

) = V (0, r0,w0)det
(
DΠ(r0,w0)

)
, (8)

where V (θ, r,w) is an inverse Jacobi multiplier of system (5)ε=0 and Π(r0,w0) its Poincaré
map.

The paper is organized as follows. In Section 2 we perform the Lyapunov–Schmidt reduction
of the displacement map d(r0,w0; ε) for a saddle-focus and also prove some of its properties that
we will need later. Section 3 is devoted to explain several properties of inverse Jacobi multipliers.
In Section 4 we obtain some invariants associated to a change of variables that smoothly flattens
a center manifold. Now we are ready to give the proof of the main results in Section 5. Finally,
we add Appendix A where we present an example of perturbed system (2) having the maximum
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number of bifurcating limit cycles and also present a method for computing Poincaré–Lyapunov
constants.

2. Lyapunov–Schmidt reduction of the displacement map for a saddle-focus and some of
its properties

Let us consider system (5) defined in the cylinder C and in the hypotheses stated in the Intro-
duction. Notice that the functions R and W that define system (5) are analytic, 2π -periodic in θ

and satisfy

R(θ,0,w; ε) = ∂R

∂r
(θ,0,w;0) = 0, W(θ,0,w;0) = 0.

Moreover, the solution of (5) satisfies

r(θ;0,w0; ε) = 0, w(θ;0,0;0) = 0.

For further use, we write also here the following expressions of the components of the displace-
ment map d = (d1, d2) of system (5),

d1(r0,w0; ε) = r(2π; r0,w0; ε) − r0

=
2π∫

0

R
(
θ, r(θ; r0,w0; ε),w(θ; r0,w0; ε); ε

)
dθ,

d2(r0,w0; ε) = w(2π; r0,w0; ε) − w0

= [
exp(2πλ) − 1

]
w0

+
2π∫

0

exp
[
(2π − θ)λ

]
W

(
θ, r(θ; r0,w0; ε),w(θ; r0,w0; ε); ε

)
dθ.

These were obtained by the integral equations equivalent with system (5).
Combining in an elementary way all the above relations, one can obtain some of the following

results of this section. For these kind of proofs we will omit the details.
Now we will apply a Lyapunov–Schmidt reduction to the displacement map.

Lemma 3. Let d(r0,w0; ε) be the displacement map of system (5). Then, there exists a
unique analytic function w̄(r0, ε) defined near (r0, ε) = (0,0) such that w̄(0,0) = 0 and
d2(r0, w̄(r0, ε); ε) ≡ 0.

Proof. Using the relations written in the beginning of this section one can find that

d2(0,0,0) = 0 and
∂d2

(0,0;0) = exp(2πλ) − 1 
= 0,

∂w0
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since λ 
= 0. Hence, we can apply the Implicit Function Theorem to conclude the existence
of a unique analytic function w̄(r0, ε) defined near (r0, ε) = (0,0) such that w̄(0,0) = 0 and
d2(r0, w̄(r0, ε); ε) ≡ 0. �
Lemma 4. The displacement map d = (d1, d2) and the Poincaré map Π = (Π1,Π2) satisfy the
following relations.

∂d1

∂r0
(0,w0;0) = 0, d2(0,w0;0) = [

exp(2πλ) − 1
]
w0,

Π1(0,w0;0) = 0,
∂Π1

∂r0
(0,w0;0) = 1, Π2(0,w0;0) = exp(2πλ)w0, (9)

∂Π1

∂w0
(0,w0;0) = 0,

∂Π2

∂w0
(0,w0;0) = exp(2πλ). (10)

Lemma 5. Assume that a center manifold of (1) at the origin is given by Wc(0) = {z = 0}. Then,
the following holds:

Π2(r0,0;0) = 0,
∂Π2

∂r0
(r0,0;0) = 0. (11)

Proof. Since Wc(0) = {z = 0}, in coordinates (θ, r,w) the center manifold becomes Wc(0) =
{w = 0}. The flow-invariance of Wc(0) gives w(θ; r0,0;0) = 0 and therefore d2(r0,0;0) = 0 or,
in other words, w̄(r0,0) = 0. Hence, since Π2(r0,w0;0) = w0 + d2(r0,w0;0), we get (11). �
Lemma 6. The determinant det(DΠ(r0,w0;0)) of the linear part of the Poincaré map of system
(5)ε=0 satisfies

det
(
DΠ(0,w0;0)

) = exp(2πλ),

det
(
DΠ(r0,0;0)

) = exp(2πλ) +O(r0). (12)

If in addition Wc(0) = {z = 0} is a center manifold of (1) then

det
(
DΠ(r0,0;0)

) = [
1 + kδ̂(0)rk−1

0 +O
(
rk

0

)]∂Π2

∂w0
(r0,0;0), (13)

where the reduced displacement map δ(r0) = rk
0 δ̂(r0) with δ̂(0) 
= 0.

Proof. By definition, we have

det
(
DΠ(r0,w0;0)

) =
∣∣∣∣∣

∂Π1
∂r0

(r0,w0;0) ∂Π1
∂w0

(r0,w0;0)

∂Π2
∂r0

(r0,w0;0) ∂Π2
∂w0

(r0,w0;0)

∣∣∣∣∣ .

Taking into account the second equation in (9) and (10) we have

det
(
DΠ(0,w0;0)

) =
∣∣∣∣ 1 0

∂Π2 (r0,w0;0) exp(2πλ)

∣∣∣∣ = exp(2πλ) 
= 0.

∂r0
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Finally, taking into account the second equation in (10) we have ∂Π2
∂w0

(0,0;0) = exp(2πλ) and

therefore Eq. (12) ∂Π2
∂w0

(r0,0;0) = exp(2πλ) +O(r0) follows.
Assume now that Wc(0) = {z = 0} is a center manifold of (1). Then w̄(r0,0) = 0 and

therefore the reduced displacement map has the following expression δ(r0) = d1(r0,0;0). This
implies that

Π1(r0,0;0) = r0 + δ(r0) = r0 + rk
0 δ̂(r0),

where δ̂(0) 
= 0. Using this expression of Π1(r0,0;0) together with (11) we have

det
(
DΠ(r0,0;0)

) =
∣∣∣∣∣

∂Π1
∂r0

(r0,0;0) ∂Π1
∂w0

(r0,0;0)

∂Π2
∂r0

(r0,0;0) ∂Π2
∂w0

(r0,0;0)

∣∣∣∣∣

=
∣∣∣∣∣

1 + krk−1
0 δ̂(r0) + rkδ̂′(r0)

∂Π1
∂w0

(r0,0;0)

0 ∂Π2
∂w0

(r0,0;0)

∣∣∣∣∣
= [

1 + kδ̂(0)rk−1
0 +O

(
rk

0

)]∂Π2

∂w0
(r0,0;0),

proving (13). Thus, the lemma follows. �
Remark 7. We want to emphasize that all the results in this section remain valid (only replacing
the word “analytic” by “smooth and non-flat” in Lemma 3) in case that system (1) is not analytic
and it is only smooth and non-flat. This fact will be used later in the proof of Theorem 2.

3. Several properties of inverse Jacobi multipliers

Lemma 8. Let V0(x, y, z) be an inverse Jacobi multiplier of system (1) defined in a neighborhood
of the origin. Then, an inverse Jacobi multiplier V (θ, r,w) of system (5)ε=0 in r 
= 0 is given by

V (θ, r,w) = V0(r cos θ, r sin θ, rw)

r2(1 + Θ(θ, r,w;0))
.

In addition if V0(x, y, z) is smooth and non-flat at the origin and this is a saddle-focus of (1)
then there exists an odd integer m� 1 such that

V (θ, r,w) = wrm +O
(
rm+1), (14)

up to a multiplicative constant.

Proof. First of all, we calculate the Jacobian determinant of the polar blow-up (x, y, z) 	→
(θ, r,w) defined in (3). We obtain that

∂(x, y, z)

∂(θ, r,w)
=

∣∣∣∣∣∣
−r sin θ cos θ 0
r cos θ sin θ 0

0 w r

∣∣∣∣∣∣ = −r2.
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Then, we have that the function V0(r cos θ, r sin θ, rw)/r2 is an inverse Jacobi multiplier for
system (4)ε=0. Finally, since the relation between systems (4)ε=0 and (5)ε=0 is just the time
rescaling t → θ with θ̇ = 1 + Θ(θ, r,w;0), the first part of the lemma follows.

Recalling Proposition 7 of [3] we know that when V0(x, y, z) is smooth and non-flat at the
origin then V0(x, y, z) = z(x2 + y2)n + · · · with n � 0. Actually, we claim that in fact n � 1,
hence we get m = 2n − 1 � 1 finishing the proof. In order to prove the claim we assume by
contradiction that n = 0, hence V0(x, y, z) = z + · · ·. In Theorem 4 of [3] it is proved that the
existence of an analytic inverse Jacobi multiplier of the form z + · · · of system (1) implies that
the origin must be a center. Repeating verbatim the arguments in the first paragraph of the proof
of Theorem 4 of [3] only replacing the word “analytic” by “smooth” one can check that the
origin must be a center also in our case. This contradicts the hypothesis that the origin is a
saddle-focus. �

In order to motivate why we need to introduce some flat terms in the expressions of the Jacobi
multipliers, we present an example which already appeared in [3]. The system

ẋ = −y − x
(
x2 + y2), ẏ = x − y

(
x2 + y2), ż = −z (15)

has a saddle-focus at the origin and the following 1-parameter family of C∞ and non-flat at the
origin inverse Jacobi multipliers

V0(x, y, z) =
(

z − a exp

(
− 1

2(x2 + y2)

))(
x2 + y2)2 = z

(
x2 + y2)2 + aF0(x, y)

for all a ∈R. The corresponding inverse Jacobi multipliers in polar coordinates (θ, r,w) become

V (θ, r,w) = r2
(

rw − a exp

(
− 1

2r2

))
= wr3 + aF(r).

Notice that the function F0 is flat at (x, y, z) = (0,0,0) while F is flat at r = 0. Hence the Taylor
expansion of V0 at (x, y, z) = (0,0,0) is the same for all the real parameters a. The same occurs
for the Taylor expansion of V at r = 0. Of course, we wonder whether this is always the case.

Lemma 9. Assume the origin is a saddle-focus of (1). Let V (θ, r,w) be an inverse Jacobi multi-
plier of system (5)ε=0 coming from a smooth and non-flat at the origin inverse Jacobi multiplier
V0(x, y, z) of system (1). Then V (θ, r,w) is smooth and non-flat at r = 0 and has a Taylor ex-
pansion (14). Moreover either

(i) V (0, r,w) = wrmVm(r,w) + F(r,w) or
(ii) V (0, r,w) = wrmVm(r,w) + rm+m′

Vm′(r) + F(r,w),

where m′ � 1 is an integer number, Vm(0,0) 
= 0, Vm′(0) 
= 0 and F(r,w) is a flat function at
r = 0. In addition, when a center manifold of (1) is Wc(0) = {z = 0} then option (i) holds.

Proof. The fact that V (θ, r,w) is smooth and non-flat at r = 0 and has a Taylor expansion (14)
follows easily from Lemma 8. Since V (0, r,w) = wrm + O(rm+1), the two decompositions of
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V (0, r,w) given in the lemma are obvious. We observe that it is necessary to include a flat func-
tion F at r = 0 as example (15) shows. The unique difference between both decompositions
consists in whether after removing the flat terms F the remaining expression of V (0, r,w) van-
ishes or not at w = 0.

To prove the last statement of the lemma, we recall that in [3] it is proved that the restricted
function V0|Wc : (x, y) 	→ f (x, y) = V0(x, y,h(x, y)) is a flat function at (x, y) = (0,0) for
any smooth center manifold Wc(0) = {z = h(x, y)} of (1). Now we claim that the function

g(θ, r) = f (r cos θ, r sin θ) is flat at r = 0. Indeed, one can easily obtain that ∂ig

∂ri (θ,0) = 0 for
all i provided that all the partial derivatives of f (x, y) at the origin vanish.

From Lemma 8 we know that V and V0 are related via

V (0, r,w) = V0(r,0, rw)

r2(1 + Θ(0, r,w;0))
.

Assume now that a center manifold of (1) is Wc(0) = {z = 0}. Therefore V0(x, y,0) is flat at the
origin and hence V0(r cos θ, r sin θ,0) is flat at r = 0 for any θ . Taking θ = 0 we get in particular
that V0(r,0,0) is flat at r = 0 and therefore

V (0, r,0) = V0(r,0,0)

r2(1 + Θ(0, r,0;0))

is flat at r = 0. This last property of V (0, r,0) is only satisfied by the expression (i) in the
lemma. �
4. Smoothly flattening a center manifold

We remind that a local center manifold Wc(0) at the origin of system (1) is an invari-
ant surface which is tangent to the (x, y) plane at the origin. More precise, Wc(0) = {z =
h(x, y): for (x, y) in a small neighborhood of (0,0)} with h(0,0) = 0 and Dh(0,0) = 0. It is
known that for any k � 1 there exists a Ck local center manifold and, moreover, in [3] it is proved
that there exists a C∞ local center manifold around a saddle-focus of (1). In this paper we will
work only with smooth local center manifolds. The polar blow-up (x, y, z) 	→ (θ, r,w) defined
by (3) brings any smooth center manifold Wc(0) = {(x, y, z): z = h(x, y)} of (1) into a smooth
invariant manifold {(θ, r,w): w = rh̄(θ, r)} of (5)ε=0 where h(r cos θ, r sin θ) = r2h̄(θ, r).

Lemma 10. Let Wc(0) = {z = h(x, y)} be a smooth local center manifold at the origin of sys-
tem (1), and h be such that h(r cos θ, r sin θ) = r2h̄(θ, r). Then either the function h̄(0, r) is flat
at r = 0, or its order at r = 0 is m′ − 1. The integer m′ � 1 is defined in Lemma 9.

Proof. Let V (θ, r,w) and V0(x, y, z) be like in Lemma 9. From [3], f (x, y) = V0(x, y,h(x, y))

is flat at (x, y) = (0,0). Hence the function g(θ, r) = f (r cos θ, r sin θ) is flat at r = 0. In partic-
ular we have that g(0, r) = V0(r,0, r2h̄(0, r)) is flat at r = 0.

On the other hand using Lemma 8, and further evaluating at w = rh̄(θ, r) and θ = 0 we must
have that

V
(
0, r, rh̄(0, r)

) = V0(r,0, r2h̄(0, r))

2 ¯
r (1 + Θ(0, r, rh(0, r);0))
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which is flat at r = 0. If we evaluate (i) or (ii) of Lemma 9 at w = rh̄(θ, r), since V (0, r, rh̄(0, r))

is flat at r = 0, we obtain the conclusion. �
Let Wc(0) = {z = h(x, y)} be a smooth local center manifold at the origin of system (1). As

a consequence of the flow-invariance of Wc(0), it is clear that doing the near identity smooth
change of variables

(x, y, z) 	→ (x, y,Z) where Z = z − h(x, y), (16)

system (1) becomes

ẋ = −y + F̃1(x, y,Z),

ẏ = x + F̃2(x, y,Z),

Ż = λZ + F̃3(x, y,Z), (17)

where F̃i are nonlinear terms and F̃3(x, y,0) ≡ 0, that is, a center manifold of (17) is Wc(0) =
{Z = 0}. Notice however that system (17) will be only C∞ although the original system (1) is
analytic. The rest of this section is devoted to show several invariants associated to the change of
variables (16).

Lemma 11. Let V0(x, y, z) be a smooth and non-flat at the origin inverse Jacobi multiplier of (1)
having order 2n + 1 at the origin. Then the corresponding inverse Jacobi multiplier Ṽ0(x, y,Z)

of (17) has the same order at the origin.

Proof. Clearly the change of variables (16) is symplectic because its Jacobian determinant is

∂(x, y,Z)

∂(x, y, z)
=

∣∣∣∣∣∣
1 0 0
0 1 0

− ∂h
∂x

− ∂h
∂y

1

∣∣∣∣∣∣ = 1.

Therefore we have Ṽ0(x, y,Z) = V0(x, y,Z + h(x, y)). Finally, using both that V0(x, y, z) =
z(x2 +y2)n +· · · and that h(0,0) = 0 and Dh(0,0) = 0 leads to Ṽ0(x, y,Z) = Z(x2 +y2)n +· · ·
and the proof is completed. �

To obtain a new invariant associated to the change of variables (16), we shall use an argument
that relates the conjugation between T -periodic systems and its associated Poincaré maps, see
for instance Lemma 8 of [8].

Lemma 12. (See [8].) Two real Ck with 1 � k � ∞ (resp. analytic), T -periodic systems are
Ck (resp. analytically) equivalent if and only if their Poincaré maps are Ck (resp. analytically)
conjugate.

Lemma 13. The smooth change of variables (16) that brings system (1) into system (17) keeps
invariant the order at the origin k of the corresponding reduced displacements maps δ(r0) and
δ̃(r0) of systems (1) and (17), respectively.
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Proof. Let Ψ (θ; r0,w0) be the solution of the 2π -periodic system (5)ε=0 with initial condition
Ψ (0; r0,w0) = (r0,w0) and Ψ̃ (θ; r0,w0) be the solution with initial condition Ψ̃ (0; r0,w0) =
(r0,w0) associated to the 2π -periodic system analogous to system (5)ε=0 but corresponding to
system (17) via the polar blow-up (x, y,Z) 	→ (θ, r,w) defined by x = r cos θ , y = r sin θ and
Z = rw. We have associated to each 2π -periodic system their Poincaré maps Π(r0,w0) =
Ψ (2π; r0,w0) and Π̃(r0,w0) = Ψ̃ (2π; r0,w0). From the proof of the necessity part of
Lemma 12, it follows that if there is a θ dependent Ck diffeomorphism Hθ(r,w) which car-
ries the solutions Ψ (θ; r0,w0) into the solutions Ψ̃ (θ;Hθ(r0,w0)), that is, Ψ̃ (θ;H0(r0,w0)) =
Hθ(Ψ (θ; r0,w0)) and Hθ(r,w) is 2π -periodic in θ , that is, Hθ(r,w) = Hθ+2π (r,w), then
H0(r,w) is a Ck diffeomorphism having the property that conjugates their Poincaré maps

Π̃ ◦ H0(r0,w0) = H0 ◦ Π(r0,w0). (18)

In our particular case, since w = Z/r , we have

Hθ(r,w) =
(

r,w − h(r cos θ, r sin θ)

r

)
= (

r,w − rh̄(r cos θ, r sin θ)
)
,

where we have defined h̄ as before, that is such that h(r cos θ, r sin θ) = r2h̄(θ, r). Notice that
Hθ(r,w) is a 2π -periodic in θ Ck diffeomorphism because h̄ ∈ Ck and the inverse of Hθ is
H−1

θ (r,w) = (r,w + rh̄(θ, r)) which is also Ck . Thus we have

Π̃ ◦ H0(r0,w0) = Π̃
(
r0,w0 − r0h̄(0, r0)

)
= (

r0 + d̃1
(
r0,w0 − r0h̄(0, r0)

)
,w0 − r0h̄(0, r0) + d̃2

(
r0,w0 − r0h̄(0, r0)

))

and

H0 ◦ Π(r0,w0) = H0
(
r0 + d1(r0,w0),w0 + d2(r0,w0)

)
= (

r0 + d1(r0,w0),w0 + d2(r0,w0) − (
r0 + d1(r0,w0)

)
h̄
(
0, r0 + d1(r0,w0)

))
.

Introducing these expressions in the conjugation relation (18) and equating its components
we have d̃1(r0,w0 − r0h̄(0, r0)) = d1(r0,w0) and d̃2(r0,w0 − r0h̄(0, r0)) = d2(r0,w0) − (r0 +
d1(r0,w0))h̄(0, r0 + d1(r0,w0)) + r0h̄(0, r0). Evaluating these equations at w0 = w̄(r0) and re-
calling that by definition d2(r0, w̄(r0)) = 0 and δ(r0) = d1(r0, w̄(r0)) gives

d̃1
(
r0, w̄(r0) − r0h̄(0, r0)

) = δ(r0), (19)

d̃2
(
r0, w̄(r0) − r0h̄(0, r0)

) = −(
r0 + δ(r0)

)
h̄
(
0, r0 + δ(r0)

) + r0h̄(0, r0). (20)

We want to show that the order at the origin of the reduced maps δ(r0) and δ̃(r0) = d̃1(r0,0) coin-
cides. The center case is trivial because δ(r0) = δ̃(r0) ≡ 0 which implies that w̄(r0) = r0h̄(0, r0)

from (19). The saddle-focus case is a bit more involved as shown below.
First we will see that the order of the right-hand side of (20) is k + m′ − 1. To do that we

denote f (r0) := −r0h̄(0, r0), where we know from Lemma 10 that f has order m′ at the origin,
and the right-hand side of (20) can be written as
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f
(
r0 + δ(r0)

) − f (r0) = δ(r0)f
′(r0) + O

(
δ2(r0)

)
,

hence its order at the origin is indeed k + m′ − 1.
Now we shall prove that the order at the origin of the left-hand side of (20) must be equal to

the order at the origin of the function g(r0) := w̄(r0) − r0h̄(0, r0). This is because we have the
expansion of left-hand side of (20)

d̃2
(
r0, g(r0)

) = d̃2(r0,0) + g(r0)
∂d̃2

∂w
(r0,0) + O

(
g2(r0)

)
.

Since d̃2(r0,0) = 0 and ∂d̃2
∂w

(0,0) = e2πλ − 1 
= 0 from the second equation in (10) it is clear that
the claim holds.

From the above discussions we deduce that the order at the origin of g(r0) is k + m′ − 1.
Having this in mind we now want to establish the order at the origin of d̃1(r0, g(r0)) − d̃1(r0,0).
We have again an expansion of the form

d̃1
(
r0, g(r0)

) − d̃1(r0,0) = g(r0)
∂d̃1

∂w
(r0,0) + O

(
g2(r0)

)
.

Since ∂d̃1
∂w

(0,0) = 0 due to the first equation in (10), the order at the origin of the right-hand side
of the above equality is at least k + m′. Now we get

δ(r0) − δ̃(r0) = δ(r0) − d̃1(r0,0) = d̃1
(
r0, g(r0)

) − d̃1(r0,0),

where the last equality follows from (19). Hence we deduce that the order at the origin of
δ(r0) − δ̃(r0) is at least k + m′. Since m′ � 1 by definition we conclude that the order at the
origin of δ̃(r0) is also k, as the order of δ(r0). �
5. Proofs of the main results

Proof of Theorem 2. If {z = 0} is not a center manifold at the origin of system (1), we perform
the smooth and non-flat change of variables (x, y, z) 	→ (x, y,Z) defined in (16) such that system
(1) becomes (17) and therefore having a center manifold Wc(0) = {Z = 0}.

Let us denote by V (θ, r,w) the smooth and non-flat at r = 0 inverse Jacobi multiplier of the
corresponding smooth system (5)ε=0 associated to (17). Taking into account Lemma 11 we know
that V (θ, r,w) also has vanishing multiplicity m at r = 0. All these facts together imply, from
Lemma 9, that V (0, r,w) = wrmVm(r,w) + F(r,w) with Vm(0,0) 
= 0 and F a flat function at
r = 0.

Let Π(r0,w0) = (Π1(r0,w0),Π2(r0,w0)) be the Poincaré map of the corresponding smooth
system (5)ε=0 associated to (17). We recall that Π2(r0,0) = 0 and ∂Π2

∂w0
(0,0) 
= 0, which implies

that we can write

Π2(r0,w0) = w0Π̂2(r0,w0) with Π̂2(0,0) 
= 0. (21)

We use the fundamental relation (8), that is,

V
(
0,Π1(r0,w0),Π2(r0,w0)

) = V (0, r0,w0)det
(
DΠ(r0,w0)

)
,
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where we have used the 2π -periodicity of V . Substituting here the expression of V we obtain

Π2Π
m
1 Vm(Π1,Π2) + F(Π1,Π2) = [

w0r
m
0 Vm(r0,w0) + F(r0,w0)

]
det

(
DΠ(r0,w0)

)
.

We want to remove from this equation the flat terms at r = 0 which are only contained in
F(r0,w0) and F(Π1(r0,w0),Π2(r0,w0)). Therefore, taking the Taylor series at r0 = 0 in both
members we obtain the following identity of Taylor series

J∞(
Π2Π

m
1 Vm(Π1,Π2)

) = J∞(
w0r

m
0 Vm(r0,w0)det

(
DΠ(r0,w0)

))
.

Here J∞ denotes the infinite jet. Inserting here (21) we obtain

J∞(
Π̂2Π

m
1 Vm(Π1,w0Π̂2)

) = J∞(
rm

0 Vm(r0,w0)det
(
DΠ(r0,w0)

))
. (22)

We will use (22) for w0 = 0. For this reason we write the following relations that rely also on the
fact that (17) possesses a center manifold Wc(0) = {Z = 0}.

Π1(r0,0) = r0 + δ(r0) = r0 + ckr
k
0 +O

(
rk+1

0

)
, with ck 
= 0,

Vm

(
Π1(r0,0),0

) = Vm

(
r0 + δ(r0),0

) = Vm

(
r0 +O

(
rk

0

)
,0

) = Vm(r0,0) +O
(
rk

0

)
,

where we used the Mean Value Theorem in order to obtain the last equality. We also have

[
Π1(r0,0)

]m = rm
0

(
1 + mckr

k−1
0 +O

(
rk

0

))
,

det
(
DΠ(r0,0)

) = [
1 + kckr

k−1
0 +O

(
rk

0

)]
Π̂2(r0,0),

where the last equation comes from Lemma 6 and (21). Evaluating (22) at w0 = 0 and using the
above properties we obtain

J∞([
1 + mckr

k−1
0 +O

(
rk

0

)][
Vm(r0,0) +O

(
rk

0

)])

= J∞(
Vm(r0,0)

[
1 + kckr

k−1
0 +O

(
rk

0

)])
, (23)

where we have removed in both sides the common factors Π̂2(r0,0) = exp(2πλ)+O(r0) and rm
0 .

Equating the coefficients of rk−1
0 in both sides of (23) yields mckVm(0,0) = kckVm(0,0) which

implies that m = k since ckVm(0,0) 
= 0.
It only remains to prove that k � 3. We note that, since m = k, the vanishing multiplicity m is

the same for any inverse Jacobi multiplier V . Theorem 5 of [3] states the existence of one smooth
and non-flat at the origin inverse Jacobi multiplier V ∗

0 (x, y, z) = z(x2 + y2)n
∗ + · · · with n∗ � 2,

hence the vanishing multiplicity of the corresponding V ∗ is m = 2n∗ − 1 � 3. �
Proof of Theorem 1. From Proposition 7 of [3] it follows that for an arbitrary V0 with the
qualities stated in the hypothesis, there exists n � 0 such that V0(x, y, z) = z(x2 + y2)n + · · ·.
Denote by V (θ, r,w) the inverse Jacobi multiplier of system (5)ε=0 which comes from V0. Due
to (6), m = 2n − 1. From Theorem 2 we know that m � 3, hence n� 2.
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Now we are interested in obtaining the maximum number of limit cycles that can bifurcate
from the saddle-focus at the origin in the perturbed system (2) with ‖ε‖ sufficiently small. We
recall that any 2π -periodic solution of (5) corresponds to a periodic orbit of (2) near the origin
and conversely. As we already explained in the Introduction, these periodic solutions are in corre-
spondence with the zeroes of analytic reduced displacement map �(r0; ε) around (r0, ε) = (0,0)

with r0 > 0.
Since �(r0;0) = δ(r0) = ∑

i�k cir
i
0 with ck 
= 0, from the Weierstrass Preparation Theorem,

it follows that the number of zeros of �(r0; ε) near (r0, ε) = (0,0) is at most k.
But system (5) is invariant under the discrete symmetry which maps (r, θ,w) 	→ (−r, θ +

π,−w). This symmetry is inherited by the symmetries of the polar blow-up (3) which cause
that the function defining (5) satisfies R(θ + π,−r,−w; ε) = −R(θ, r,w; ε) and W(θ +
π,−r,−w; ε) = −W(θ, r,w; ε). In consequence if θ 	→ (r(θ; r0,w0; ε),w(θ; r0,w0; ε)) is a
solution of (5), then so is the function θ 	→ (−r(θ + π; r0,w0;μ),−w(θ + π; r0,w0;μ)). In
addition, {r = 0} is an invariant cylinder of (5), hence the orbits of (5) do not cross transversally
the cylinder {r = 0}. Putting all these facts together, one consequence of the above symmetry
is that the zeroes of �(r0; ε) near (r0, ε) = (0,0) appear in pairs of opposite signs except the
trivial one r0 = 0. Hence we conclude that the maximum number of limit cycles (associated with
the zeros with r0 > 0) that can bifurcate from the origin in (2) with ‖ε‖ sufficiently small is
(k − 1)/2 = n − 1.

Finally, in order to see that the cyclicity Cycl(Xε,0) = n − 1 we must show an example of
system (2) having exactly n − 1 limit cycles bifurcating from the origin. The example is given in
Section A.1 of Appendix A. �
Appendix A

A.1. Cyclicity of the origin of the vector field Xε

We provide an example of a perturbation of system (5)ε=0, with k limit cycles bifurcating from
γ0 = {(θ,0,0): θ ∈ [0,2π)} = {r = 0} ∩ {w = 0}, whose transformation to cartesian coordinates
(x, y, z) gives a perturbation of (1) with exactly � := (k − 1)/2 limit cycles bifurcating from the
origin, i.e., Cycl(Xε,0) = (k − 1)/2. We remark that in the planar case this kind of perturbations
was performed in [6].

We consider the associated system (4)ε=0 from which (5)ε=0 comes from and we perturb it in
the following 1-parameter way:

ṙ =R(θ, r,w;0) +
�−1∑
i=0

ε�−iair
2i+1,

θ̇ = 1 + Θ(θ, r,w;0),

ẇ =W(θ, r,w;0), (24)

with the convention that if � = 0 no perturbation term is taken. The real constant ε is the per-
turbation parameter and therefore |ε| � 1. The ai , i = 0,1,2, . . . , � − 1, are real constants to
be chosen in such a way that the reduced displacement map �(r0; ε) associated to the sys-
tem
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dr

dθ
= R(θ, r,w;0) + ∑�−1

i=0 ε�−iair
2i+1

1 + Θ(θ, r,w;0)
= R(θ, r,w;0) +

∑�−1
i=0 ε�−iair

2i+1

1 + Θ(θ, r,w;0)
,

dw

dθ
= W(θ, r,w;0)

1 + Θ(θ, r,w;0)
= λw + W(θ, r,w;0), (25)

has 2� + 1 real zeroes; � of them positive. Since Θ(θ,0,w;0) = 0, we remark that (25) is an
analytic perturbation in a neighborhood of r = 0 of system (5)ε=0. The proof of the fact that this
choice of ai can be done is analogous to the one described in [1], pp. 254–259. More precisely,
the exponent of the leading term of the reduced displacement function δ(r0) = �(r0;0) of system
(5)ε=0 is k and the considered perturbation (25) produces that �(r0; ε) has all the monomials
of odd powers of r0 up to order k. The coefficient of each monomial, for ε sufficiently small, is
dominated by one of the constants ai .

Undoing the change to polar coordinates, system (25) gives rise to an analytic system (2) with
� limit cycles bifurcating from the origin. This system is of the form

ẋ = −y +F1(x, y, z) + xK(x, y; ε),
ẏ = x +F2(x, y, z) + yK(x, y; ε),
ż = λz +F3(x, y, z) + zK(x, y; ε),

where K(x,y; ε) = ∑�−1
i=0 ε�−iai(x

2 + y2)i .

A.2. An algorithm to compute Poincaré–Lyapunov constants

Let us define Ψ (θ; r0,w0; ε) = (r(θ; r0,w0; ε),w(θ; r0,w0; ε)) to be the solution associated
to (5) with initial condition Ψ (0; r0,w0; ε) = (r0,w0) and denote by �(r0; ε) its reduced dis-
placement map. We have �(0; ε) = 0. Moreover, near r0 = 0 we have the following Taylor
series �(r0; ε) = ∑

i�1 ci(ε)r
i
0, where ci(ε) are called Poincaré–Lyapunov constants. If for cer-

tain ε∗ ∈ R
p one has ci(ε

∗) = 0 for all i � 1, then the origin of system (2) with ε = ε∗ is a
center and in this case the reduced displacement map becomes �(r0; ε∗) ≡ 0. Otherwise, when
�(r0; ε∗) 
≡ 0 the origin of system (2) with ε = ε∗ is a saddle-focus.

To distinguish between a center and a focus is a classical difficult problem in the qualitative
theory of ordinary differential equations. In the planar case this problem goes back to the 19th
century and until now it has been object of an intensive research. We recall that, essentially, the
main difficulty of the center problem is that it cannot be solved by using the blow-up technique
to characterize the local phase portrait near an isolated singular point of a planar vector field.

The values of the Poincaré–Lyapunov constants ci(ε) can be determined in a recursive way,
although many computations are involved. The method consists in several steps: first of all we
take the Taylor series of Ψ (θ; r0,w0; ε) near r0 = 0

r(θ; r0,w0; ε) = r0

∑
i�0

Ri(θ;w0; ε)ri
0,

w(θ; r0,w0; ε) =
∑

Wi(θ;w0; ε)ri
0,
i�0
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where the coefficients satisfy the initial conditions R0(0;w0; ε) = 1, W0(0;w0; ε) = w0 and
ri(0;w0; ε) = Wi(0;w0; ε) = 0 for all i � 1. The coefficients Ri(θ;w0; ε) and Wi(θ;w0; ε) are
uniquely determined as solutions of linear Cauchy problems which come from equating the same
powers of r0 after imposing this Taylor series to be a solution of (5).

In this way, the displacement map d(r0,w0; ε) = (d1(r0,w0; ε), d2(r0,w0; ε)) admits the fol-
lowing Taylor series

d1(r0,w0; ε) = r(2π; r0,w0; ε) − r0 = r0

∑
i�0

Ri(2π;w0; ε)ri
0 − r0,

d2(r0,w0; ε) = w(2π; r0,w0; ε) − w0 =
∑
i�0

Wi(2π;w0; ε)ri
0 − w0.

In the next step we propose another Taylor series for the function w̄(r0, ε) in the form w̄(r0, ε) =∑
i�1 w̄i(ε)r

i
0 and calculate its coefficients w̄i(ε) imposing d2(r0, w̄(r0, ε); ε) ≡ 0. Finally, we

can obtain the Taylor series of the reduced displacement map

�(r0; ε) := d1
(
r0, w̄(r0, ε); ε

) =
∑
i�1

ci(ε)r
i
0,

whose coefficients ci(ε) are the Poincaré–Lyapunov constants.
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