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STABILITY OF PERIODIC SOLUTIONS
FOR LIPSCHITZ SYSTEMS

OBTAINED VIA THE AVERAGING METHOD

ADRIANA BUICĂ AND ARIS DANIILIDIS

(Communicated by Carmen C. Chicone)

Abstract. Existence and asymptotic stability of the periodic solutions of the
Lipschitz system x′(t) = εF (t, x, ε) is hereby studied via the averaging method.
The traditional C1 dependence of F (s, ·, ε) on z is relaxed to the mere strict
differentiability of F (s, ·, 0) at z = z0 for ε = 0, giving room to potential
applications for structured nonsmooth systems.

1. Introduction

We consider the following differential system:

(1.1) x′(t) = εF (t, x, ε)

where F : R × Ω × [0, 1] → Rn is a continuous function, T -periodic in the first
variable and locally Lipschitz with respect to x (uniformly with respect to the other
two variables). The set Ω is an open connected subset of Rn. In this paper we are
interested in the problem of existence and stability of T–periodic solutions of system
(1.1). For sufficiently small values of the parameter ε, the system (1.1) is usually
studied via the averaging method; see for example [13, 7, 6, 14, 8]. According to
this method, we consider the function f : Ω → Rn defined by

(1.2) f(z) =
∫ T

0

F (s, z, 0)ds.

Roughly speaking, the existence of a “non-degenerate” zero z0 ∈ f−1(0) of the
function f ensures, for all small values of ε > 0, the existence of a T–periodic
solution of the system (1.1). A typical assumption is that z �→ F (s, z, ε) is of class
Ck (k ≥ 1) (see for instance [13, 7, 6]). In this case, the aforementioned non-
degenerancy condition simply means that the determinant of the Jacobian of f at
z0 does not vanish, that is, detJf(z0) �= 0. Moreover, when JF has a continuous
dependence on the parameter ε, a study of the asymptotic stability of the periodic
solutions (depending on the eigenvalues of the Jacobian matrix of f at z0) can be
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carried out: for example, if all the spectral pseudo-abscissa values of Jf(z0) are
negative, the periodic solutions are asymptotically stable.

The result on the existence of periodic solutions via the averaging method can
also be extended to nonsmooth systems (that is, F is merely continuous on z), like in
[9, Theorem IV.13]. In such a case, the condition detJf(z0) �= 0 is replaced by the
more general assumption that the Brouwer degree of f is non–vanishing in some
neighborhood of z0. Since nonsmooth systems appear frequently in applications
(simple operations as the max-operator or existence of constraints lead inevitably
to a loss of differentiability) it is important to study the corresponding stability
problem. In [15], it has been assumed that the nonsmooth system (1.1) admits the
constant solution x ≡ z0 and that F is (Lipschitz on z and) independent of ε. In
that case, a study of stability of the constant solution has been carried out, via the
global asymptotic stability of the averaged system y′ = εf(y); see [15, Theorem 2].
In [10, Theorem 3.1] it has been proved that the same result holds when F is
continuous and degree zero homogeneous. Both approaches make use of Lyapunov
functions and converse Lyapunov theorems.

In this work we study the stability of the nontrivial periodic solutions of (1.1) and
we show that the assumption that the function z �→ F (s, z, ε) is C1 (for all s ∈ [0, T ]
and ε ∈ [0, 1]) can be relaxed to the mere strict differentiability of z �→ F (s, z, 0)
at z = z0 for almost all s ∈ [0, T ]. In this case we show in particular that f will be
differentiable at z0 (Proposition 3.1), hence the study of stability of the periodic
solution can again be carried out via the eigenvalues (spectral pseudo-abscissa) of
the Jacobian matrix of f at z0 (Theorem 3.6).

The proof of our main result can be roughly summarized as follows: We study the
Poincaré–Andronov operator, P (·, ε), of the system (1.1). This operator is locally
Lipschitz, but not differentiable. Instead of the classical derivative we work with
the generalized Jacobian (see [5, Section 2.6] and (3.1) below). We prove that, for
ε > 0 sufficiently small, all the generalized Jacobian matrices at a fixed point zε

of P (·, ε) are close to the Jacobian matrix of I + εf at z0. This simple fact yields
for example the asymptotic stability of the system (1.1) in the case that Jf(z0)
is normal with negative pseudo-abscissa values (Theorem 3.6) or the instability in
case that Jf(z0) has all its eigenvalues with positive real part (Theorem 3.8).

Let us finally mention, without entering into detail, that our main results can
potentially be applied to the study of stability of limit cycles of the nonsmooth
system considered in [4]. As an illustration, we study a simplified planar system at
the end of Section 3.

2. Notation and preliminaries

In this section we fix our notation and present some useful basic results. Through-
out this work we shall deal with the system (1.1) and we shall assume that z0 ∈ Ω
is a zero of the function f given in (1.2). Unless otherwise stated, we shall always
consider the Euclidean norm || · || on Rn and the corresponding operator norm on
the space of n × n matrices. Let us fix a ball B(z0, r0) ⊂ Ω centered at z0 with
radius r0 > 0. Then for each z ∈ B(z0, r0) we denote by x(·, z, ε) : [0, t(z,ε)) → Rn

the solution of (1.1) with initial point x(0, z, ε) = z. Using the local existence and
uniqueness theorem (see [7, Section 1.3], for example) we deduce that there exists
ε0 ∈ (0, 1] (sufficiently small) such that t(z,ε) > T for all z ∈ B(z0, r0) and all
ε ∈ [0, ε0].
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We define the Poincaré–Andronov operator as follows:

(2.1) P : B(z0, r0) × [0, ε0] → Rn with P (z, ε) := x(T, z, ε).

We recall that a solution x(·, z, ε) of (1.1) satisfying x(0, z, ε) = x(T, z, ε) is T–
periodic. Thus, zε is a fixed point of P (·, ε) if, and only if, x(·, zε, ε) is a T–periodic
solution of (1.1).

Definition 2.1 (Asymptotic stability). (i) A fixed point z∗ of the operator P (·, ε)
is called stable if for each η > 0 there exists δ > 0 such that ||z − z∗|| < δ implies
||Pn(z, ε)− z∗|| < η for all n ≥ 0. A stable fixed point for which there exists δ > 0
such that for all z ∈ B(z∗, δ)

lim
n→+∞

||Pn(z, ε) − z∗|| = 0,

is called asymptotically stable.
(ii) A periodic solution x(·, z∗, ε) of the system (1.1) is called stable (in the sense

of Lyapunov) if for each η > 0 there exists δ > 0 such that ||z − z∗|| < δ implies
||x(t, z, ε)− x(t, z∗, ε)|| < η for all t ≥ 0. A stable periodic solution for which there
exists δ > 0 such that for all z ∈ B(z∗, δ)

lim
t→+∞

||x(t, z, ε) − x(t, z∗, ε)|| = 0,

is called asymptotically stable.

The following result shows that the study of asymptotical stability of the periodic
solutions of (1.1) can be reduced to the study of the Poincaré–Andronov operator
(see [6], for example).

Theorem 2.2 (Periodic solutions vs. Poincaré-Andronov operator). For fixed ε >
0, zε is an asymptotically stable fixed point of P (·, ε) if, and only if, x(·, zε, ε) is an
asymptotically stable periodic solution of (1.1).

In view of this theorem and the above definitions, it is easy to see that if there
exists δ > 0 and 0 < ρ < 1 such that

||P (z1, ε) − P (z2, ε)|| ≤ ρ||z1 − z2|| for all z1, z2 ∈ B(z∗, δ),

then the fixed point z∗ of P (·, ε) will be asymptotically stable, thus the same holds
for the periodic solution x(·, z∗, ε) of (1.1) as well.

Using the continuous dependence of the solution with respect to initial condition
z ∈ B(z0, r0) and parameter ε ∈ [0, ε0] (see [7, Section 1.3], for example), we
deduce that there exists a compact set K with B(z0, r0) ⊂ K ⊂ Ω such that for all
(t, z, ε) ∈ [0, T ] × B(z0, r0) × [0, ε0]

(2.2) x(t, z, ε) ∈ K.

Let M > 0 be such that for all t ∈ [0, T ], x ∈ K and ε ∈ [0, ε0]

(2.3) ||F (t, x, ε)|| ≤ M.

Using compactness of K we also deduce the existence of a uniform Lipschitz con-
stant L > 0 of F such that for all t ∈ [0, T ] and ε ∈ [0, ε0]

(2.4) ||F (t, x, ε) − F (t, y, ε)|| ≤ L||x − y||, for all x, y ∈ K.

Let us finally mention the equivalent to (1.1) the integral equation for x(·, z, ε):

(2.5) x(t, z, ε) = z + ε

∫ t

0

F (s, x(s, z, ε), ε)ds
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for all t ∈ [0, T ], z ∈ B(z0, r0) and ε ∈ [0, ε0]. Combining (2.4) with (2.5) and
applying the classical Gronwall Lemma, we obtain for each t ∈ [0, T ] and ε ∈ [0, ε0],

(2.6) ||x(t, z, ε) − x(t, w, ε)|| ≤ eεLt||z − w||, for all z, w ∈ B(z0, r0).

3. Main results

We shall now study the stability of the periodic solutions of (1.1) (or equivalently
of (2.5)). In this work the C1 assumption on F is relaxed as follows:

(H1) F (s, ·, 0) is strictly differentiable at z0, for almost all s ∈ [0, T ].

In other words, for almost all s ∈ [0, T ], there exists A(s) := JF (s, z0, 0) such that

lim
z→z0 u→0

||u||−1 ||F (s, z + u, 0) − F (s, z, 0) − A(s)u|| = 0.

Note that the existence of the Jacobian JF is no more required for points (s, z, ε)
with either ε > 0 or z �= z0. For given (fixed) values of s ∈ [0, T ] and ε ∈ [0, ε0],
we shall consider instead the generalized Jacobian ∂F (s, z, ε), which is defined as
the closed convex envelope of all possible limits of Jacobians of points (s, zn, ε) of
differentiability of F (s, ·, ε) as zn → z ([5, Definition 2.6.1]). An even more general
description can be found in [12, Theorem 9.62]. More precisely, if DF (s, ε) denotes
the points of differentiability of F (s, ·, ε), it follows by the Rademacher theorem
that Rn�DF (s, ε) is of Lebesgue measure zero. Then given any null subset N of
Rn the following formula holds:

(3.1) ∂F (s, z, ε) = co
{

Bε = lim
zn→z

JF (s, zn, ε); zn ∈ DF (s, ε)�N

}
.

We shall also need to make the following mild assumption, which can be seen
as a relaxation of the continuous dependence of the Jacobian JF on the parameter
ε ∈ [0, ε0] in the C1 case.

For all η > 0, there exists δ > 0 such that for all z ∈ B(z0, δ),(H2)

ε ∈ [0, δ] and s ∈ [0, T ] : ∂F (s, z, ε) ⊂ ∂F (s, z0, 0) + B(0, η).

Before we proceed, let us observe that (H1) has the following useful consequence
(the interested reader might want to compare this result with [5, Theorem 7.4.1]):

Proposition 3.1 (Strict differentiability of f). Under the assumption (H1), the
function f defined in ( 1.2) is strictly differentiable at z0 with derivative

Jf(z0) =
∫ T

0

A(s)ds.

Proof. Set A(s) := JF (s, z0, 0) for all s ∈ [0, T ] where the Jacobian exists, and note
that the set {A(s) : s ∈ [0, T ] a.e.} is bounded by the Lipschitz constant L of F.

Thus A =
∫ T

0
A(s) ds is well–defined. We need to prove the equality

lim
z→z0 u→0

||u||−1||f(z + u) − f(z) − Au|| = 0.
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To this end, consider the sequences zn → z0, un → 0. The conclusion follows using
the inequality

||f(zn + un) − f(zn) − Aun||
||un||

≤
∫ T

0

||F (s, zn + un, 0) − F (s, zn, 0) − A(s)un||
||un||

ds,

assumption (H1) and the Lebesgue dominated convergence theorem. �

Let us introduce for every ε ≥ 0 the functions gε, hε : B(z0, r0) → Rn defined by

(3.2) gε(z) =
∫ T

0

F (s, x(s, z, ε), ε)ds,

and

(3.3) hε(z) =
∫ T

0

[F (s, x(s, z, ε), ε) − F (s, z, 0)] ds.

Observe that hε(z) = gε(z) − f(z) and g0(z) = f(z).

Proposition 3.2 (Lipschitz estimation of hε around z0). Under the assumptions
(H1) and (H2), for every η > 0 there exists δ > 0 such that for all ε ≤ δ, the
function hε is Lipschitz on B(z0, δ) with a Lipschitz constant at most equal to η,
that is,

||hε(w) − hε(z)|| ≤ η ||w − z|| for all w, z ∈ B(z0, δ).

Proof. Set

(3.4) M1 = L T eLT

∫ T

0

||A(s)|| ds and M2 = T (1 + eLT )

and fix any η > 0. Using (H2), choose 0 < δ1 ≤ r0 such that for all z ∈ B(z0, δ1) all
ε ∈ (0, δ1) and all s ∈ [0, T ] the following relation holds:

(3.5) ∂F (s, z, ε) ⊂ ∂F (s, z0, 0) + B(0,
η

2M2
).

Let

(3.6) δ = min
{

ε0,
δ1

2
,

δ1

2MT
,

η

2M1

}

and fix any 0 < ε ≤ δ. By (2.5) we deduce that

||x(s, z, ε) − z|| ≤ ε

∫ s

0

||F (t, x(t, z, ε), ε) || dt ≤ εMT ≤ δ1/2,

thus for every z ∈ B(z0, δ1/2) and s ∈ [0, T ] we get

(3.7) x(s, z, ε) ∈ B(z0, δ1).

Now let z, w ∈ B(z0, δ1/2), with z �= w. To simplify notation we shall write in
the sequel x instead of x(s, z, ε) and y instead of x(s, w, ε). Applying [5, Proposi-
tion 2.6.5] (generalized mean value theorem) we obtain ξ∗(s) ∈ co ∂F (s, [x, y], ε),
ρ∗(s) ∈ co ∂F (s, [z, w], 0) such that

(3.8) F (s, y, ε) − F (s, x, ε) = 〈ξ∗(s), y − x〉
and

(3.9) F (s, w, 0) − F (s, z, 0) = 〈ρ∗(s), w − z〉.
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Since z, w, x, y ∈ B(z0, δ1), using (3.5) and the convexity of the norm we deduce
that for almost all s ∈ [0, T ],

(3.10) ξ∗(s), ρ∗(s) ∈ B(A(s),
η

2M2
).

Note that

||hε(w) − hε(z)|| ≤
∫ T

0

||F (s, y, ε) − F (s, x, ε) − (F (s, w, 0) − F (s, z, 0)) || ds;

thus in view of (3.8), (3.9) and (3.10)
(3.11)

||hε(w)−hε(z)|| ≤
∫ T

0

|| 〈A(s), y−x−(w−z)〉|| ds +
η

2M2

∫ T

0

(||y−x||+||w−z||) ds.

In view of (2.6), we get ||y − x|| ≤ eεLs||z − w||, thus since ε ≤ 1 and s ≤ T it
follows from (3.4) that

(3.12)
η

2M2

∫ T

0

(||y − x|| + ||w − z||)ds ≤ (η/2)||w − z||.

On the other hand, since∫ s

0

||F (t, y, ε) − F (t, x, ε)||dt ≤ L

∫ s

0

||y − x||dt

≤ L||w − z||
∫ s

0

eεLtdt ≤ LTeLT ||w − z||,

it follows from (2.5) and (3.6) that∫ T

0

||〈A(s), y − x − (w − z)〉| |ds ≤ ε

(
LTeLT

∫ T

0

|A(s)|ds

)
||w − z||

≤ (η/2)||w − z||.
Combining this last relation with (3.11) and (3.12), the assertion follows. �

Using Proposition 3.2 we obtain the following result.

Proposition 3.3 (Persistence of generalized Jacobians around z0). Under the as-
sumptions (H1) and (H2), for every η > 0 there exists δ > 0 such that for all ε ≤ δ,
all z ∈ B(z0, δ) and all generalized Jacobians Γε ∈ ∂gε(z) we have

(3.13) ||Γε − A|| ≤ η,

where A = Jf(z0) (cf. Proposition 3.1).

Proof. Note that gε(z) = f(z) + hε(z) and that all three functions are locally
Lipschitz, thus differentiable almost everywhere. Let us denote by Df (respectively,
Dg, Dh) the points of differentiability of f (respectively, gε, hε), and N = Rn \
(Df ∩ Dh) . Note that N is a Lebesgue null set, thus the generalized Jacobian of gε

is given by the formula:

∂gε(z) = co
{

Bε = lim
zn→z

(Jf(zn) + Jhε(zn)); zn ∈ Df ∩ Dh

}
.

Fix η > 0 and let Bε be defined as in the above formula. Then applying Proposi-
tion 3.2 for η1 = η/2 we obtain δ1 > 0 such that for all 0 < ε ≤ δ1, the function hε(·)
is Lipschitz with constant at most η/2 on B(z0, δ1). This yields ||Jhε(w)|| ≤ η/2
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for all ε ≤ δ1 and all w ∈ Dh ∩ B(z0, δ1). Since ∂f is upper semicontinuous
and ∂f(z0) = {A}, there exists δ2 > 0 such that ∂f(w) ⊂ B(A, η/4) for all
w ∈ B(z0, δ2). Let δ = min{δ1, δ2} and fix z ∈ B(z0, δ/2). Let n1 > 0 be such that
for all n ≥ n1 we have ||Bε − (Jf(zn) + Jhε(zn)) || ≤ η/4 and zn ∈ B(z, δ/2). In
particular, since zn ∈ B(z0, δ1) for n ≥ n1 we obtain

||Jhε(zn)|| ≤ η/2 and ||Jf(zn) − A|| ≤ η/4.

This yields

||Bε − A|| ≤ ||Bε − (Jf(zn) + Jhε(zn)) || + ||Jf(zn) − A|| + ||Jhε(zn)|| ≤ η.

Thus for all ε ≤ δ and all z ∈ B(z0, δ) we get ||Bε −A|| ≤ η, and the result follows
from the convexity of the ball B(A, η). �

We further denote by spec (Γ) the (complex) eigenvalues of the matrix Γ. Using
the continuity of the spectral mapping we directly obtain the following corollary.

Corollary 3.4 (Spectral stability of the generalized Jacobians). Fix any η > 0 and
assume spec (A) = {λ1, . . . , λk} for A = Jf(z0). Then there exists δ0 > 0 such
that for all ε ∈ [0, δ0], z ∈ B(z0, δ0) and Γε ∈ ∂gε(z), and for all i ∈ {1, . . . , k},

spec (Γε)
⋂

B(λi, η) �= ∅ and spec (Γε) ⊂
k⋃

i=1

B(λi, η).

Let us discuss an application of the above result. Let us consider the set of
zeros of the mapping (z, ε) �→ gε(z), or equivalently, the set of fixed points of the
Poincaré-Andronov operator P defined in (2.1), that is,

Z = {(zε, ε) ∈ B(z0, δ) × [0, ε0] : gε(zε) = 0}
= {(zε, ε) ∈ B(z0, δ) × [0, ε0] : P (zε, ε) = zε} .

In the C1 case, (existence and) asymptotic stability of the periodic solutions is
ensured if the Jacobian of f has negative spectral pseudo-abscissa values. In fact,
the C1 assumption can be replaced by the assumption that for each ε > 0 the
Poincaré–Andronov operator P (·, ε) has a fixed point zε and is differentiable there.
Indeed, in such a case, shrinking ε if necessary, we deduce from the above corollary
that the matrix JP (zε, ε) will have all its eigenvalues inside the unit disk of the
complex plain. Let us extend this result to the nonsmooth case.

Theorem 3.5 (Existence and asymptotic stability of periodic solutions - I). Let
z0 ∈ f−1(0) (f is defined in (1.2)) and let (H1), (H2) hold true. Assume
det(Jf(z0)) �= 0 and that for some equivalent norm | · | of Rn (that does not depend
on ε) :

(3.14) | (z + εf(z)) − (w + εf(w)) | ≤ (1 − ωε) |z − w|,

for all z, w around z0, where ω > 0. Then for every ε > 0 sufficiently small the
system (1.1) has a unique and asymptotically stable periodic solution near z0 with
initial value zε satisfying lim

ε→0
zε = z0.

Proof. Let us observe that the assumption z0 ∈ f−1(0) simply means that (z0, 0) ∈
Z, while the fact that det Jf(z0) �= 0 yields that z0 is isolated in f−1(0) and its
topological index with respect to f does not vanish. Thus from the theory of
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topological degree we deduce (see also [3]) that for all ε > 0 small enough there
exists zε with (zε, ε) ∈ Z and lim

ε→0
zε = z0.

Fix ε > 0 and apply Proposition 3.2 (which remains true for the equivalent norm
| · |) for η ≤ ω/2. We conclude that the | · |-norm of any generalized Jacobian ∂hε(z)
around z0 is bounded by ω/2. Since P (·, ε) = I + εf + εhε, it follows easily that

|P (z, ε) − P (w, ε)| ≤ (1 − (ω/2)ε)|z − w|,
which for ε > 0 sufficiently small guarantees uniqueness and asymptotic stability
of the fixed point zε. �

In what follows, we denote by r(Γ) the spectral radius of the matrix Γ, that is,

r(Γ) = max { |λ| : λ ∈ spec (Γ)} .

Theorem 3.6 (Existence and asymptotic stability of periodic solutions - II). Let
z0 ∈ f−1(0) and assume (H1) and (H2). Then the conclusion of Theorem 3.5
remains true provided that the matrix A = Jf(z0) is normal (thus diagonalizable
in C) and

(3.15) α = max {Re(λ) : λ ∈ spec (A)} < 0 .

Proof. Since the eigenvalues of the matrix I + εA are of the form 1 + ελ for λ ∈
spec (A), it follows that

r(I + εA) <
√

1 − 2|α| ε + ||A||2ε2.

On the other hand, the assumption on A implies that the matrix I + εA has n-
linearly independent orthonormal eigenvectors in Cn, which guarantees that

max { || (I + εA)z ||C : z ∈ Cn, ||z|| = 1 } = r(I + εA) ,

thus
||I + εA|| = r(I + εA).

Let δ0 ≤ |α|/||A||2 and shrink it further if necessary to ensure that for all ε ∈ (0, δ0]
we have the estimate:

|| I + εA || < 1 − (|α| − 2−1 ||A||2 ε) ε < 1 − (|α|/2) ε.

From the strict differentiability of f at z0 we deduce that, for all z, w around z0,

|| f(z) − f(w) − A(z − w) || ≤ (|α|/4) ||z − w|| .
Then

||(z + εf(z)) − (w + εf(w))|| ≤ ε||f(z) − f(w) − A(z − w)|| + ||I + εA|| ||z − w||
≤ (1 − (|α|/4) ε) ||z − w|| .

Hence (3.14) is valid around z0, thus the conclusion follows from Theorem 3.5. �

Remark 3.7. The normality assumption in the above theorem has been used to
ensure that ||I + εA|| = r(I + εA) for all ε > 0. In fact, for any matrix A satisfying
(3.15) and any r(I + εA) < ρ < 1, one can always define an equivalent norm | · |
in Rn for which the corresponding operator norm satisfies |I + εA| < ρ. However,
this norm depends on ε and eventually becomes large as ε → 0.

The following result concerns instability of the periodic solutions.
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Theorem 3.8 (Unstable periodic solutions). Let z0 be a zero of the function f
defined in (1.2) and assume that (H1), (H2) hold true and that the matrix A =
Jf(z0) is normal and

(3.16) β = min {Re(λ) : λ ∈ spec (A)} > 0.

Then for all ε > 0 sufficiently small, (1.1) has an unstable periodic solution with
initial value near z0.

Proof. The existence of (at least one) periodic solution with initial point near z0

follows in the same way as in Theorem 3.5. Let us apply Corollary 3.4 for η ≤ β/2.
Then there exists δ0 > 0 such that for all ε ∈ (0, δ0] and z ∈ B(z0, δ0), every
generalized Jacobian matrix Γε ∈ ∂gε(z) satisfies ||A − Γε|| < β/2. It follows that

min
||x||=1

{ ||(I + εΓε)(x)|| : x ∈ Rn} ≥ min
||z||=1

{ ||(I + εΓε)(z)|| : z ∈ Cn} ≥ 1 + ε
β

2
,

which guarantees the invertibility of the mapping P (·, ε) around any z ∈ B(z0, δ0);
see [5, Section 7.1] for details. Moreover, the inverse function Q(·, ε) is Lipschitz
with constant at most (1 + εβ/2)−1. Thus, if zε ∈ B(z0, δ0) is the initial point of a
periodic solution of (1.1), then for every z ∈ B(z0, δ0) we have

||z − zε|| = ||Q(P (z, ε), ε) − zε|| ≤ (1 + ε
β

2
)−1||P (z, ε) − zε|| .

This shows that zε is a repelling fixed point of P (·, ε), and the conclusion follows. �

Let us give an application to the existence and stability of limit cycles of a
(nonsmooth) planar system, which is studied by essentially the same technique,
after transformation to polar coordinates.

Example. Consider the following planar system:

(3.17)
ẋ1 = −x2 + εx1(1 − 2ϕ(x2

1 + x2
2)),

ẋ2 = x1,

where ε > 0 is a small parameter and ε : R+ → R is defined as follows:

(3.18) ϕ(x) =
{

x, for x ∈ [0, 1],
1, for x ∈ (1,∞).

Passing to polar coordinates x1 = r cos θ, x2 = r sin θ, differentiating the relations
r2 = x2

1 + x2
2 and θ = arctan(x2/x1) and eliminating the parameter t we get from

(3.17) a one–dimensional equation of the form (1.1), that is,

ṙ(θ) = εF (θ, r, ε),

where

F (θ, r, ε) =
r cos2 θ(1 − 2ϕ(r2))

1 − ε2−1 sin 2θ(1 − 2ϕ(r2))
.

Then F : R × (0,∞)× [0, 1] → R is continuous, 2π–periodic with respect to θ, and
locally Lipschitz with respect to r. Moreover it satisfies (H1) and (H2) (note that
F (θ, ·, 0) is strictly differentiable at every r > 0 provided r �= 1. Then (1.2) gives

f(r) =
∫ 2π

0

F (θ, r, 0) dθ =
∫ 2π

0

r cos2 θ(1 − 2ϕ(r2))dr = πr(1 − ϕ(r2)).
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It is easily seen that f has a unique zero at r0 ∈ (0,∞) and f ′(r0) < 0 (cf. Propo-
sition 3.1). We conclude that (3.17) has a unique limit cycle that is asymptotically
stable. �

Let us conclude with the following remark. Nonsmoothness appears naturally in
most concrete problems, and leads to the development of the so-called nonsmooth
analysis (see for example [1] and references therein, as well as the classical textbooks
[5], [12] and [11]). Here, instead of the classical C1-assumption, F is assumed to
be strictly differentiable only at points of the form (s, z0, 0), which enlarges the
domain of applicability of the theory: in fact, nonsmoothness seldom occurs in a
random manner, but instead it is often well-structured: this is the case for instance
in problems involving semialgebraic or subanalytic structures; see [2] for example.
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