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1 Introduction

Consider the initial value problem (IVP){
u′ + Au(t) = f(t, u(t)), t ∈ [0, T ]
u(0) = u0

(1)

where u0 ∈ E, E is an ordered Banach space, f : [0, T ]×E → E is continuous
and A : D(A) ⊂ E → E is the generator of a positive semigroup of linear
operators (see [17, 23]).
In some cases, the study of (1) is easier in the form of an operator equation,

Lu = N(u), u ∈ D(L), (2)

where L : D(L) ⊂ Y → X and N : Y → X are two operators between the
ordered Banach spaces Y and X.
The monotone iterative technique can be ilustrated using (2) as follows.
Let α ∈ D(L) be a lower solution of (2) (i.e. Lα ≤ N(α)) and let us consider
the sequence (αn)n≥0 given by α0 = α and

Lαn+1 = N(αn), n ≥ 0. (3)

If Lu ≤ Lv implies N(u) ≤ N(v) and L is surjective, this sequence is well
defined and the following inequalities hold.

Lα ≤ N(α) = Lα1 ≤ N(α1) = Lα2 ≤ ....

The problem is to assure that the sequence of monotone iterations (Lαn)n≥0

is convergent (or only a subsequence) to some Lu∗ and Lu∗ = N(u∗).
This holds, for example, if there exists un upper solution β ∈ D(L) (i.e.
N(β) ≤ Lβ) with Lα ≤ Lβ and N ◦ L−1 : [Lα, Lβ] → [Lα, Lβ] is continu-
ous and compact.
In this paper we present an application of this technique to the evolution
equation (1). We work with mild solutions and, also, mild lower and upper
solutions.
There are some generalizations in ordered sets of the monotone iterative tech-
nique and we present them here as abstract results given by R. Lemmert [32]
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and S. Carl and S. Heikkila [10]. Using one of these abstract results we ob-
tained an existence theorem for an implicit evolution equation.
This subject is an old one. Let us remember only few other names with
contributions in this field: M.A. Krasnosel’skii [18], H. Amann [2] Ladde,
Lakshmikantham and Vatsala [19] R. Precup [24, 25], A. Buică [7, 8], S. Carl
and S. Heikkilla [9, 10] X. Liu, S. Sivaloganathan and S. Zhang [22].

The approximation for the solution u∗ of Lu = N(u) with the sequence (αn)
given by Lαn+1 = N(αn) is at most linear, i.e.

||u∗ − αn+1|| ≤ c||u∗ − αn||.

The generalized quasilinearization method offer monotone sequences that
converge quadratically to the solution. Such a sequence, (αn) is given by
α0 = α and

Lαn+1 = N(αn) + M(αn)(αn+1 − αn), n ≥ 0.

Under some additional assumptions on L,N,M one can prove that

||u∗ − αn+1|| ≤ c||u∗ − αn||2.

This method combines the quasilinearization method of R. Bellman and R.
Kalaba [21] and the Newton’s method as it is stated in [14, 3, 13]. It was
applied to many kind of problems related to differential or integral equations:
V. Lakshmikanthan and A.S. Vatsala [21], R. Precup [26, 27], S.G. Deo and
C. McGloin Knoll [12], S. Carl and V. Lakshmikantham [11], B. Ahmad, J.
Nieto and N. Shahzad [1].
In this paper we give an abstract theorem which provide approximations for
the solution of the operator equation Lu = N(u), where L is linear and N
could be nonlinear. We replace the differentiability condition for the non-
linear part with a metric condition. We show how some results form [21]
regarding the initial value problem for an ODE and for an n-th order system
of ODE are obtained as consequences of our abstract result.
When one apply the monotone iterative techniques to differential equations,
there is need to use of differential inequalities. This is one of the reasons for
we present some here.

This paper is organized as follows.
1. Introduction.
2. Differential inequalities.
3. Monotone linear (iterative) approximations.
4. Monotone quadratic (iterative) approximations.
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2 Differential inequalities

Some of the main tools used in the monotone iterative techique are differential
inequalities.
We call a linear differential inequality (LDI) the following implication.

u′(t) + Au(t) ≤ v′(t) + Av(t), t ∈ [0, T ] and
u(0) ≤ v(0)

imply u(t) ≤ v(t), t ∈ [0, T ].

We call a nonlinear differential inequality (NDI) the following implication.

u′(t) + Au(t)− f(t, u(t)) ≤ v′(t) + Av(t)− f(t, v(t)), t ∈ [0, T ] and
u(0) ≤ v(0)

imply u(t) ≤ v(t), t ∈ [0, T ].

We present here some differential inequalities collected from P. Volkmann
[31]), A. Buică [5, 6], G. Herzog and R. Lemmert [16].

Proposition 2.1 Let u, v ∈ C1[0, T ] and A ∈ R. Then (LDI) holds.
Let f : [0, T ]×R → R be continuous. We assume that f is or locally Lipschitz
or increasing or decreasing. Then (NDI) holds.

We say that f : [0, T ] × Rn → Rn is quasimonotone increasing (qmi) with
respect to x if u ≤ v and uk = vk imply fk(t, u) ≤ fk(t, v).
If there exists ω > 0 such that f(t, ·) + ωId is increasing then f is qmi.

Proposition 2.2 Let u, v ∈ C1 ([0, T ], Rn) and A = (−aij) ∈ Mn (R).
Then (LDI) holds if and only if aij ≥ 0 when i 6= j.
Let A = (−aij) ∈ Mn (R) be such that aij ≥ 0 when i 6= j. Let f :
[0, T ] × Rn → Rn be continuous, locally Lipschitz and qmi. Then (NDI)
holds.

Proposition 2.3 Let u, v ∈ C1 ([0, T ], E) and A : D(A) → E be a linear
operator. Then (LDI) holds if and only if (−A) is the generator of a positive
semigroup of operators.
Let A : D(A) → E be a linear operator which generates a positive semigroup
of contractions. Let f : [0, T ]×E → E be continuous, Lipschitz and such that
there exists ω > 0 such that f(t, ·) + ωId is increasing. Then (NLI) holds.

Let us notice that these kind of results assure that

α(t) ≤ u∗(t) ≤ β(t), t ∈ [0, T ],

where α, β are lower and upper solutions, and u∗ is a solution of the IVP. If
the existence of some ordered lower and upper solutions is guaranteed, then
the hypothesis for the nonlinear part can be relaxed in order to assure that
the solution is between α and β. We say that α ∈ C1 ([0, T ];E) is a lower
solution of IVP (1) if
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α′(t) + Aα(t) ≤ f(t, α(t)), t ∈ [0, T ]
α(0) ≤ u0

Analoguosly we define the upper solution.

Let α and β be ordered (i.e. α ≤ β) lower and upper solutions for the IVP
(1). Let us denote

Dα,β = {(t, u) ∈ [0, T ]× E : α(t) ≤ u ≤ β(t)} .

Proposition 2.4 Let α, β ∈ C1 ([0, T ], E) be ordered lower and upper solu-
tions for the IVP (1) and A : D(A) → E be a linear operator which generates
a positive semigroup of contractions. Let f : [0, T ] × E → E be continuous,
locally Lipschitz and such that f(t, ·) + ωId is increasing in Dα,β for some
ω > 0. Then the unique mild solution, denoted u∗, of (1) is defined on [0, T ]
and α(t) ≤ u∗(t) ≤ β(t), for every t ∈ [0, T ].

Remark. Let Ω be a bounded domain of Rn and f̃ : [0, T ] × Ω × R → R
be a continuous function which has a continuous partial derivative with
respect to the last variable. Let us define f : [0, T ] × C(Ω) → C(Ω),
f(t, u)(x) = f̃(t, x, u(x)) and consider α, β : [0, T ] → C(Ω) continuous with
α ≤ β. Then f(t, ·)+ωId is increasing in Dα,β , where ω is such that ∂f̃

∂u ≥ −ω
in [α(t), β(t)] for every t ∈ [0, T ].

In the end of this section we intend to illustrate how differential inequalities
can be used to prove stability of the steady-stae solution.
X. Liu, S. Sivaloganathan and S. Zhang studied in [22] the following model
for the growth of populations of two species.

∂u
∂t −∆u = u(a1 − b1u + c1v)
∂v
∂t −∆v = v(a2 + b2u− c2v), a.e. (0,∞)× Ω
u(0, x) = u0(x), v(0, x) = v0(x), Ω
∂u
∂γ (t, x) = 0, ∂v

∂γ = 0, (0,∞)× ∂Ω.

(4)

Since the linear part generates a semigroup of linear contractions and the
nonlinear part is locally Lipschitz, the local existence is assured. Let

η1 = (a1c2 + a2c1)/(b1c2 − b2c1) and η2 = (a1b2 + a2b1)/b1c2 − b2c1).

We have that (η1, η2) is a steady-state solution for this system, and (η1 −
ε, η2 − ε) and (η1 + ε, η2 + ε) are ordered lower and upper solutions. The
hypothesis of Proposition 2.4 are fullfiled. Then, any solution with initial
values between the lower and upper solutions will remain between these values
for all t > 0. Thus the following result holds.

Theorem 2.1 [22] If b1c2 > b2c1, b1 ≥ c1, c2 ≥ b2 and a1, a2 ≥ 0 then the
steady-state solution (η1, η2) is stable.
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3 Monotone linear iterative approximations

In the introduction we have presented the main ideas of the monotone iter-
ative technique. Let us now state precisely some results.
Let K be a cone in the ordered Banach space X, that is, a closed, convex
subset of X such that K ∩ −K = {0}, where 0 denotes the null element of
X. The cone K induces the order relation in X defined by u ≤ v, u, v ∈ X
if and only if v − u ∈ K. For α ≤ β the order interval [α, β] is the set of
all u ∈ X such that α ≤ u ≤ β. The cone K is said to be regular if any
monotone increasing sequence contained in an order interval is convergent.

Theorem 3.1 ([2]) Let X be an ordered metric space, α), β0 ∈ X. If
N : [α0, β0] → [α0, β0] is a monotone increasing and compact operator, then
the sequence (αn), given by α0 = α, αn+1 = N(αn), n ≥ 0 is monotone
increasing and converges to the minimal fixed point of N .

Theorem 3.2 (Lemmert [32]) Let X be an ordered set, α ∈ X, N : X → X
be increasing and α ≤ N(α). We assume that every chain in {Nu : α ≤ u}
has a supremum. Then N has a fixed point.

Theorem 3.3 (Carl-Heikkila [10]) Let W be a nonempty set, X be an or-
dered set, α ∈ W . Let L,N : X → X be such that Lα ≤ N(α), and Lu ≤ Lv
implies N(u) ≤ N(v). We assume that L(W ) is an ordered metric space and
each (un) in W with (Lun) and (N(un)) monotone increasing, is such that
(N(un)) converges in L(W ). Then there exists u∗, a solution of Lu = N(u).

Corollary 3.1 Let X be an ordered Banach space with a normal cone K,
α, β ∈ X. Let N : [α, β] → [α, β] be increasing. If K is regular or N([α, β])
is compact in X then N has extremal fixed points.

Using Theorem 3.1 we can prove the existence of extremal mild solutions and
of monotone iterative approximations for the IVP (1).

We say that u ∈ C ([0, T ];E) is a mild solution of IVP (1) if u is a solution
of the integral equation

u(t) = e−Atu0 +
∫ t

0

e−A(t−s)f(s, u(s))ds. (5)

A mild lower solution is a function α ∈ C ([0, T ];E) which satisfy (5) with ≤
instead of =.

Theorem 3.4 Let us assume that the following hypotheses are fullfiled. (H1)
There exist α a mild lower solution and β a mild upper solution of the IVP
(1);
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(H2) (−A) is the generator of a positive linear semigroup of compact opera-
tors;
(H3) f + ωId is increasing in Dα,β.
Then there exist extremal mild solutions α ≤ u∗ ≤ u∗ ≤ β and monotone
sequences (αn), (βn) which converge to u∗ and u∗, respectively.
The sequence (αn) is given by

αn+1 = S(t)u0 +
∫ t

0

S(t− s)[f(s, αn) + ωαn]ds,

where S(t) = e−ωte−At.

Using Theorem 3.3 we have studied the IVP for an evolution equation in the
implicit form,{

u′ + Au− f(t, u) = G(t, u, u′ + Au− f(t, u)), t ∈ (0, T )
u(0) = u0.

(6)

Let us list first some hypothesis and state some preliminary results and def-
initions.

(A1) (−A) is the generator of a semigroup of linear positive contractions.
(F2) f : (0, T ) × E → E is Carathéodory and there exists ω > 0 such that
f(t, ·) + ωId is increasing.
(F3) there exists a ∈ L1(0, T ) such that |f(t, u)− f(t, v)| ≤ a(t)|u− v| for all
u, v ∈ E.
(G4) G is sup-measurable and increasing.

L̃ : D(L) ⊂ C([0, T ];E) → L1(0, T ;E)× E

L̃u = (w,w0) iff
u(t) = S(t)w0 +

∫ t

0
S(t− s)[w(s)f(s, u(s)) + ωu(s)]ds.

Nu(t) = G(t, u(t), Lu(t)) and Ñu(t) = (Nu(t), u0).

Lemma. L̃u ≤ L̃v implies u ≤ v.
We say that α ∈ D(L) is a mild lower solution of the IVP (6) if
L̃α(t) ≤ (G(t, α(t), Lα(t)), u0), t ∈ (0, T ). Lemma. L̃, Ñ : W → L1(0, T ;E)×
E are well-defined and
L̃u ≤ L̃v implies Ñu ≤ Ñv.

(H5) There exists α, β ∈ D(L) mild lower and upper solutions of the IVP
(6), such that L̃α ≤ L̃β.

The main result is the following.
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Theorem 3.5 [7] Let us assume that the hypotheses (A1),(F2),(F3), (G4),(H5)
are fullfiled and that the ordered Banach space E has regular cone. Then the
IVP (6) has extremal mild solutions in W = {u ∈ D(L) : L̃α ≤ L̃u ≤ L̃β}
and they are monotone increasing with respect to f, g and u0.

4 Quadratic approximations

The aim of this section is to present the quasilinearization method in an ab-
stract setting. We do not assume differentiability for the nonlinear part. We
replace it by a metric condition. We also present some results regarding the
initial value problem from [21] as consequences of our abstract result.

Let (X, || · ||X),≤ and (Y, || · ||Y ,≤ be two ordered Banach spaces where
Y is a subset of X. Let L : D(L) ⊂ Y → X be a linear operator and
N : Y ⊂ (X, ||·||X) → (X, ||·||X) be a continuous operator. Let α0, β0 ∈ D(L)
be such that

Lα0 ≤ N(α0), N(β0) ≤ Lβ0, α0 ≤ β0.

Let M : [α0, β0] ⊂ (Y, || · ||X) → L(Y, X) be a uniformly continuous operator,
where L(Y,X) is the set of all continuous and linear operators from (Y, ||·||X)
to (X, || · ||X).

We list some hypotheses.

(L1) For every α ∈ [α0, β0] and v ∈ X, the equation (L−M(α))u = v has a
unique solution, u ∈ D(L) denoted by u = S(v, α).

If (L1) is fullfiled then we can consider the operator S : X × [α0, β0] → Y .

(L2) v ≤ v∗ implies S(v, α) ≤ S(v∗, α).

(L3) There exists c1 > 0 such that

||S(v∗, α0)− S(v, α0)||Y ≤ c1||v∗ − v||,

for all v, v∗ ∈ X and α0 ∈ [α, β].

(L4) Let (αn) be a sequence from Y such that (αn) and (Lαn) converge in
X to u∗ and v∗, respectively. Then (αn) is convergent in Y and v∗ = Lu∗.

(N5) N(u) ≤ N(v)−M(u)(v − u), for all α0 ≤ u ≤ v ≤ β0.

(N6) There exists c2 > 0 with ||N(v)−N(u)−M(u)(v − u)|| ≤ c2||v − u||2,
for all α0 ≤ u ≤ v ≤ β0.
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Theorem 4.1 Let us suppose that the hypothesis (L1)-(L4),(N5) and (N6)
are fullfiled, the order cone of X is regular, and that the equation Lu = N(u)
has at most one solution.
Then the sequence (αn)n≥0 given by the iterative relation

Lαn+1 = N(αn) + M(αn) (αn+1 − αn) , n ≥ 0 (7)

is monotone increasing and converges in Y to the unique solution of Lu =
N(u). The convergence is quadratic.

Proof. The sequence (αn) is well defined and its elements are from Y , as it
is assured by hypothesis (L1).
Now we show that

α0 ≤ α1 ≤ β0.

We have that
Lα1 = N(α0) + M(α0) (α1 − α0) .

Then, using that Lα0 ≤ N(α0), we obtain

(L−M(α0))α0 ≤ N(α0)−M(α0)α0 =
= (L−M(α0))α1.

Hypothesis (L2) assures that α0 ≤ α1.
We also have

Lα1 −M(α0)α1 = Nα0 −M(α0)α0 ≤ (using (N5)
≤ Nβ0 −M(α0) (β0 − α0)−M(α0)α0 ≤
≤ Lβ0 −M(α0)β0.

Hypothesis (L2) assures that α1 ≤ β0.

We prove now that
Lα1 ≤ Nα1.

This follows by the following relations.

Lα1 −M(α0)α1 = Nα0 −M(α0)α0 ≤ (using (N5)
≤ Nα1 −M(α0)(α1 − α0)−M(α0)α0.

Assume now that for some n > 1, Lαn ≤ Nαn and α0 ≤ αn ≤ β0. Similar to
the proof for n = 1, it can be shown that Lαn+1 ≤ Nαn+1 and α0 ≤ αn+1 ≤
β0.
So by induction we obtain

α0 ≤ α1 ≤ ... ≤ αn ≤ ... ≤ β0. (8)
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The convergence in the norm || · ||X of the sequence (αn)n≥0 is assured by
the regularity of the order cone K of the Banach space X. Let us denote by
u∗ the limit of this sequence, which satisfies

αn ≤ u∗.

Using the continuity of N and the uniform continuity of M , the right hand
side of (7) converges in X to N(u∗). Thus, the sequence (αn) from Y is such
that (αn) and (Lαn) converge in the norm of X to u∗ and N(u∗), respectively.
Using (L5) we deduce that (αn) converges in Y to u∗ and Lu∗ = N(u∗).

Finally, to prove quadratic convergence, we let

pn = u∗ − αn.

Lpn+1 = Lu∗ − Lαn+1

= Nu∗ −Nαn −M(αn)(αn+1 − αn) =
= Nu∗ −Nαn −M(αn)pn + M(αn)pn+1

If we write v∗ = Lu∗ +M(αn)u∗ and notice that u∗ = S(v∗, αn) and αn+1 =
S(vn, αn), we deduce the following inequalities on the base of (L3) and (N6).

||pn+1||Y =
= ||u∗ − αn+1||Y ≤ c1||Lpn+1 −M(αn)pn+1||X =
= c1||Nu∗ −Nαn −M(αn)(u∗ − αn)||X ≤
≤ c1c2||pn||2y

The proof is therefore complete. 2

Let us consider the initial value problem for a first order ODE,

u′ = f(t, u), t ∈ [0, T ], u(0) = u0, (9)

where f ∈ C ([0, T ]× R; R).

Corollary 4.1 ([21]) Assume that α0, β0 ∈ C1[0, T ] are such that

α′0 ≤ f(t, α0),
f(t, β0) ≤ β′0 and

α0(t) ≤ β0(t), t ∈ [0, T ]

and that the derivatives fu, fuu exist, are continuous, and

fuu ≥ 0 in Ω,
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where Ω = {(t, u) ∈ [0, T ]× R : α0(t) ≤ u ≤ β0(t), t ∈ [0, T ]}.
Then the sequence (αn)n≥0 given by

α′n+1 = f(t, αn) + fu(t, αn)(αn+1 − αn)
αn+1(0) = u0

(10)

converge uniformly to the unique solution of (9) and the convergence is
quadratic.

Remark. The proof of this theorem follows from Theorem 4.1 by choosing
the spaces and the operators as follows. Y = C[0, T ] with the supremum
norm, X = L1(0, T ) with L1-norm and natural order relations.
D(L) =

{
u ∈ C1(0, T ) : u(0) = u0

}
, Lu = u′, N(u)(t) = f(t, u(t)) and

M(α)u(t) = fu(t, α(t)) · u(t).

Let us consider the initial value problem for an n-th order system of ODE,

u′ = f(t, u), t ∈ [0, T ], u(0) = u0, (11)

where f ∈ C ([0, T ]× Rn; Rn).

Corollary 4.2 ([21]) Assume that α0, β0 ∈ C1 ([0, T ]; Rn) are such that

α′0 ≤ f(t, α0),
f(t, β0) ≤ β′0 and

α0(t) ≤ β0(t), t ∈ [0, T ]

and that
(i) f ∈ C ([0, T ]× Rn, Rn) is quasimonotone increasing in u;

(ii) fu, fuu exist and are continuous satisfying

fuu ≥ 0 on Ω

where Ω = {(t, u) ∈ Rn : α0(t) ≤ u ≤ β0(t), t ∈ [0, T ]};

(iii) ai,j(t, α0) ≥ 0 for i 6= j where A(t, α0) = [ai,j ] is an n × n matrix
given by A(t, α0) = fu(t, α0(t)).

Then the sequence (αn)n≥0 given by

α′n+1 = f(t, αn) + fu(t, αn)(αn+1 − αn)
αn+1(0) = u0

(12)

converge uniformly to the unique solution of (11) and the convergence is
quadratic.
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[4] A. Buică, Gronwall-type nonlinear integral inequalities, to appear in
Mathematica (Cluj).
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jană, Cluj-Napoca, 2001.
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[15] S. Heikkila and V. Lakshmikantham, Monotone iterative techniques for
discontinuous nonlinear differential equations, Dekker, New York/Basel,
1994.

[16] G. Herzog and R. Lemmert, Differential inequalities, Seminar LV no. 8
(2001), University of Karlsruhe.

[17] E. Hille, R.S. Phillips, Functional analysis and semi-groups, Amer.
Math. Soc., Providence, R.I., 1957.

[18] M.A. Krasnoselskii, Positive solutions of operator equations, Noordhoff,
Groningen, 1964.

[19] G.S. Ladde, V. Lakshmikantham and A.S. Vatsala, Monotone iterative
techniques for nonlinear differential equations, Pitman, Boston, 1985.

[20] V. Lakshmikantham, S. Leela and S. Sivasundaram, Extensions of the
method of quasilinearization, Journal of Optimization Theory and Ap-
plications 87(1995), 379-401.

[21] V. Lakshmikantham and A.S. Vatsala, Generalized quasilinearization for
nonlinear problems, Kluwer Academic Publishers, Dordrecht, Nether-
lands, 1995.

[22] X. Liu, S. Sivaloganathan and S. Zhang, Monotone iterative techniques
for time-dependent problems with applications, J. Math. Anal. Appl.,
237, (1999) 1-18.

[23] A.B. Morante, A concise guide to semigroups and evolution equations,
World Scientific, 1994.

[24] R. Precup, Monotone technique to the initial value problem for a de-
lay integral equation from biomathematics, Studia Univ. Babeş-Bolyai
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