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SOME REMARKS ON THE MONOTONE ITERATIVE TECHNIQUE

ADRIANA BUICĂ

Abstract. We consider an abstract operator equation in coincidence form Lu = N(u) and establish
some comparison results and existence results via the monotone iterative technique. We use a gene-
ralized iteration method developed by Carl-Heikkila (1999). An application to a boundary value
problem for a second-order functional differential equation is considered.
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1. INTRODUCTION

Let X be a nonempty set and Z be an ordered metric space. Let us consider the
operator equation of the form

(1.1) Lu = Nu,

and the iterative scheme

(1.2) Lun+1 = Nun,

where L, N : X → Z.
In our work the operators L and N will satisfy some extended monotonicity con-

ditions, which are described exactly in the following definition.

Definition 1.1. N is monotone increasing with respect to L if u1, u2 ∈ X and
Lu1 ≤ Lu2 imply that Nu1 ≤ Nu2.

If in the last relation the reversed inequality holds, then N is monotone decreasing
with respect to L.

Let X be an ordered set. If Lu1 ≤ Lu2 implies u1 ≤ u2 then L is said to be
inverse-monotone (see [8]) or of monotone-type (see [9]).

The plan of our paper is as follows. In Section 2 we deal with operator inequalities
corresponding with (1.1) and extend the abstract Gronwall lemma of Rus [6]. Let us
mention that the result from [6] generalize some results from [9] and [11]. In Section 3
we generalize some known existence results for equation (1.1) ([5, 10, 4, 1, 9]) involving
monotone increasing or monotone decreasing operators. We shall use a generalized

Babeş-Bolyai University, Faculty of Mathematics and Informatics, Department of Applied Ma-
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iteration method developed in [2]. In Section 4 we shall apply some of our results to
implicit second order functional-differential equations. For another treatment of this
type of functional-differential equations it can be seen [7].

2. OPERATOR INEQUALITIES IN ORDERED METRIC SPACES

In this section we extend the notion of Picard operator [6], in Definition 2.1, and
the abstract Gronwall lemma of Rus [6], in Theorem 2.3. The above mentioned
notion and result correspond, in our setting, with the case when X = Z and L is the
identity mapping of Z. As a consequence of Theorem 2.3, we shall find a condition
in Corollary 2.4, which assure the existence of ordered lower and upper solutions for
equation (1.1).

Definition 2.1. N is Picard with respect to L if there exists a unique v∗ ∈ Z with
the following properties.

(i) there exists u∗ ∈ X such that Lu∗ = Nu∗ = v∗;
(ii) N(X) ⊂ L(X);
(iii) for every u0 ∈ X a sequence defined by (1.2) is such that (Lun)n≥0 is conver-

gent to v∗.

Example 2.1. If X = Z and N : Z → Z is Picard [6] then N is Picard with respect
to I, the identity mapping of Z.

Example 2.2. If L is inversable and N ◦ L−1 : Z → Z is Picard, then N is Picard
with respect to L.

Example 2.3. Let L,N : (0,∞) → (−1,∞) be given by L(u) = u2 − 1 and N(u) =√
u. Then N is Picard with respect to L. Let us mention that, also, N is monotone

increasing with respect to L.

Example 2.4. If Z is also a complete metric space, L is surjective and N is contraction
with respect to L then N is Picard with respect to L. Let us mention that N is
contraction with respect to L if there exists 0 < a < 1 such that for all u1, u2 ∈ X,
d(Nu1, Nu2) ≤ a · d(Lu1, Lu2).

For the proof of this result, also known as the Coincidence Theorem of Goebel, we
refer to [3].

Lemma 2.2. If N is monotone increasing (or monotone decreasing or contraction)
with respect to L then

Lu1 = Lu2 implies Nu1 = Nu2.

If L is inverse-monotone then L is injective.

Proof. Let us consider only that N is monotone increasing with respect to L.
If Lu1 = Lu2 then Lu1 ≤ Lu2 and Lu2 ≤ Lu1. Thus, Nu1 ≤ Nu2 and Nu2 ≤ Nu1.

This obviously implies the conclusion.
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For the last statement we have to prove that, if L is of monotone type, then
Lu1 = Lu2 implies u1 = u2. This can be done like above. ¤

Theorem 2.3. If N is monotone increasing with respect to L and N is Picard with
respect to L then

(i) Lu0 ≤ Nu0 implies Lu0 ≤ v∗,
(ii) Lu0 ≥ Nu0 implies Lu0 ≥ v∗.

If, in addition, L is of monotone type then
(j) Lu0 ≤ Nu0 implies u0 ≤ u∗,
(jj) Lu0 ≥ Nu0 implies u0 ≥ u∗.

Proof. Let us consider u0 ∈ X such that Lu0 ≤ Nu0 and the sequence defined by
(1.2) starting from u0. The following relations hold,

Lu0 ≤ Nu0 = Lu1 ≤ Nu1 = Lu2 ≤ Nu2 ≤ . . . .

Thus, for all n ≥ 0,
Lu0 ≤ Nun,

and, passing to the limit when n →∞,

Lu0 ≤ v∗.

The next relation can be proved similarly.
If, in addition, L is inverse-monotone, then, by Lemma 2.2, u∗ given by Defini-

tion 2.1 is unique and, of course, Lu0 ≤ Lu∗ implies u0 ≤ u∗. ¤

We say that u
¯
∈ X is a lower solution of (1.1) if Lu

¯
≤ Nu

¯
. Similarly, ū ∈ X is an

upper-solution of (1.1) if Lū ≥ Nū.

Corollary 2.4. Let us consider two operators N
¯

, N̄ : X → Z such that they are
monotone increasing with respect to L and Picard with respect to L. If

(2.1) N
¯

u ≤ Nu ≤ N̄u, for all u ∈ X,

then there exist u
¯

a lower solution and ū an upper-solution of (1), such that

Lu
¯
≤ Lū.

If, in addition, L is of monotone type then,

u
¯
≤ ū.

Proof. N
¯

and N̄ being Picard with respect to L, there exist u
¯

such that

Lu
¯

= N
¯
u
¯
,

and ū such that
Lū = N̄ ū.



150 Adriana Buică 4

Then, by (3), Lu
¯
≤ Nu

¯
and Lū ≥ Nū, which mean that u

¯
is a lower solution and ū

is a super-solution of (1.1).
Also by (2.1), the following inequality holds

Lu
¯
≤ N̄u

¯
.

We apply now Theorem 2.3 for N̄ and deduce that

Lu
¯
≤ Lū.

The last part of the conclusion follows in an obvious way. ¤

3. OPERATOR EQUATIONS IN ORDERED BANACH SPACES

In this section we shall establish two existence results for equation (1.1), involving
an operator N which is increasing with respect to L, in Theorem 3.2, respectively
monotone decreasing with respect to L, in Theorem 3.3. We shall use a generalized
iteration method developed in [2]. As it is mentioned in [2], this method enlarges
the range of applications since neither L nor N need be continuous. In this spirit,
Theorem 3.2 generalizes Theorem 3.1 in [4], and Theorem 3.3 generalizes Theorem 3
in [10] and Theorem 2 in [5] (these are given in the case X = Z and L = I).

The following result is Proposition 3.4 from [2] and we shall use it to derive Theo-
rem 3.2.

Proposition 3.1. Assume that the following conditions hold.
(i) There exists u

¯
a lower solution of (1.1), u

¯
∈ W ⊂ X;

(ii) N is monotone increasing with respect to L;
(iii) L(W ) is an ordered metric space and if (un) is a sequence in W such that the

sequences (Lun) and (Nun) are increasing, then (Nun) converges in L(W ).
Then (1.1) has a solution u∗ with the property

Lu∗ = min{Lw ∈ L(W ) | Lu
¯
≤ Lw and Lw ≥ Nw }.

If, in addition, W is an ordered space and L is of monotone type, then u∗ is the
minimal solution of (1.1) in W0 = {u ∈ W | Lu

¯
≤ Lu}.

We notice that the dual result is valid.
In the following results, i.e. Theorem 3.2 and Theorem 3.3, Z will be an ordered

Banach space (OBS) with a normal cone K.
Let us remember, (see [5, 1, 10]) that the cone K = {v ∈ Z | v ≥ 0} is said to be

normal if there exists δ > 0 such that 0 ≤ v ≤ w implies ||v|| ≤ δ||w||.
For v ≤ w the order interval [v, w] is the set of all u ∈ Z such that v ≤ u ≤ w.

Every order interval for an OBS is bounded if and only if the cone K is normal. In an
OBS with a normal cone, every monotone increasing sequence which has a convergent
subsequence, is convergent.

A cone K is said to be regular if every monotone increasing sequence contained in
some order interval, is convergent.
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Theorem 3.2. Assume that the following conditions hold.
(i) u

¯
is a lower solution and ū is a super-solution of (1.1) with Lu

¯
≤ Lū;

(ii) N is monotone increasing with respect to L;
(iii) [Lu

¯
, Lū] ⊂ L(X);

(iv) K is regular or [Nu
¯

, Nū] ∩N(X) is a compact subset of Z.
Then (1.1) has a solution u∗ with the property

Lu∗ = min{Lw ∈ [Lu
¯

, Lū] | Lw ≥ Nw }
and a solution u∗ with the property

Lu∗ = max{Lw ∈ [Lu
¯

, Lū] | Lw ≤ Nw }.
If, in addition, L is of monotone type, then u∗ is the minimal solution, and u∗ the
maximal solution of (1) in [u

¯
, ū].

Proof. Let us consider W = {u ∈ X | Lu
¯
≤ Lu ≤ Lū}. Then, using also (iii),

L(W ) = [Lu
¯
, Lū], which is a closed subset of Z, thus is an ordered metric space.

Let (un) be a sequence in W such that (Lun) and (Nun) are increasing. Using (i)
and (ii), Lu

¯
≤ Lun ≤ Lū imply that Lu

¯
≤ Nu

¯
≤ Nun ≤ Nū ≤ Lū. Then (Nun) is

an increasing sequence in the bounded (because K is normal) interval L(W ).
If K is regular, then (Nun) converges.
If [Nu

¯
, Nū] ∩ N(X) is compact, then (Nun) has a convergent subsequence. By the

monotonicity of the sequence (Nun), it converges.
All the hypotheses of Proposition 3.1 are fulfilled. Hence, the conclusion follows. ¤
Remark 3.1. If, in addition to the hypotheses of Theorem 3.2, N is continuous with
respect to L then u∗ can be obtained by (1.2) starting from u

¯
, in the sense that a

sequence defined by (1.2) with u0 = u
¯

is such that (Lun) converges to Lu∗.
Let us mention that N is said to be continuous with respect to L if for every sequence
(Lun) from L(X) convergent to Lu∗ ∈ L(X), the sequence (Nun) converges to Nu∗.

Theorem 3.3. Assume that the following conditions hold.
(i) Lu ≥ 0 implies Nu ≥ 0;
(ii) N is monotone decreasing with respect to L;
(iii) if u0 and u1 are such that Lu0 = 0, Nu0 = Lu1 then Nu1 > 0 and [0, Lu1] ⊂

L(X);
(iv) there exists α ∈ (−1, 0) such that Nuµ ≤ µαNu for all u, uµ ∈ X with

(0 ≤ Lu ≤ Lu1 and Luµ = µLu) and for all µ ∈ (0, 1);
(v) for every v, w with 0 < v ≤ w ≤ Lu1 there is µ ∈ (0, 1) such that µw ≤ v,
(vi) the cone K is regular or [Nu1, Nu0] ∩N(X) is a compact subset of Z.

Then (1.1) has a solution, u∗ with Lu∗ > 0.

Proof. For every u ∈ X, if ũ is such that Nu = Lũ, let us define Ñu = Nũ. By
Lemma 2.2, Ñu does not depend on the choice of ũ, thus the operator Ñ : X → Z is
well-defined.
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Ñ is monotone increasing with respect to L. Indeed, Lu1 ≤ Lu2 ⇒, Lũ1 = Nu1 ≥
Nu2 = Lũ2 ⇒ Ñu1 = Nũ1 ≤ Nũ2 = Ñu2.

Let us consider also u2, u3 such that Nu1 = Lu2 and Nu2 = Lu3. By (i) and (iii),
Lu1 ≥ 0 = Lu0, which implies, by (ii), that Nu1 ≤ Nu0. Using the definitions of u2

and u1, the following relation holds.

(3.1) Lu2 ≤ Lu1.

We shall focus our attention to the equation

(3.2) Lu = Ñu.

We shall prove that u2 is a lower solution and u1 is an upper solution of (3.2). This
follows by the following implications.

Nu1 ≥ 0 = Lu0 ⇒ Lu2 ≥ Lu0 ⇒ Nu2 ≤ Nu0 ⇒ Ñu1 ≤ Lu1,

and
Nu2 ≤ Nu0 ⇒ Lu3 ≤ Lu1 ⇒ Nu3 ≥ Nu1 ⇒ Ñu2 ≥ Lu2.

We use Theorem 3.2 and deduce that equation (3.2) has a solution u∗, i.e.

Lu∗ = Ñu∗,

with the property

Lu∗ = min{Lw ∈ [Lu2, Lu1] | Lw ≥ Nw}.
Let us consider ũ∗ such that

Lũ∗ = Nu∗.
By the definition of Ñ , Lu∗ = Nũ∗. And now, using also again the definition of

Ñ , we obtain
Lũ∗ = Ñ ũ∗.

If Lu∗ = Lũ∗ then, the existence of a solution for (1.1) is proved. Using (iii), (iv) and
(v) we shall prove that this always holds. First, let us notice that 0 < Lu∗ ≤ Lũ∗ ≤
Lu1. According to (v), let µ0 = sup{µ ∈ (0, 1] | µLũ∗ ≤ Lu∗}. Clearly, µ0Lũ∗ ≤ Lu∗.
We have to prove that µ0 = 1. Then, Lũ∗ = Nu∗ ≤ Nũ∗µ0

≤ µα
0 Nũ∗ = µα

0 Lu∗.
Here, ũ∗µ0

is such that Lũ∗µ0
= µ0Lũ∗. Consequently, µ−α

0 ≤ µ0, that is −α ≥ 1, a
contradiction. Thus, Lu∗ = Lũ∗. ¤

4. APPLICATION

In this section we shall establish a weak maximum principle for the functional-
differential operator

Lu = −u′′ − λu(g(x))
and an existence result for the following boundary value problem for a second order
implicit functional-differential equation.

(4.1)
{ −u′′(x) = f(x, u(g(x)), u(x),−u′′(x)), a.a. x ∈ (0, 1)

u ∈ H2(0, 1) ∩H1
0 (0, 1).
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Let us list the following hypotheses.
(g1) the function g : [0, 1] → [0, 1] is continuous.
(f1) the function f : (0, 1)×R3 → R is Caratheodory and there exists a continuous

function ϕ : [0, 1]×R2 → R such that

|f(x, u, v, w)| ≤ ϕ(x, u, v), a.a. x ∈ (0, 1), u, v, w ∈ R.

(f2) f is monotone increasing with respect to the last three variables.
Let us denote

Nu = f(x, u(x), u(g(x)),−u′′),
Z = L2(0, 1), X = H2(0, 1) ∩H1

0 (0, 1).
Then, we obtain two operators L,N : X → Z and the BVP can be written in the
following form (with λ = 0).

(4.2) Lu = Nu, u ∈ X.

Let us notice that (f1) and the inclusion X ⊂ C[0, 1] imply that N is well-defined.
Also, for our existence result, we shall not need another growth condition for the
function f .

Next we shall prove that, when 0 ≤ λ < 8, the weak maximum principle holds for
the functional-differential operator L.

Theorem 4.1. If 0 ≤ λ < 8 then L : X → Z is surjective and it is inverse-monotone.

Proof. In order to prove that L is surjective we study the solvability of the following
equation for an arbitrary w ∈ Z.

(4.3) Lu = w, u ∈ X.

Let us consider the following integral operator.

Aw : C[0, 1] → C[0, 1], Awu =
∫ 1

0

G(x, s)[λu(g(s)) + w(s)]ds.

The Green function G : [0, 1]× [0, 1] → R is given by

G(x, s) =
{

s(1− x), if s ≤ x
x(1− s), if s ≥ x.

Then equation (4.3) is equivalent to

Awu = u, u ∈ C[0, 1].

By o straightforward calculation, the following relation can be proved

||Awu1 −Awu2||C ≤ λ · 1
8 ||u1 − u2||C .

Thus, Aw is a contraction on the Banach space C[0, 1], so it has a unique fixed
point. Hence, L is surjective.

In order to prove that L is inverse-monotone, because L is linear it is sufficient to
prove that Lu ≤ 0 implies u ≤ 0.
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Let u∗ ∈ X be such that Lu∗ ≤ 0. Let us denote by w∗(x) = Lu∗(x). Then
w∗(x) ≤ 0 and Aw∗u

∗ = u∗.
The operator Aw∗ is Picard and monotone increasing and, in this case, it is easy

to see that A(0) ≤ 0. Then, by Theorem 2.3 (or Theorem 4.1 in [6]) u∗ ≤ 0. ¤
The following theorem is an existence result for the BVP considered at the begin-

ning of this section.

Theorem 4.2. If conditions (g1), (f1) and (f2) hold and there exists a subsolution u
¯and an upper solution ū for problem (6) with

−u
¯
′′ ≤ −ū′′

then (4.1) has a solution.

Proof. This follows easily by Theorem 3.2. Let us omit the details and notice only
some useful facts.

Z = L2(0, 1) is an ordered Banach space with a regular cone (see [1]).
[Lu

¯
, Lū] ⊂ L(X) because L is surjective.

The condition (f2) and that L is inverse-monotone imply that N is monotone
increasing with respect to L. ¤
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