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Abstract

In this paper we give contributions to the coincidence degree theory of asymptotically homogeneous operators. Applications
are given to the periodic problem for second-order functional differential equations.
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1. Introduction

Differential equations with asymptotically homogeneous nonlinearities are intensively studied in the literature since
they appear as models of important physical phenomena; see [5,9,10,12,14,16,17]. Most of the results are dedicated
to the existence of periodic solutions. Powerful tools for proving such results are the continuation method (see [9,8,
15]) and, maybe the most popular but not essentially different, degree theory (see [11]), in particular the coincidence
degree theory (see [7]). Typically, an equivalent operator equation is associated with the periodic problem and after
it is proved that the degree of the operator involved is not zero. It is better, of course, if an abstract theoretical result
is available in order to prove that this degree is not zero (see [2,4–7,13]). Another idea is that this result can be used
also easily for other problems. In [2] we obtained results that allow the computation of the coincidence degree for
homogeneous nonlinear operators and we applied them to the periodic problem for first-order functional differential
equations. In this article we extend the results from [2] to the case of asymptotically homogeneous operators and
apply them to the periodic problem for second-order functional differential equations. We consider that is important
to emphasize that the abstract results can be applied also to the periodic problem for first-order functional differential
equations. In this way, extensions of similar results for the case of ordinary differential equations from [9,5] could be
obtained. But our results for second-order equations cannot be obtained as consequences of these ones. Moreover, they
extend to the case of functional differential equations some similar results from [14], but not in their full generality.
It remains an open problem whether abstract results inside the coincidence theory can be found as generalizations
of the results from [14] for differential equations. At the end we point out that also the results from [10,13,16] can
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be obtained as consequences of our results (in [10,13,16] the nonlinear operators are asymptotically homogeneous of
order 1).

2. Preliminaries

The coincidence degree. Definition. Let X and Y be two Banach spaces and L : X → Y be a linear continuous
operator. In the sequel, L will be a Fredholm operator of index 0, i.e. Im L is closed in Y and the linear spaces Ker L
and coIm L have the same dimension which is finite. We define X1 = Ker L and Y1 = coIm L so we have the
decompositions X = X1 ⊕ coKer L and Y = Y1 ⊕ Im L . Now we consider the linear isomorphism J : X1 → Y1 and
the continuous linear projectors P : X → X1 and Q : Y → Y1 with Ker Q = Im L and Im P = X1.

Let Ω be an open bounded subset of X and N : Ω → Y be a continuous and compact operator (i.e. the closure of
N

(
Ω

)
is compact in Y ). In order to define the coincidence degree of (L , N ) in Ω , as in [7], denoted by d(L − N ,Ω),

we assume that

Lx 6= N (x) for all x ∈ ∂Ω .

It is proved in [7] (see also [3]) that the operator M : Ω → X , M = (L + J P)−1(N + J P) is well defined, continuous,
compact and

Lx∗
= N (x∗) if and only if x∗

= M(x∗).

Then, the Leray–Schauder degree of IX − M (where IX is the identity map of X ) is well defined in Ω and we will
denote it by dLS(IX − M,Ω). This number is independent of the choice of P, Q and J (up to a sign) and we can
define

d(L − N ,Ω) := dLS(IX − M,Ω).

The periodic problem for second-order functional differential equations and the coincidence degree. We consider
the ω-periodic problem (ω > 0) for a second-order functional differential equation

x is ω-periodic, x ′′(t) = F(x)(t), t ∈ R, (eq1)

where F : C1
ω → L1

ω is a continuous operator, taking bounded sets into bounded sets. The Banach spaces C1
ω and Lω

are defined below.

C1
ω :=

{
x : R → Rn continuously differentiable and ω-periodic

}
,

with the norm |x |C1 = |x |sup + |x ′
|sup, where |x |sup = supt∈[0,ω]|x(t)|.

L1
ω :=

{
x : R → Rn integrable and ω-periodic

}
,

with the norm |x |L1 =
∫ ω

0 |x(s)| ds.
A solution of the ω-periodic problem (eq1) is a function x ∈ C1

ω such that x ′′ is absolutely continuous. In order to
apply the coincidence degree theory to this problem we make use of the following notation and remarks.

Y :=
{

y : R → Rn continuous and y(t + ω) = y(t) + y(ω) for all t ∈ R
}
.

With the norm | · |sup the linear space Y becomes a Banach space.
We define the operator

L : C1
ω → Y, Lx(t) := x ′(t) − x ′(0),

which is linear and continuous, and its kernel and image are

X1 := Ker L =
{

x : R → Rn constant function
}
,

Y2 := Im L = {y ∈ Y with y(ω) = 0} = {y ∈ Cω with y(0) = 0} ⊂ Cω.

Now we consider the linear space

Y1 :=
{

y ∈ Y such that y(t) = ct for all t ∈ R and for some c ∈ Rn}
,
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and notice that Y1 = co Y2 (where co denotes the complementary space), Y2 is closed in Y , and the linear spaces X1
and Y1 have dimension n. Hence, L is a linear Fredholm operator of index 0.

The map J : X1 → Y1, Ja(t) := (a/ω)t for all t ∈ R and a ∈ X1 is a linear isomorphism, while

P : C1
ω → X1, Px := x(0) and Q : Y → Y1, Qy(t) := (1/ω)y(ω)t

are linear projectors as in the above definition of the coincidence degree.
It is useful also to note that J Px(t) = (x(0)/ω)t , J−1 Qy = y(ω), and that L + J P : C1

ω → Y is a linear
isomorphism with the inverse

(L + J P)−1(y)(t) =

∫ t

0
y(s) ds −

t

ω

∫ ω

0
y(s) ds +

(
1 +

t

2
−

t2

2ω

)
y(ω).

The nonlinear operator N defined by

N : C1
ω → Y, N (x)(t) :=

∫ t

0
F(x)(s) ds (1)

is continuous and compact. The operator M := (L + J P)−1
◦ (N + J P) : C1

ω → C1
ω is well defined and in this case

is given by the formula

M(x)(t) = x(0) +

∫ t

0
N (x)(s) ds −

t

ω

∫ ω

0
N (x)(s) ds +

(
1 +

t

2
−

t2

2ω

)
N (x)(ω).

The restriction of the map J−1 QN to X1 identified with Rn is the function f : Rn
→ Rn given by the formula

f (a) :=

∫ ω

0
F(a)(s) ds. (2)

Hence, we have defined a pair (L , N ) and the associated spaces and operators that fit in the framework of the definition
of the coincidence degree. Of course, the important thing is that a function x is a solution of the ω-periodic problem
for (eq1) if and only if Lx = N (x). For some Ω open and bounded subset of C1

ω such that Lx 6= N (x) for each
x ∈ ∂Ω , the coincidence degree d(L − N ,Ω) is well defined. We will refer to this like the degree of the problem
(eq1) and we use the notation

cdeg((eq1),Ω) := d(L − N ,Ω).

The coincidence degree. Properties. From the properties of the Leray–Schauder degree (as given for example
in [11]), one can obtain similar properties for the coincidence degree. We will present here some of them that will be
used in the sequel.

Theorem 1. (i) (Existence property). If d((L , N ),Ω) 6= 0 then there exists x ∈ Ω such that Lx = N (x).
(ii) (The invariance under homotopies). If H : Ω × [0, 1] → Y is continuous, compact and Lx 6= H(x, λ) for all

x ∈ ∂Ω and λ ∈ [0, 1], then d(L − H(., λ),Ω) is independent of λ.

The effect of small perturbations is negligible, as is proved in the next theorem ([7] Theorem III.3, page 24).

Theorem 2. Assume that Lx 6= N (x) for each x ∈ ∂Ω . If Np is such that supx∈∂Ω‖Np(x)‖ is sufficiently small, then
Lx 6= N (x) + Np(x) for all x ∈ ∂Ω and d(L − N − Np,Ω) = d(L − N ,Ω).

The importance of the following result is that it gives sufficient conditions for being able to calculate the coincidence
degree as the Brouwer degree (denoted with dB) of a related finite dimensional mapping. It is known that the degree
of finite dimensional mappings is easier to calculate (there are examples in [3,4,11]). The idea of the proof is the use
of the homotopy of the problem Lx = N (x) with the finite dimensional one Lx = QN (x).

Theorem 3 ([7]). We assume that Lx 6= λN (x) for all x ∈ ∂Ω and λ ∈ (0, 1]. If QN (x) 6= 0 for all x ∈ ∂Ω ∩ X1
then d (L − N ,Ω) = dB

(
J−1 QN ,Ω ∩ X1, 0

)
.
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The first hypothesis of the above theorem is fulfilled in the case where the right hand side of the equation Lx = N (x)

is sufficiently small. This is precisely stated in the next theorem ([7] and Theorem IV.2, page 31).

Theorem 4. Assume that for each sufficiently small ε > 0, the operator Ns(·, ε) : Ω → Y is continuous and compact,
QNs(x, ε) 6= 0 for all x ∈ ∂Ω ∩ X1 and supx∈∂Ω |Ns(x, ε) − Ns(x, 0)| → 0 as ε → 0. Then for ε > 0 sufficiently
small Lx 6= εNs(x, ε) for all x ∈ ∂Ω and d (L − εNs(·, ε),Ω) = dB

(
J−1 QNs(·, ε),Ω ∩ X1, 0

)
.

In the next section, the following statement will be used several times. Its proof is straightforward.

Lemma 1. Let ε > 0 and x ∈ Ω . We have that Lx = εN (x, ε) if and only if Lx = QN (x, ε) + εN (x, ε).

3. Main results on coincidence degree theory

In this section we will work in the framework of the above section. Here we will consider two continuous and
compact operators N , Np : X → Y (N is compact if the closure of N (Ω) is compact in Y for any Ω , a bounded
subset of X ). We denote by Br (0) the ball of center 0 and radius r > 0 from the Banach space X . Usually, here Ω
will be Br (0) for some suitably chosen radius r . Let α > 0 be a given real number. We assume that N is positively
homogeneous of order α, i.e.

N (r x) = rα N (x) for all r > 0 and x ∈ X. (N1)

As regards the operator Np we assume that it satisfies either the asymptotic condition

lim
r→∞

1
rα

sup
|y|=1

|Np(r y)| = 0, (Np1)

or the following condition in the neighborhood of the origin:

lim
r↘0

1
rα

sup
|y|=1

|Np(r y)| = 0. (Np2)

Our aim is to obtain one of the following two conclusions.

d(L − N , Br (0)) = dB(J−1 QN , Br (0) ∩ X1, 0) (C1)

d(L − N − Np, Br (0)) = d(L − N , Br (0)). (C2)

We will consider three cases to discuss: α > 1, α < 1 and α = 1.

Theorem 5. Assume that the operator N satisfies (N1) with α 6= 1. If the only solution in X of the equation
Lx = N (x), and the only solution in X1 of QN (x) = 0 is x = 0, then (C1) holds for every r > 0.

Proof. Let r > 0 be fixed. We apply Theorem 3 with Ω = Br (0). Since we do indeed have QN (x) 6= 0 for all x ∈ X1
with |x | = r , it remains to prove that

Lx 6= λN (x) for all x with |x | = r and λ ∈ (0, 1]. (3)

We assume by contradiction that there exists some x∗
∈ X with |x∗

| = r and some λ∗
∈ (0, 1] such that

Lx∗
= λ∗N (x∗). Let y∗

= (λ∗)1/(α−1)x∗ and notice that y∗
6= 0 satisfies Ly∗

= N (y∗). This contradicts one of
the hypotheses. Hence, (3) is valid and the conclusion follows. �

Theorem 6. Assume that the operator N satisfies (N1) with α > 1.

(i) If QN (y) 6= 0 for all y ∈ X1 with |y| = 1 then (C1) holds for r sufficiently small.
(ii) If the operator Np satisfies (Np2) and QN (y) 6= 0 for all y ∈ X1 with |y| = 1 then (C2) holds for r sufficiently

small.
(iii) If the operator Np satisfies (Np1) and there exists µ > 0 such that µ ≤ |N (y)| for all y with |y| = 1 then (C2)

holds for r sufficiently large.
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Proof. (i) First we prove that for each r sufficiently small,

Lx 6= λN (x) for all x with |x | = r and λ ∈ (0, 1]. (4)

Through the change y =
1
r x , using that L is linear and N is α-homogeneous, (4) is equivalent to Ly 6= λrα−1 N (y)

for all y with |y| = 1. This last relation follows by Theorem 4 noticing that λrα−1 is sufficiently small. So, (4) is
proved. Our hypotheses assure that QN (x) 6= 0 for all x ∈ X1 with |x | = r . This can be easily seen by considering
again the change y =

1
r x . Now we apply Theorem 3 with Ω = Br (0) and obtain the conclusion.

(ii) The conclusion follows by the invariance under homotopies of the coincidence degree for Ω = Br (0) and
H(x, λ) = N (x) + λNp(x). All we have to do is to check that for all λ ∈ [0, 1],

Lx 6= N (x) + λNp(x) for all x with |x | = r. (5)

Through the change y =
1
r x , this is equivalent to

Ly 6= rα−1
[

N (y) + λ
1

rα
Np(r y)

]
for all y with |y| = 1. (6)

We define Ns(y, r) = N (y) + λ 1
rα Np(r y) and, using Lemma 1, we deduce that (6) is equivalent to

Ly 6= QNs(y, r) + rα−1 Ns(y, r) for all y with |y| = 1. (7)

The linearity of Q implies that QNs(y, r) = QN (y)+λ 1
rα QNp(r y) and, using the notation Ñp(y) = λ 1

rα QNp(r y)+

rα−1 Ns(y, r), relation (7) becomes

Ly 6= QN (y) + Ñp(y) for all y with |y| = 1. (8)

We claim that the hypotheses of Theorem 2 are fulfilled for the operators L , QN and Ñp. Hence, relation (8) holds
true, and, by the chain of the above equivalences, (5) is also valid.

In the sequel, we will prove the claim. If, for some y∗ with |y∗
| = 1, Ly∗

= QN (y∗) then y∗
∈ X1 and

QN (y∗) = 0. This contradicts one of the hypotheses. It remains to prove that sup|y|=1|Ñp(y)| can be arbitrarily small

as r → 0. Let r be sufficiently small. The relation (Np2) and the continuity of Q assures that the first term of Ñp can
be arbitrarily small. The compactness of N and Np, and relation (Np2) imply that sup|y|=1|Ns(y, r)| is bounded by a

constant that does not depend on r . Hence, the second term of Ñp can also be arbitrarily small. The proof is done.
(iii) We use also the homotopy H(x, λ) = N (x) + λNp(x) in order to apply the invariance under homotopies of

the coincidence degree. All we have to prove is relation (5) that, through the change x = r y, is equivalent with (6).
Moreover, this becomes

N (y) 6=
1

rα−1 Ly − λ
1

rα
Np(r y) for all y with |y| = 1. (9)

The right hand side of (9) can be arbitrarily small as r → ∞, while the left hand side is above µ > 0. Then, for r
sufficiently large, (9) is true. �

In the case α < 1 an analogous result holds. Its statement, without the proof, follows.

Theorem 7. Assume that the operator N satisfies (N1) with α < 1.

(i) If QN (y) 6= 0 for all y ∈ X1 with |y| = 1 then (C1) holds for r sufficiently large.
(ii) If the operator Np satisfies (Np1) and QN (y) 6= 0 for all y ∈ X1 with |y| = 1 then (C2) holds for r sufficiently

large.
(iii) If the operator Np satisfies (Np2) and there exists µ > 0 such that µ ≤ |N (y)| for all y with |y| = 1 then (C2)

holds for r sufficiently small.

Remark 1. Let N be such that it satisfies (N1) with α 6= 1 and there exists µ > 0 such that µ ≤ |N (y)| for all y
with |y| = 1 (i.e. N satisfies the hypotheses of Theorem 6(iii) when α > 1 and, respectively, of Theorem 7(iii) when
α < 1). As a consequence of Theorem 10.2 from [1] we obtain that there exists x 6= 0 such that x = N (x). Hence
Theorem 5 cannot be used in order to calculate the degree d(I − N , Br (0)).
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Our main result in the case α = 1 is the following.

Theorem 8. Assume that the operator N satisfies (N1) with α = 1 and that the only solution of Lx = N (x) is x = 0.

(i) If the operator Np satisfies (Np1) then (C2) holds for r sufficiently large.
(ii) If the operator Np satisfies (Np2) then (C2) holds for r sufficiently small.

Proof. We treat the two cases (i) and (ii) simultaneously. Like in the proof of Theorem 6, the conclusion follows by
the invariance under homotopies of the coincidence degree for Ω = Br (0) and H(x, λ) = N (x)+λNp(x). So, all we
have to prove is that relation (6) holds true, i.e.

Ly 6= N (y) + λ
1
r

Np(r y) for all y ∈ X with |y| = 1. (10)

Our hypothesis (both variants) assure that sup|y|=1λ
1
r |Np(r y)| can be arbitrarily small on choosing r either sufficiently

large in case (i), or sufficiently small in case (ii). Also, Ly 6= N (y) for all y ∈ X with |y| = 1. Theorem 2 confirms
then that (10) holds true. �

Remark 2. If Np is positively homogeneous of order β, then (Np1) is satisfied in the case where β < α, while (Np2)
is satisfied in the case where β > α.

Remark 3. All the results remain valid if the limits in (Np1) and (Np2), respectively, are sufficiently small positive
numbers.

Remark 4. Of course, existence results can be obtained as consequences of our theorems. For example, as a
consequence of Theorem 8(i), we obtain:

Theorem 9. Assume that the operator N satisfies (N1) with α = 1, that the only solution of Lx = N (x) is x = 0 and
that d(L − N , Br (0)) 6= 0 for some r > 0. If the operator Np satisfies (Np1) then the equation Lx = N (x) + Np(x)

has at least one solution in X.

This result is an extension from the Leray–Schauder degree theory to the coincidence degree theory of Theorem 3.2
from [17]. Moreover, in [17] the condition that replaces (Np1) is a global one, while in our case it is only an asymptotic
condition.

4. Periodic solutions for second-order functional differential equations with asymptotically homogeneous
nonlinearities

We consider the problems

x is ω-periodic, x ′′(t) = F(x)(t), t ∈ R, (eq1)

x is ω-periodic, x ′′(t) = F(x)(t) + Fp(x)(t), t ∈ R, (eq2)

where F, Fp : C1
ω → L1

ω are continuous operators, taking bounded sets into bounded sets. We shall use all the
notation and results given in Section 2 and, in addition, we define

Np : C1
ω → Y, Np(x) :=

∫ t

0
Fp(x)(s) ds. (11)

Like in Section 2 we talk about the degree of the problems (eq1) and (eq2) and we use the notation

cdeg((eq1),Ω) := d(L − N ,Ω), cdeg((eq2),Ω) := d(L − N − Np,Ω).

We assume that F is positively homogeneous of order α > 0 and that Fp satisfies one of the following two conditions:

lim
r→∞

1
rα

sup
|y|C1=1

|Fp(r y)|L1 = 0, (Fp1)

lim
r↘0

1
rα

sup
|y|C1=1

|Fp(r y)|L1 = 0. (Fp2)
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The proof of the next result is straightforward and we omit it.

Lemma 2. F : C1
ω → L1

ω is positively homogeneous of order α > 0; then N defined by (1) has the same property.
Also, if Fp : C1

ω → L1
ω satisfies (Fp1) or (Fp2), then Np defined by (11) satisfies (Np1) or (Np2), respectively.

Let f : Rn
→ Rn be given by

f (a) =

∫ ω

0
F(a)(s) ds. (12)

The following results are direct consequences of Theorems 5–8.

Theorem 10. Let F : C1
ω → L1

ω be a positively homogeneous operator of order α 6= 1. We assume that the function
f given by (12) satisfies f (a) 6= 0 for all a 6= 0 and the only ω-periodic solution of x ′′(t) = F(x)(t) is the trivial
one. Then cdeg((eq1),Ω) = dB( f,Ω ∩ Rn, 0).

Theorem 11. Let F : C1
ω → L1

ω be a positively homogeneous operator of order α > 1 and Fp : C1
ω → L1

ω be an
operator that satisfies (Fp2). We assume that the function f given by (12) satisfies f (a) 6= 0 for all a 6= 0. Then
cdeg((eq2),Ω) = cdeg((eq1),Ω) = dB( f,Ω ∩ Rn, 0) for Ω any ball in C1

ω with a sufficiently small radius.

Theorem 12. Let F : C1
ω → L1

ω be a positively homogeneous operator of order α < 1 and Fp : C1
ω → L1

ω be an
operator that satisfies (Fp1). We assume that the function f given by (12) satisfies f (a) 6= 0 for all a 6= 0. Then
cdeg((eq2),Ω) = cdeg((eq1),Ω) = dB( f,Ω ∩ Rn, 0) for Ω any ball in C1

ω with a sufficiently large radius.

Theorem 13. Let F : C1
ω → L1

ω be a positively homogeneous operator of order α = 1. We assume that the only
ω-periodic solution of x ′′(t) = F(x)(t) is the trivial one.

(i) If the operator Fp satisfies (Fp1) then cdeg((eq2),Ω) = cdeg((eq1),Ω) for Ω any ball in C1
ω with a sufficiently

large radius.
(ii) If the operator Fp satisfies (Fp2) then cdeg((eq2),Ω) = cdeg((eq1),Ω) for Ω any ball in C1

ω with a sufficiently
small radius.

Again, like we noticed in Section 3, existence results for the problem (eq2) can be obtained as consequences of
the above theorems. For example, we obtain the following result as a consequence of Theorem 12 for (eq2) with
F(x)(t) = g(x(t)) where g : Rn

→ Rn is a continuous function.

Theorem 14. Let g : Rn
→ Rn be a continuous function, positively homogeneous of order α < 1 such that g(a) 6= 0

for all a 6= 0 and dB(g, V, 0) 6= 0 for some neighborhood of the origin V . Let Fp : C1
ω → L1

ω be an operator that
satisfies (Fp1). Then the equation x ′′(t) = g(x(t)) + Fp(x)(t) has at least one ω-periodic solution.

This result is analogous to Corollary 10 from [5] that is given for first-order ordinary differential equations.
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