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Abstract. The quasilinearization method is developed for strong
solutions of semilinear and nonlinear elliptic boundary-value prob-
lems. We obtain two monotone, Lp-convergent sequences of approxi-
mate solutions. The order of convergence is two. The tools are some
results on the abstract quasilinearization method and from weakly–
near operators theory.
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1. Introduction

The aim of our work is to develop the quasilinearization method for
strong solutions of semilinear and fully nonlinear elliptic problems. We
obtain two monotone, Lp-convergent sequences of approximate solutions
and estimate that the order of convergence is two. The monotone itera-
tive technique is presented as a consequence for the case of fully nonlinear
elliptic problems.

Our results on semilinear elliptic problems complement in some
sense and intersect, but do not include, the ones existing in the lit-
erature (mainly given by Lakshmikantham–Vatsala in Ref. 1 and by
Lakshmikantham–Leela in Ref. 2). Anyway, by our knowledge, the method
has not been initiated until now to fully nonlinear elliptic problems.

Recently, the ideas of the quasilinearization method have been refined,
extended, and generalized to a variety of problems by Lakshmikantham
et al (see Refs. 1–4).
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In Ref. 5, a joint paper by Buica and Precup, we gave an abstract ver-
sion of this method. The results from Ref. 5 are for operator equations in
ordered Banach spaces. They can be used easily in order to obtain new
results for specific problems. One of the results is used also in the present
paper. In the study of nonlinear elliptic problems, we need in addition the
theory of weakly–near operators as developed in Ref. 6, a joint paper by
Buica and Domokos.

2. Notations and Main Hypotheses

Let 1 <p <∞, let � be a C2 bounded domain of Rn. We denote by
Mn the space of n × n real matrices; | · |m is the Euclidean norm in Rm;
tr N = ∑n

i=1 ξii is the trace of the n × n matrix N = (ξij ). The Sobolev
spaces W 2,p(�) and W

1,p

0 (�) are defined as in Ref. 7. We denote by B

the following linear elliptic operator in nondivergence form:

Bu=
n∑

i,j=1

lij (x)[∂2u/∂xi∂xj ]+
n∑

i=1

li (x)[∂u/∂xi ], (1)

where

L= (lij )∈C(�̄,Mn), l = (li)∈L∞(�,Rn),

and

n∑

i,j=1

lij (x)ξiξj ≥µ|ξ |2, ∀x ∈�,ξ ∈Rn.

Let a : � × R × Mn → R be a function which fulfills the following condi-
tions:

(A1) a(x,0,0) = 0, a(·, r,M) is measurable, and a(x, ·, ·)is continu-
ous;

(A2) there exist c1, c2 ≥0 such that

|a(x, r,M)|≤ c1|r|+ c2|M|n2 ,

or n<2p and there exist two continuous functions c1, c2 such
that

|a(x, r,M)|≤ c1(x, r)|M|n2 + c2(x, r).
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We consider the semilinear elliptic problem

u∈W 2,p(�)∩W
1,p

0 (�), −Bu=f (x, u), for a.e.x ∈�, (2)

where f :�×R→R is Carathéodory and the nonlinear elliptic problem

u∈W 2,p(�)∩W
1,p

0 (�), a(x, u,D2u)=f (x), for a.e.x ∈�, (3)

where f ∈Lp(�) is given and the following ellipticity condition is satisfied:

(A3) there exists c>0 such that

[a(x, r + s, d,N +M)−a(x, s, d,M)][tr(L(x)N)]

≥ c|tr(L(x)N)|2,
for almost all x ∈�, for all r, s ∈R, d ∈Rn,M,N ∈Mn. (4)

We will work in the presence of lower and upper solutions. We say
that α0 ∈W 2,p(�)∩W

1,p

0 (�) is a lower solution of (2) if

−Bα0 ≤f (x,α0),

or a lower solution of (3) if

a(x,α0,D
2α0)≥f (x), for a.a. x ∈�.

Whenever the reversed inequality holds for β0, we say that β0 is an upper
solution.

3. Theoretical Preliminaries

In this section, we will present some abstract results from the theory
of weakly–near operators and the quasilinearization method. We will need
them to prove the main results of this paper.

In Ref. 6, the notion of nearness in the sense of Campanato (see
Refs. 8–11) is generalized using an accretivity–type condition, instead of a
contraction–type one.

Let X be a nonempty set and let Z be a Banach space. Let A, B :X →Z

be two operators. We denote by J : Z�Z∗ the normalized duality map of
Z. We say that A is strongly accretive with respect to B, if there exists c>0
and, for every x, y ∈X, there exists j (Bx −By)∈J (Bx −By) with

〈Ax −Ay, j (Bx −By)〉≥ c‖Bx −By‖2. (5)

The map A is continuous with respect to B if A ◦ B−1 : B(X)�Z has a
continuous selection.
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The next definition introduces the notion of weak nearness. We notice
that, in Ref. 6, it is given in a slightly more general form.

Definition 3.1. We say that A is weakly near B if A is strongly accre-
tive with respect to B and continuous with respect to B.

This notion extends the property of the differential operator to be
near (or to approximate) the map, as well as other approximation notions
used in nonsmooth theory of inverse or implicit functions. For details in
this direction, see also Refs. 12–14.

The proof of the following result can be found in Refs. 6 and 14–15.

Proposition 3.1. Let A be weakly near to B. If B is bijective, then A

is bijective.

In what follows, we present a result from Ref. 5. This is an abstract
version of the quasilinearization method for the coincidence operator
equation

Lu=N(u), u∈D. (6)

Theorem 3.1. Let X be an ordered Banach space, let Z be an
ordered topological linear space, let D be a linear subspace of X, and let
α0, β0 ∈D with α0 ≤β0. Let L :D →Z be a linear operator and let

N : {u∈D :α0 ≤u≤β0}→Z

be a continuous mapping. Assume that the following conditions are
satisfied:

(i) α0 ≤β0,Lα0 ≤N(α0), and Lβ0 ≥N(β0);
(ii) for every u, v ∈D with α0 ≤u≤v ≤β0, there is a continuous lin-

ear operator Q(u, v) : D → Z such that L − Q(u, v) : D → Z is
bijective with positive inverse and

N(u)≤N(v)−Q(u, v)(v −u), (7)

−Q(u, v)z≤−Q(α,β)z, (8)

for all α,β,u, v, z∈D with α0 ≤α ≤u≤v ≤β ≤β0 and z≥0;
(iii) the positive cone of X is regular and the operator (L −

Q(α0, β0))
−1 is continuous on every u∈D with α0 ≤u≤β0.
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Then, the sequences (αn), (βn) given by the iterative schemes

Lαn+1 =N(αn)+Q(αn,βn)(αn+1 −αn), (9)

Lβn+1 =N(βn)+Q(αn,βn)(βn+1 −βn), (10)

n∈N, are well and uniquely defined in D and they are monotonically con-
vergent in X to the minimal and to the maximal solution in [α0, β0] of (6),
respectively.

4. Quasilinearization for Semilinear Elliptic Problems

In this section, we study approximate solutions for (2) given by the
following iterative schemes:

−Bαn+1 =f (x,αn)+P(x,αn, βn)(αn+1 −αn), (11)

−Bβn+1 =f (x,βn)+P(x,αn, βn)(βn+1 −βn). (12)

In our main result, under some additional assumptions on f , we obtain
that these schemes give monotone and quadratically convergent sequences
of approximate solutions. As consequences, we obtain two results. One
contains ideas similar to those used by Lakshmikantham et al. (see
Refs. 1, 3–4) as regards the conditions for the nonlinear part and the form
of the function P in the iterative schemes. The basic condition for f is
some convexity and P is given in terms of the derivatives of f . The sec-
ond consequence of our main result uses for P an expression in terms of
divided differences and it can be used when f is not differentiable.

In what follows, for two functions α0, β0 ∈ Lp(�) with α0 ≤ β0, we
consider the order interval [α0, β0] given by

[α0, β0]={u∈Lp(�) :α0(x)≤u(x)≤β0(x), for a.e. x ∈�}.
The next theorem is the main result of this section.

Theorem 4.1. Let f :�×R→R be a Carathéodory function. Assume
that:

(i) there exist respectively α0 and β0, a lower and an upper solution
of (2), with α0 ≤β0 a.e. in � and f (·, α0(·)), f (·, β0(·))∈Lp(�);

(ii) there exists a Carathéodory function P :�×R2 →R such that

f (x, u)≤f (x, v)−P(x,u, v)(v −u), (13)

for α0(x)≤u≤v ≤β0(x), a.e. in �; also,
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there exists a real number M1 ≥ 0 such that, for α0(x)≤α ≤u≤
v ≤β ≤β0(x), a.e. in �,

0≤−P(x,u, v)≤−P(x,α,β)≤M1. (14)

Then, the sequences (αn) and (βn) given by the iterative schemes (11) and
(12) are well and uniquely defined in W 2,p(�) ∩ W

1,p

0 (�), are monotone,
and converge in the Lp-norm to the minimal and respectively maximal
solution of (2) in the order interval [α0, β0].

Problem (2) has a unique solution in the order interval [α0, β0] if, in
addition, the following conditions are satisfied:

(iii) there exists a Carathéodory function b :�×R2 →R such that

f (x, u)≥f (x, v)−b(x, v, u)(v −u), (15)

for α0(x)≤u≤v ≤β0(x), a.e. in �;
(iv) 0≤−b(t, v, u)≤M2, for all α0(x)≤u≤v ≤β0(x), a.e. in �.

Moreover, the condition

(v) there exist c1, c2 ≥0 such that, for α0(x)≤α ≤u≤β ≤β0(x),

b(x, u,α)−P(x,α,β)≤ c1(u−α)+ c2(β −α) (16)

assures that the convergence of (αn) and (βn) in Lp(�) is quadratic.

Proof. We divide the proof into several steps.
Step 1. All the hypotheses of Theorem 3.1 are fulfilled. Using the

notations of Theorem 3.1, we consider

X =Z =Lp(�), D =W 2,p(�)∩W
1,p

0 (�),

Lu=−Bu, N(u)=f (·, u(·)), Q(u, v)z=P(·, u(·), v(·))z,
for u, v ∈D ∩ [α0, β0], with u≤v and z∈D.

The linear operator Q(u, v) is well defined and continuous between D

and Lp(�), since the function P is Carathéodory and satisfies condition
(14), which assures that P(·, u(·), v(·))∈L∞(�). The fact that the nonlin-
ear operator N is well defined and continuous between the set {u∈D :α0 ≤
u≤β0} and Lp(�) follows by the inequality (13) and the Lebesgue domi-
nated convergence theorem.

It is easy to see that hypothesis (i) and relations (7)–(8) of Theo-
rem 3.1 are valid. It is known that the positive cone of Lp(�) is regular.
Also, for every u, v,∈D with α0 ≤u≤v≤β0, the mapping L−Q(u, v) from
D to Lp(�), in fact w −→−Bw − l(·)w, where l(x)=P(x,u(x), v(x))≤ 0,
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a.e. in �, is bijective, with positive and continuous inverse (Theorem 9.15
and Lemma 9.17 from Ref. 16). With these notations, we see that the rela-
tions (11)–(12) coincide with (9)–(10).

We apply now Theorem 3.1 and deduce that the sequences (αn) and
(βn), given by the iterative schemes (11) and (12), are well and uniquely
defined in W 2,p(�) ∩ W

1,p

0 (�), are monotone, and converge in the Lp-
norm to the minimal and respectively maximal solution of (2) in the order
interval [α0, β0].

Step 2. The solution is unique in [α0, β0]. Let us denote by u∗ the
minimal solution, by u∗ the maximal solution, and also put

l∗(x)=b(x, u∗(x), u∗(x)).

Using (15) and the above notations, we obtain that

−Bu∗ ≥−Bu∗ − l∗(x)(u∗ −u∗), a.e. in �.

Then,

−Bu∗ − l∗(x)u∗ ≥−Bu∗ − l∗(x)u∗, a.e. in �,

where l∗ ∈L∞(�) and l∗(x)≤0. The weak maximum principle implies that
u∗ ≥u∗. But u∗ ≤u∗. Hence, u∗ =u∗ and the solution is unique in [α0, β0].

Step 3. The convergence is quadratic. We denote

pn =u∗ −αn and qn =βn −u∗.

Using (11) and (13)–(16), we obtain

−Bpn+1 −P(x,u∗, u∗)pn+1

≤−Bpn+1 −P(x,αn, βn)pn+1

=−P(αn,βn)pn −f (x,αn)+f (x, u∗)
≤ (b(x, u∗, αn)−P(x,αn, βn))pn

≤ c1p
2
n + c2(βn −αn)pn

= c1p
2
n + c2(qn +pn)pn

≤ c3p
2
n + c4q

2
n.

Whenever p2
n, q

2
n ∈ Lp(�), using the fact that the linear operator

−B −P(·, u∗, u∗)I has a bounded inverse, we obtain that

‖pn+1‖Lp ≤C1‖p2
n‖Lp +C2‖q2

n‖Lp .

This ends the proof.
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The next result is a consequence of the above theorem.

Theorem 4.2. Let f : �× R → R be a Carathéodory function and let
α0, β0 respectively be a lower and an upper solution of (2), such that α0 ≤
β0 a.e. in � and f (·, α0(·)), f (·, β0(·)) ∈ Lp(�). Assume that f = f1 − f2,
where f1, f2 :�×R→R are Carathéodory, f1(x, ·) and f2(x, ·) are C1 on
R and convex on [α0(x), β0(x)] for a.a. x ∈ �. In addition, assume that
∂f1
∂u

(x, ·) and ∂f2
∂u

(x, ·) are Lipschitz on [α0(x), β0(x)], with Lipschitz con-
stants not depending on x, and that

−M ≤ ∂f1

∂u
(t, u)− ∂f2

∂u
(t, v)≤0,

for all u, v∈ [α0(x), β0(x)] and for a.a. x ∈�. Then, the sequences (αn) and
(βn), given by the iterative schemes

−Bαn+1 =f (x,αn)+
(

∂f1

∂u
(x,αn)− ∂f2

∂u
(x,βn)

)

(αn+1 −αn),

−Bβn+1 =f (x,βn)+
(

∂f1

∂u
(x,αn)− ∂f2

∂u
(x,βn)

)

(βn+1 −βn),

are well and uniquely defined in W 2,p(�)∩W
1,p

0 (�) and converge mono-
tonically and quadratically in Lp(�) to the unique solution of (2) in
[α0, β0].

Proof. Apply Theorem 4.1 for

P(t, u, v)=b(t, u, v)= ∂f1

∂x
(t, u)− ∂f2

∂x
(t, v).

The differentiability of f1(x, ·) and f2(x, ·) and their convexity on
[α0(x), β0(x)] imply that the following relations hold:

f1(x, v)− ∂f1

∂u
(x, v)(v −u)≤f1(t, u)≤f1(x, v)− ∂f1

∂u
(x, u)(v −u),

−f2(x, v)+ ∂f2

∂u
(x, u)(v −u)≤f2(x, u)≤−f2(x, v)+ ∂f2

∂u
(x, v)(v −u),

for all α0(x)≤u≤ v ≤β0(x). By summing up these inequalities, we obtain
relations (13) and (15). Relation (14) is also valid, since the derivative of
a convex function is monotone increasing. Now, it is clear that hypotheses
(i)–(iv) of Theorem 4.1 are fulfilled. It remains to prove (v). This is valid,
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indeed as follows by the next inequalities. We use the fact that f1 and f2
are convex and have Lipschitz derivatives on [α0(x), β0(x)],

b(x, u,α)−P(x,α,β)= ∂f1

∂u
(x, u)− ∂f1

∂u
(x,α)− ∂f2

∂u
(x,α)+ ∂f2

∂u
(x,β)

≤ c1(u−α)+ c2(β −α),

for all α0(x)≤α ≤u≤β ≤β0(t). This completes the proof.

It is important to notice that the main result of this section is valid
also when the function f is not differentiable in the second variable.
Instead of the derivative, we can use for example the divided difference.
By our knowledge, such kind of results have not been given until now for
elliptic problems and respectively for any other problem until the paper
(Ref. 5) was published.

For a function g : [c, d] → R and two given points u, v ∈ [c, d], u �= v,

the divided difference of g on the points u, v is defined by

[g;u, v]= [g(u)−g(v)]/(u−v).

Recall that, if the function g is convex, then by the Jensen inequality,

[g;u, v]≤ [g;u,w]≤ [g;v,w], (17)

whenever c≤u≤v ≤w ≤d.

Theorem 4.3. Let f : � × R → R be a continuous function and let
α0, β0 ∈ C(�) be respectively a lower and an upper solution of (2), such
that α0 ≤ β0 a.e. in � and f (·, α0(·)), f (·, β0(·)) ∈ Lp(�). Let α−1, β−1 ∈
C(�) be such that α−1(x) < α0(x) and β0(x) < β−1(x) for each x ∈�.

Assume that f = f1 − f2 where f1, f2 : � × R → R are Carathéodory,
f1(t, ·) and f2(t, ·) are convex on [α−1(x), β0(x)] and respectively on
[α0(x), β−1(x)] for a.a. x ∈�. In addition, assume that

−M≤ [f1(x, ·);α−1(x), u]− [f2(x, ·);v,β−1(x)]≤0,

−M≤ [f1(x, ·);v,β−1(x)]− [f2(x, ·);α−1(x), u]≤0,

for all α0(x) ≤ u ≤ v ≤ β0(x) and for a.a. x ∈ �. Then, the sequences (αn)

and (βn), given by the iterative schemes

−Bαn+1=f (x,αn)+ (
[f1;α−1, αn]− [f2;β−1, βn]

)
(αn+1 −αn),

−Bβn+1=f (x,βn)+ (
[f1;α−1, αn]− [f2;β−1, βn]

)
(βn+1 −βn),

are well and uniquely defined in W 2,p(�)
⋂

W
1,p

0 (�) and converge mono-
tonically in Lp(�) to the unique solution of (2) in [α0, β0].
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Proof. Apply Theorem 4.1 for

P(x,u, v)= [f1(x, ·);α−1(x), u]− [f2(x, ·);v,β−1(x)],

b(x, u, v)= [f1(x, ·);v,β−1(x)]− [f2(x, ·);α−1(x), u].

Using inequalities (17), we have

[f1(x, ·);α−1(x), u]≤ [f1(x, ·);u, v],

[f2(x, ·);v,β−1(x)]≥ [f2(x, ·);u, v],

[f1(x, ·);α−1(x), u]≥ [f1(x, ·);α−1(x), α],

[f2(x, ·);v,β−1(x)]≤ [f2(x, ·);β,β−1(x)],

whenever

α−1(x)<α0(x)≤α ≤u≤v ≤β ≤β0(x)<β−1(x);

hence, by summing up the first two inequalities and the last two ones, we
obtain (13) and (14) respectively. Using again (17), we obtain

[f1(x, ·);u, v]≤ [f1(x, ·);v,β−1], [f2(x, ·);α−1(x), u]≤ [f2(x, ·);u, v],

for α0(t)≤u≤v ≤β0(t); hence, by summing up, we obtain (15).

5. Quasilinearization for Nonlinear Elliptic Problems

We establish a quasilinearization method for fully nonlinear elliptic
problem (3). As consequence, we obtain a monotone iterative method for
this problem. The theory of weakly-near operators is combined with the
abstract quasilinearization result, Theorem 3.1. Both have been presented
in Section 3. We consider the iterative schemes

−Bαn+1 =−Buαn + (1/c)P (x,αn, βn)(αn+1 −αn), (18)

a(x,αn, uαn)=f (x), (19)

−Bβn+1 =−Buβn + (1/c)P (x,αn, βn)(βn+1 −βn), (20)

a(x,βn, uβn)=f (x). (21)

The following theorem is the main result of this section.

Theorem 5.1. Assume that conditions (A1)–(A2) are fulfilled and
that:



JOTA: VOL. 124, NO. 2, FEBRUARY 2005 333

(i) there exist a lower solution α0 and an upper solution β0 of (3)
with

α0(x)≤β0(x), for a.a. x ∈�;

(ii) there exists a Carathéodory function P : �× R2 → R such that,
for every r, s ∈R and for a.a. x ∈� with α0(x) ≤ r ≤ s ≤ β0(x),

we have

0≤a(x, r,M)−a(x, s,M)≤−P(x, r, s)(s − r);

(iii) for all α0(x)≤α ≤ r ≤ s ≤β0(x), a.e. in �,

0≤−P(x, r, s)≤−P(x,α,β)≤M.

Then, (αn) and (βn) given by (18)–(21) are well and uniquely defined in
W 2,p(�) ∩ W

1,p

0 (�) and are two monotone sequences which converge in
Lp(�) to the unique solution u∗ of (3) with α0(x)≤u∗(x)≤β0(x).

Proof. Let w ∈Lp(�). We consider the mapping Aw defined by

Aw :W 2,p(�)∩W
1,p

0 (�)→Lp(�), Aw(u)(x)=a(x,w,D2u).

We consider also the equation

Aw(u)=f (22)

and the linear elliptic operator B : W 2,p(�) ∩ W
1,p

0 (�) → Lp(�) given
by (1).

We divide the proof into several steps.
Step 1. Aw is well defined and continuous. Using condition (A2), we

obtain that, for every u∈W 2,p(�)∩W
1,p

0 (�),

|a(x, u,D2u)|≤ c1|u(x)|+ c2|D2u|n2 ,

or

n<2p and |a(x, u,D2u)|≤ c1(x, u(x))(|D2u|n2)+ c2(x, u(x)).

When n < 2p, the Sobolev imbedding theorem (Ref. 7) assures that
W 2,p(�)⊂C(�̄). Then, in both cases, the right side of this inequality is an
Lp-function and we can deduce that Aw is well-defined and continuous.
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Step 2. Aw is weakly near B. We shall prove first that Aw is strongly
accretive with respect to B. The normalized duality map of the Banach
space Lp(�) is (here, 1/p +1/q =1)

J :Lp(�)→Lq(�), Ju(x)=u(x)|u(x)|p−2‖u‖2−p.

For u, v ∈W 2,p(�)∩W
1,p

0 (�), we obtain the following estimations:

〈Aw(u)−Aw(v), J (Bu−Bv)〉
=‖B(u−v)‖2−p

Lp

∫

�

[a(x,w,D2u)−a(x,w,D2v)]B(u−v)|B(u−v)|p−2dx

≥ c ‖B(u−v)‖2−p
Lp

∫

�

|B(u−v)(x)|pdx = c ‖B(u−v)‖2
Lp .

Thus,

〈Aw(u)−Aw(v), J (Bu−Bv)〉≥ c ‖Bu−Bv‖2
Lp . (23)

Aw is continuous with respect to B because it is continuous and B is bijec-
tive with a continuous inverse.

Step 3. Choice of the objects of Theorem 3.1. Because Aw is weakly
near B and B is bijective, A is bijective too. Then, Equation (22) has a
unique solution; we denote it by uw.

We consider now another operator, related to Equation (22),

U :Lp(�)→Lp(�), U(w)=−Buw.

We notice that w is a coincidence point of U and −B, i.e.,

−Bw =U(w), if and only if w =uw,

which means that uw is a solution of problem (3). We apply Theorem 3.1
with

L=−B, X =Z =Lp(�), D =W 2,p(�)∩W
1,p

0 (�), N =U .

Step 4. U is continuous in every v ∈Lp(�). Let uv ∈D be the unique
solution of Av(u)=f. The hypotheses (A1)–(A2) assure that the mapping
w −→a(·,w,D2uv) is continuous from LP (�) to itself; in particular, it is
continuous in v. Then, for every ε > 0, there exists some δ > 0 such that,
whenever w ∈Lp(�) with ‖w −v‖Lp ≤ δ, we have

‖a(·,w,D2uv)−a(·, v,D2uv)‖Lp ≤ ε.
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Then,

‖Aw(uv)−Av(uv)‖Lp ≤ ε.

We replace in this relation Av(uv) by Aw(uw), since both are equal to f,

and obtain

‖Aw(uv)−Aw(uw)‖Lp ≤ ε.

Now, we write the relation (23) for uv and uw, use the inequality

|〈x, J (y)〉≤‖x‖ · ‖y‖,
which holds in every Banach space, and obtain that

‖Buw −Buv‖Lp ≤ ε/c.

We write again this relation using the definition of U and obtain

‖U(w)−U(v)‖Lp ≤ ε/c.

Step 5. We prove now that

−Bα0 ≤U(α0) and U(β0)≤−Bβ0.

Here, α0 ∈D is such that

a(x,α0,D
2α0)≥f (x), for a.a.x ∈�.

We notice that the following implication is valid for all v ∈Lp(�) and all
u1, u2 ∈D :

a(x, v,D2u1)≥a(x, v,D2u2), on �⇒Bu1 ≥Bu2, on �. (24)

Indeed, it is easy to see that this is true from the inequality

[a(x, v,D2u1)−a(x, v,D2u2)][B(u1 −u2)]≥ c|B(u1 −u2)|2, (25)

which follows by the ellipticity condition (A3). By taking v =u1 =α0 and
u2 =uα0 in (24), we obtain that

−Bα0 ≤U(α0).

Similarly, we can prove that

U(β0)≤−Bβ0.
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Step 6. We prove now that (7) and (8) are valid with

Q(v,w) :D →Lp(�), Q(v,w)z= (1/c)P (·, v(·),w(·))z,
where v,w ∈D are such that

α0(x)≤v ≤w ≤β0(x).

The linear operator Q(v,w) is well defined and continuous, like in the
proof of Theorem 4.1. It is clear that (8) holds. In order to obtain (7), we
use first (ii) and write

0≤a(x, v,D2uw)−a(x,w,D2uw)≤−P(x, v,w)(w −v).

By the definition of uw and uv, respectively, we have that

a(x,w,D2uw)=f (x)=a(x, v,D2uv);
hence,

0≤a(x, v,D2uw)−a(x, v,D2uv)≤−P(x, v,w)(w −v). (26)

Implication (24) assures that

B(uw −uv)≥0.

Then, relation (25) implies

a(x, v,D2uw)−a(x, v,D2uv)≥ c[B(uw −uv)].

Using (26) and the definition of U , we obtain the inequality

U(v)≤U(w)− (1/c)P (·, v,w)(w −v).

Step 7. For every u, v ∈ D with α0 ≤ u ≤ v ≤ β0, the mapping L −
Q(u, v) from D to Lp(�), in fact,

w −→−Bw − l(·)w, where l(x)= (1/c) P (x, u(x), v(x))≤0, on �,

is bijective with positive and continuous inverse (Theorem 9.15 and
Lemma 9.17 from Ref. 16). Hence, we have proved that all the hypothe-
ses of Theorem 3.1 hold. Let u∗ be the minimal solution and let u∗ be the
maximal solution of (3) in the order interval [α0, β0]. Then, u∗ ≤u∗ and,
using (ii),

0≤a(x, u∗,D2u∗)−a(x, u∗,D2u∗)=a(x, u∗,D2u∗)−a(x, u∗,D2u∗);
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hence, by (24),

Bu∗ ≥Bu∗.

It follows that u∗ ≤u∗ and that u∗ =u∗; i.e., the solution is unique. Then,
the sequences (αn) and (βn) given by (18)–(21) are monotonically conver-
gent to the unique solution u∗ ∈ [α0, β0] of (3).

The following is a monotone iterative scheme for (3):

−Bαn+1=−Buαn +P/c(αn+1 −αn), a(x, αn, uαn =f (x), (27)

−Bβn+1=−Buβn +P/c(βn+1 −βn), a(x, βn, uβn =f (x). (28)

We prove this like a consequence of the previous theorem.

Corollary 5.1. Assume that:

(i) there exist a lower solution α0 and an upper solution β0 of (3)
with

α0(x)≤β0(x), for all x ∈�;

(ii) there exists a real number P <0 such that, for every r, s ∈R and
for a.a. x ∈� with α0(x)≤ r ≤ s ≤β0(x), we have

0≤a(x, r,M)−a(x, s,M)≤−P(s − r).

Then, (αn) and (βn) given by (27)–(28) are two monotone sequences which
converge in W 2,p(�) to the unique solution u∗ of (3) with α0(x)≤u∗(x)≤
β0(x).
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