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Abstract

We consider the problem of finding-periodic solutions for a differential system whose vector
field depend on a small parameterAn answer to this problem can be given using the averaging
method. Our main results are in this direction, but our approach is new. We use topological
methods based on Brouwer degree theory to solve operator equations equivalent to this problem.
The regularity assumptions are weaker then in the known results (up to second orflek mesult
for third order averaging method is also given.

As an application we provide a way to study bifurcations of limit cycles from the period annulus
of a planar system and notice relations with the displacement function. A concrete example is given.
00 2003 Elsevier SAS. All rights reserved.
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1. Introduction

In few words we can say that the averaging method [15,16] gives a quantitative relation
between the solutions of some non autonomous differential system and the solutions of the
averaged differential system, which is an autonomous one. The averaging is with respect
to the independent variable and the right hand sides of these systems are sufficiently small,
depending on a small parameterAlso, by using the Implicit Function Theorem, the

* Corresponding author.
E-mail addresseshuica@crm.es (A. Bui), jllibre@mat.uab.es (J. Llibre).
1 Current address: Centre de Recerca Matematica, 08193 Bellaterra, Barcelona, Spain.

0007-4497/$ — see front mattéf 2003 Elsevier SAS. All rights reserved.
doi:10.1016/j.bulsci.2003.09.002



8 A. Buid, J. Llibre / Bull. Sci. math. 128 (2004) 7-22

averaging method leads to the existence of periodic solutions for periodic systems. Our
main results are in the spirit of this last idea. But our approach is new. We use topological
methods to solve operator equations equivalent to the problem of firElipgriodic
solutions. These operator equations are either infinite dimensional (of coincidence type,
as are called in [2,3,9]) or finite dimensional.

We start by presenting our main results Theorems 1.1, 3.1 and 3.2. The first step in their
proof is to replace our problem to that of finding zeros of some finite dimensional function
related directly to the given differential system. In fact, we have to study bifurcation of
zeros of this finite dimensional function with respect to the parametaounde = 0.

Instead of the Implicit Function Theorem we use Brouwer degree theory.

We succeeded to weaken the hypothesis of analogous theorems in first order averaging,
as Theorem 11.5, p. 158, [16] (see our Theorem 1.1) and in second order averaging, as
Corollary 6, p. 6, [12] or Theorem 2.2 [10], (see Theorem 3.1). The result for third order
in the case of 1-dimensional systems is also stated (see Theorem 3.2). As far as we know
this is the first time that an explicit formulation of the third order averaging method has
been written. Due to our new approach, which do not involve any change of variable in
the given system, we consider that it could be more easy and transparent to obtain results
corresponding to higher order averaging.

Here we state the main result on first order averaging method.

Theorem 1.1 (First order averaging method)e consider the following differential system
x(t) = e Fi(t, x) + 2R (t, x, &), (1.1)

where F1:R x D — R", R:R x D x (—ey,er) — R" are continuous functions,
T-periodic in the first variable and is an open subset @&”". We definefy: D — R”
as

T
fl(z)=/F1(s,z) ds, (1.2)
0
and assume that

(i) F1 andR are locally Lipschitz with respect to;
(i) fora e D with fi(a) = 0, there exists a neighborhodd of a such thatfi(z) # 0 for
all ze V\{a}anddp(f1,V,0)#£0.

Then, for|e| > O sufficiently small, there existsIaperiodic solutionp(-, ¢) of systenfl.1)
such thatp(-, &) - a ase — 0.

Theorem 1.1 has weaker hypothesis than the analogous result Theorem 11.5 of
Verhulst [16], where instead of (i) is assumed that

() F1,R, D, Fy, D,%Fl and D, R are defined, continuous and bounded by a consgkant
(independent of) in [0,00) x D, —ef <& <&y,



A. Buid, J. Llibre / Bull. Sci. math. 128 (2004) 7-22 9

and instead of (ii) requires that
(1) for a € D with f1(a) =0 we haveJy, (a) # 0.

From now on we denote b®, F the Jacobian matrix of the derivatives of the components
of F with respect to the components of and byD2F some matrix of the second order
derivatives. ByJ(a) we denote the Jacobian determinanyfatalculated im.

Via coincidence degree theory [9] we obtain a first order averaging method for
continuous systems (Theorem 1.2 below), without assuming for the vector field even the
locally Lipschitz property. As in all our results, the conditions for the bifurcation functions
(which are finite dimensional) are given in terms of the Brouwer degree instead of the
Jacobian determinant.

Here is the result, whose proof can be found in Section 4.

Theorem 1.2. The conclusion of Theoreinlis valid also without assuming thé) holds.

We emphasize that our main contribution to the averaging theory is the dropping of
regularity conditions. In fact, in Theorem 1.2 we can assume only integrabilitp,dh)
instead of continuity of’; and R with respect ta. Although the results of Ellison, Saenz
and Dumas [8] do not state existence of periodic solutions, we can say that the smoothness
hypotheses are comparable. They give an approximation theorem basE€th arder
averaging and they claim that the regularity conditions are probably close to minimal.

Exceptin the case of Theorem 1.2, the proof of our main results is based on Lemma 2.1
stated and proved in Section 2. This lemma can be used to study bifurcation of zeros of
a finite dimensional continuous function for which we know the expansion with respect
to the bifurcation parameter up to some oréleilhe differences between this result and
the Implicit Function Theorem or the Malgrange Preparation Theorem ([7], Theorem 1.10
p. 194), also used to study bifurcation of zeros, are the following. First, we notice the
regularity conditions. Lemma 2.1 can be applied to functions which are only continuous.
For k = 0, in weaker conditions than the Implicit Function Theorem, is assured only
existence. By considering a higher order approximation, in some cases, existence of many
branches of zeros can be obtained, as it can be seen in Example 1 of SectiorC2° For
functions, this complements the Malgrange Preparation Theorem.

Section 2 contains also concrete examples and remarks regarding the use of Lemma 2.1
as a tool in bifurcation theory. It is worth mentioning here that the Brouwer degree theory
is rich in results which conclude the existence of zeros of some function. These can be
used instead of Lemma 2.1 to get new conditions for existence of periodic solutions of
differential systems.

The proof of Theorem 1.1, the statement and proof of the results on second and third
order averaging method are contained in Section 3.

A concrete example as application of this theory is given in Section 5. First we propose
a general way for applying the averaging method in order to study limit cycles of planar
systems bifurcating from periodic trajectories of the period annulus (Theorem 5.1). This
has been done before by Llibre in [12] for perturbations inside quadratic polynomial
systems of
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x=—y(1+Asy),
y=x(1+Agy),

and by Llibre, Pérez del Rio and Rodriguez in [13] for perturbations inside polynomial
systems of degreeof the above system. The way of applying the method is essentially the
same as we propose in Theorem 5.1. But we prove in Theorem 5.2 that this is equivalent
to study the displacement function of the given planar system. Thus, only for practical
reasons someone have to choose between these two methods. Chicone and Jacobs found
in [6] that, up to first order in the small parameterat most two limit cycles bifurcate

inside quadratic systems from the period annulus of

X.::_y_'_xza
y=x4+xy.

They studied the displacement function using some results of Bautin [1]. We will find the
same, in a shorter way, by using the averaging method.

Even for planar systems, the averaging method and the use of the displacement function
are not always equivalent. Other approaches can be found in [12].

2. Someremarkson the Brouwer degree

For bounded open subsérsof R”, such thatV ¢ D and 0 does not lie irf (aV, ¢)
for somee, denote bydgp(f (-, €), V,0) the Brouwer degreef the functionf (-, &) with
respect to the sét and the point 0, as is defined in [4].

One of the main properties of the topological degree is thatp {ff (-, ), V, 0) £ 0,
then the equation

f(z,)=0 (2.3)

has a solution itV (see again [4]).
The main result of this section is the following.

Lemma 2.1. We consider the continuous functios: V - R fori=0,...,k, and
f,g,r:V x [—eo, e0] > R", given by

g, &) = foO) +efi() + €2 f2() +--- + " fi (), (2.4)

fee)=gC.e)+eF (o). (2.5)
Assume that

g(z,e) #£0 forallzedV, e € [—ep, 0] \ {O}. (2.6)
Then, for|e| > 0 sufficiently smalldg(f (-, ), V, 0) is well defined and

dp(f(-.€),V,0)=dp(g(-,e), V,0)
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Proof. We use the invariance under homotopy of the Brouwer degree. For £ach
[—e€0, €0] \ {0} we consider the continuous homotopy

gt('ag)zg('7€)+t(f('98)_g('ﬂg))ﬂ f0r0<t<l

All we have to prove is that, whesis sufficiently small, 0% g, (0V,¢) forall 0 < ¢ < 1.
We assume by contradiction that, for sore (0, 1] and somexg € a4V, g;,(x0, ) = 0.
Let M > 0 be such thalt(z, £)| < M for all z € V and every e (0, go]. Then|g(xo, £)| <
Me**+1, which is not true fore sufficiently small, sincég(xo, €)| = | fo(xo) + €f1(x0) +
o+ ek fir(xo) #£0. O

Now we remind the definition of the Brouwer degree of functions (as it is given
in[14]). Letg e CY(D),V c D andZ, = {x € V: g(z) = 0}. We assume also that

Je(z) #0, forallze Z,,

where J, (z) is the Jacobian determinant gfat z. This assures thak, is finite (see
Theorem 1.1.2 of [14]). Then

dp(g.V.0) =Y sign(J,(2)).

Z€Zg

In [14] there are some examples of computing the degree for functions which af& not
or, for which J, (z) = 0 for somez € Z, (for example, see p. 21).

Remark 1. Let g: D — R” be aC? function, withg(a) = 0, whereD is an open subset
of R” anda € D. WheneverJ, (a) # 0, there exists a neighborhodd of a such that
g(z) #0forallz e V\ {a}. Thendp(g, V,0) € {—1, 1}.

Remark 2. The Brouwer degree of the functiofy(z) = z? is 0 in any neighborhood of
the origin. The arguments follow. The functigip has a unique zera, = 0 and we have
that f;(0) = 0. In order to compute the degree, we consider an arbitrary, the interval
V = (=2, 2)) and the functiorg(z) = z2 — A%. Then,g has two zeros ifV: —i and.
The Jacobian matrix is negative-ah and positive ak.. Thereforedp (g, V,0) = 0. Since
itis easy to see that supy; | fo(z) — g(2)| < inf.eyv fo(z), by Definition 1.4.1 of [14], we
get thatdg (fo, V,0) =0.

Remark 3. We intend to describe a method for using Lemma 2.1 in order to give
some answers to our main problem of finding zeros of a convenient fungtidn x
(—ef, &) — R". We will assume thab is an open subset &" and f is of the form (2.5)
with g given by (2.4) and: D x (—¢y, sr) — R" continuous. The first step for this is to
find all zeros offy. Let a € D be such thatfo(a) = 0. If there exists a neighborhodd
of a such thatlp (fo, V, 0) # 0, then for|e| sufficiently smallf (-, &) has at least one zero
inVv.

If the Brouwer degree ofp is zero in small neighborhoods@br it cannot be computed
(this includes the possibility thgh is identically 0), we proceed to studg + 1 in some
small neighborhood af and fore sufficiently small.
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First we assume that there exiats a zero of fop + ¢f1 and a bounded open subgét
such thauy, € V for eache # 0 sufficiently small and

dp(fo+ef1,V,0) #0. (2.7)

Thus, from Lemma 2.1f(-, ¢) has at least one zero i¥i. We notice that there is the
possibility to exist other zeros aofy + ¢f1 in the same neighborhood af additionally
toay,.

In the case that (2.7) is not fulfilled, then we continue studying, analogously, the
function fo + f1 + €2 f2, and so on.

Example 1. The previous remarks are illustrated here for the continuous fungti® —
R, f(z, &) =722 — €2 + £3r(z, €). Using the notations of Lemma 2.1, we hafgz) = z2,
f1(2) =0, fo(z) =—1.

In any neighborhood of 0, the degree fif is 0 (we have proved this in Remark 2).
Thus, we continue with the study 0fo + £f1 + £2f2)(z) = z% — 2. This function has
two zeros,—e ande. We fix somegg > 0 and consider the open intervals= (0, ¢g)
and U = (—eo, 0). Using Remark 1, we obtain thalz (fo + f1 + €2f2, V,0) # 0 for
0 < ¢ < g0, and the same relation holds fgrinstead ofV. Then, by Lemma 2.1 and some
previous remarks, far > 0 sufficiently small,f (-, €) has at least two zeros, onelihand
another one irv.

Whenever is C*, since fo(z) = z2, by Malgrange Preparation Theorem [7], fos 0
sufficiently small,f (-, €) has at most two zeros. Hence, it has exactly two zeros.

Remark 4. Assume that the hypotheses of Lemma 2.1 are fulfilledkfer O and, in
addition, that

(i) fora €D with fo(a) = 0, there exists a heighborhoddof a such thatfo(z) # 0 for
all z e V \ {a} anddp(fo, V,0) #0.

First we notice that, sincg(z) # 0 for all z € V \ {a}, by the excision property of the
degree (Theorem 2.2.1, p. 26 from [14]) and we deducedhéfo, V., 0) # O for every
neighborhood’,, C V of a. We choosé/,, such thatV,, — {a} asu — 0. Then it is easy
to see that, for sufficiently smallf (-, e) has at least one zeeq € V,, and that we can
choose:, such thati, — a ase — 0. In this case we say that least one branch of zeros
bifurcates fromu. Moreover, if, in addition/ ¢, (a) # 0, by the Implicit Function Theorem,
this branch is unique.

3. Averaging viathe Brouwer degree

The main theoretical results on averaging are stated and proved in this section. We
begin with the justification of the fact thtte problem of finding -periodic solutions for
some differential system is equivalent to that of finding zeros of some corresponding finite
dimensional function
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We consider the differential system,
x'(t)=F(t,x,¢), (3.8)

where F:R x D x (—&y,er) — R" is a continuous function7 -periodic in the first
variable, locally Lipschitz in the second one andis an open subset d&”. For each
z € D we denote bw (-, z, ¢) : [0, t;) — R”" the solution of (3.8) withx (0, z, &) = z. We
assume that

t,>T forallzeD. (3.9)
We consider the functioff : D x (—ef, e5) — R”, given by

T
f(z,e)=/F(t,x(t,z,e),s)dt. (3.10)
0
Every solution of (3.8)
x:[0, T]— R* with x(0) =x(T) (3.12)

can be extended by periodicity Band we have the relation
x(T,z,e) —x(0,z,¢) = f(z,¢).
Then, every(z,, ¢) such that
f(ze,€)=0 (3.12)

provides the periodic solution(-, z., ¢) of (3.8). The converse is also true, i.e. for every
T-periodic solution of (3.8), if we denote hy its value at = 0 then (3.12) holddHence,
the problem of finding & -periodic solution of(3.8), can be replaced by the problem of
finding zeros of the finite-dimensional functigty , ¢) given by(3.10).

In order to apply Lemma 2.1 we need the Mac-Laurin formula. Whengvdp x
(—&7,e5) — R is continuous and of clags® in & we write

fee) =g o)+ e, (3.13)
with g given by

k

gz, 8) =f(z,0)+eﬁ(z,0)+-~-+eki¥(z,0). (3.14)

ae k! de

Except ine = 0, the functiorr is well-defined and continuous. If one can prove thi
bounded on some set of the forkh x [—e&g, e0] with K a compact subset db, then we
have that is continuous orD x (—¢y, e¢). The continuity ofr is needed in Lemma 2.1
and, in this case, from now on, instead of writing formula (3.13) with the function
given explicitly, we use the Landau’s symbol (see, for example [15] p. 11) and write on
K x [—e&o, €0],

f(z,8) =gz, 8) + O,

For example, if% is Lipschitz onK x [—eg, £0], thenr is bounded on this set.
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The statement of Theorem 1.1 on first order averaging method is in Section 1. Here is
the proof.

Proof of Theorem 1.1. For all z € V, there existssg > 0 such that, whenever

[—e0, €0], x(-, z, &) is defined on[0, T, i.e. relation (3.9) is valid. Indeed, by the local
existence and uniqueness theorem (see, for example, Theorem 1.2.2, p. 2 from [15]),
t;, > h; andh, = inf(T, %) whereM () > |e F1(t, x) + €?R(t, x, )| for all € [0, T1,

for eachx with |x — z| < b and for every; V._When|s| is sufficiently small,M (¢) can
be arbitrarily large, such that =T forallz e V.
Forallr € [0, T], z € V ande € [—¢g, 0] the following relation holds

t t
x(t,z,e)=z+ 8/ Fi(s, x(s,z,€)) ds + 82/ R(s,x(s,z,¢),&)ds, (3.15)
0 0
and the functiory given by (3.10) becomes for our system
T T
f(z,e)= 5/ Fi(s,x(s,z,€))ds + 52/ R(s,x(s,z, ), &) ds.
0 0
We will prove now that
[z, &) =ef1(x) +£°0(1) onV x [—eo, ol (3.16)
with f1 given by (1.2). Let us first notice that there exi&tsa compact subset dd such
thatx(t,z,¢) € K forallr € [0, T], z € V ande € [—¢g, g0]. Then it is easy to see that
T
f(z,8) —efi(z) = 5/[F1(s, x(s,z,€)) — F1(s, Z)] ds + £20(1). (3.17)
0
Using thatF; is Lipschitz with respect ta on [0, 7] x K and formula (3.15), we obtain
the following relations
|Fi(s, x(s,z,8)) — Fi(s,2)| < Lk|x(s,2,€) — z| = O(D).

Thus, (3.16) holds. Using Remark 4, we obtain that the hypothesis (ii) assures the existence
of z, such thatf (z¢, &) =0 andz, — a ase — 0. Theng(-, ¢) = x(-, z¢, €) is a periodic
solution of (1.1) andp(-, &) — a ase — 0 (this is implied by the continuity property of

the solutions of (1.1) with respect to a parameter and the initial data).

Theorem 3.1 (Second order averaging methodlye consider the following differential
system
x'(t) = e Fu(t, x) + €2 Fa(t, x) + €3R(t, x, €), (3.18)

where F1, F2:R x D - R", R:R x D x (—¢y,er) — R" are continuous functions,
T-periodic in the first variable, an® is an open subset @". We assume that



A. Buid, J. Llibre / Bull. Sci. math. 128 (2004) 7-22 15

(i) Fu(t,-) e CY(D)forall r R, F1, Fo, R and D, F; are locally Lipschitz with respect
to x, andR is differentiable with respect teo.

We definef1, f>: D — R" as

T
f1(Z)=/F1(s,z) ds,
0
T K
f2(z)=/|:DzF1(s,z)-/Fl(t,z) dt+F2(s,z):| ds (3.19)
0 0

and assume moreover that

(i) for V. D an open and bounded set and for each (—¢f, er) \ {0}, there exists
a. € V such thatfy (a;) + ef2(a.) = 0anddp(f1+ €f2, V,0) #£ 0.

Then, for |e] > 0 sufficiently small, there exists &-periodic solution ¢(-,¢) of
systen(3.18)

Proof. The idea of the proof is the same as for the previous theorem. We will write here
only the main relations, and we will omit some details. For all relations which follow we
will consider that they hold for € [0, T], z € V, € € [—¢0, €0]. Since the right-hand side

of system (3.18) is differentiable with respecttdhen the solution (z, z, €) has the same
quality. Hence, by an analogous with (3.15),

t
x(t,z,s):z—f-s/Fl(s,z) ds + £20(1),
0
and

t

2—1(0, 7,8) = / Fi1(s,z)ds +£O(1).
0

Using also thatD, F is locally Lipschitz (then Lipschitz of0, T] x V x [—e&o, €0]) we
obtain the following relations:
ax 2
Fa(t.x(t.2.€)) = F1(t.2) + eD: Fi(1.2) - 5~ (1.2.0) +£20(D),
Fa(t,x(t, 2, )) = F2(t,2) + €O(1).

Using the notation (3.19), the functiofi given by (3.10) can be written for our system
f(z,8) = ef1(z) + €2 f2(z) +£30(1) on V x [—eg, £0]. The conclusion follows by applying
LemmaZ2.1. O
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Remark 5. Theorem 3.1 has weaker hypothesis than the analogous result Corollary 6 of
Llibre [12], or Theorem 2.2 [10] wher® is a bounded domain d®”, instead of (i) is
assumed that

() Fi1,F2, R, D, Fy, D,%Fl, D, F», D, R are defined, continuous and bounde@jo) x
D x(=¢ef.ef),

and instead of (ii) requires that
(i) fi(z)=0forallz e D and fora € D with f»>(a) =0 we haveJy,(a) #0.

We will write the result of third order averaging faer= 1, although it holds for systems
of arbitrary dimension, in order to avoid writing too much complicated formulas.

Theorem 3.2 (Third order averaging method in dimension e consider the following
differential system
x'(t) = e Fu(t, x) + €2 Fa(t, x) + €2 F3(t, x) + €*R(t, x, €), (3.20)

where F1, F>, F3:R x D - R, R:R x D x (—¢y,er) — R are continuous functions,
T-periodic in the first variableD is an open interval oR. We assume that

() Fi(t,-) € CA(D), Fa(t,-) € CX(D) for all t € R, Fy, F2, F3, R, D’F1, D, F> are
locally Lipschitz with respect to, and R is twice differentiable with respect to

We takefi, f2, f3: D — R given by(3.19)and

B [[102F; 2 10F
fB(Z)—/[Ea—ZZ(&Z)()’l(&Z)) +§a—Z(S’Z))’2(S’Z)
0

JoF
+ 8—;(& 2)y1(s,2) + F3(s, z)} ds,

where

s N

t
F.
yl(s,z)=/F1(t,z)dt, yz(s,z)=/[88—Zl(t,z)/F1(r,z)dr+F2(t,z)} dr.
0 0 0

Moreover, assume that

(i) for V.C D anopen and bounded interval and for each (—¢ ¢, e¢) \ {0} there exists
as € V such thatfi(a,) + e fo(ag) + €2 fa(as) = 0anddp(fL+ ef2+ €2 f3, V,0) £ 0.

Then, for |e] > 0 sufficiently small, there exists &-periodic solution ¢(-,¢) of
systen(3.20)
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Sketch of the proof. This time we have to expand the functigngiven by (3.10) up to
order 3. For this we will need again relations (3.20) for the functiBagnd F3 instead
of F1 and, respectivelyF». Also, for F1 we need the following relation:

JoF d
Fi(t,x(t,z,8)) = Fi(t, 2) +e22(1,2)- = (1,2,0)
0z ae

1[82F, dx 2 R 32x
+82§|:8—Z2(1‘,Z)'($(t,z,0)> +8—Z(I,Z)'w(f,z,0)i|
+£%0(1).

We notice that

0x 92x
yl(S,Z):_(S,Z,O), YZ(S»Z):_Z(S’Z»O)-
de o€

Thus, f (z, &) = ef1(z) + €2 f2(2) + €3 fa(z) + €*O(1) on V x [—e0, £0] and the conclusion
follows by applying Lemma 2.1. O

4. Averaging method viathe coincidence degree

The aim of this section is to give the idea of the proof of Theorem 1.2. For this we need
some preliminaries from coincidence degree theory which can be found in more detail
in[2,3,9].

We consider the differential system

x'(t) = eF1(t, x) + €°R(t, x, €), (4.21)

where F1:R x D — R", R:R x D x (—¢y,e5) — R" are continuous functions -
periodic in the first variable anD is an open subset &”". We definef;: D — R" as

T

fi(z) = / Fi(s, z) ds. (4.22)
0

We make the notatio@r = {x € C[0, T]: x(0) = x(T)} and notice that any solution
of (4.21) which is inCr can be extended to%-periodic solution. LeV’ be a bounded and
open set such that ¢ D. We consider also the set

R2={xeCr:xt)eV forallz [0, T}

which is open and bounded in the spagg with respect to the sup-norm. We will also
need the following objects: the spa€g = {x € C[0, T]: x(0) = 0} with the sup-norm,
the mappingL : Cr — Cg defined byLx(t) = x(¢) — x(0) and the nonlinear operator
N(-,e):2 — Co defined byN(x,)(t) = fé[eFl(s,x) + €2R(s, x,€)]ds. The linear
continuous mapping is a Fredholm operator of index 0, i.e. the imagélis closed inCo
and dimKerL = codimImL =n < oco. The operatolN (-, ¢) is completely continuous, i.e.
is continuous andV (£2, ¢) is a relatively compact set.
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We notice that the problem of findinglaperiodic solution of (4.21) can be written now
as the abstract equation (calledoofincidence type

Lx=N(x,¢e), xef2.

Whenevetrx # N (x) for everyx € 952 the coincidence degrek (L, N), £2) is defined
in [9] (see also [3]) as the Leray—Schauder degree of some associated operator. From
now on we shall refer to the numbél(L, N), £2) as being thecoincidence degree of
system(4.21). One of its main properties is that, if it is different than 0 then (4.21) has at
least one solution ig2, which is, in fact, & -periodic solution.

Theorem V.2 p. 31 of [9] is an abstract theorem on coincidence degree. A consequence
of this theorem for our problem is the following statement.

(S) For eache sufficiently small, the coincidence degree for the sy$te1)in the set2
is equal to the Brouwer degreg (f1, V, 0).

In the hypotheses of Theorem 1.2, for eactsufficiently small, the coincidence
degree of (4.21) in2 is not zero, hence the system (4.21) ha%-periodic solution,
¢(-,¢) € 2. Like in the proof of Theorem 1.1, we notice that, insteadVofwe can
consider a neighborhodd, C V of a such thatV,, — a asu — 0. This implies that the
corresponding se®,, is a neighborhood of the constant functieoifin the space”r with
respect to the sup-norm) such that the diamete®pfis arbitrarily small whernu — 0.
Hence, fore sufficiently small, the system (4.21) hag'gperiodic solutiong(-, ¢) € £2,,.
We can choose solutions such tht, ¢) — 0 ase — 0.

5. Averagingfor planar autonomous systems. Relation with the displacement
function

We consider the planar system

Xx=P(x,y),
5= 0(x. y), (5.23)

whereP, 0 :R? — R are continuous functions under the assumption

(Al) System (5.23) has a period annulus around the singular (i@,
Iy {(x,y) €R% H(x,y) =h, he <h <hy).

HereH is afirstintegralj, is the critical level ofH corresponding to the centéd, 0) and
hg denotes the value @ for which the period annulus terminates at a separatrix polycycle.
Without loss of generality we can assume that- 1. > 0. We denote by = u(x, y) the
integrating factor of system (5.23) corresponding to the first integral

We consider perturbations of (5.23) of the form

X=Px,y)+ep(x,y,e),
y=0(x,y)+eqx,y,e), (5.24)

wherep, g :R? x R — R are continuous functions.
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We will propose a way for applying the averaging method in order to study limit cycles
of (5.24) fore sufficiently small, which bifurcate at = 0 from periodic trajectories of
the period annulus of (5.23). The first aim is to write system (5.24) in the standard form
for applying the averaging method, i.e. of the form (1.1). The differential system in this
standard form describes the dependence between the square root of &nerg¥; and
the anglep of the polar coordinates. The vector field of this equation will bepgeriodic
and its Zr-periodic solutions will be periodic trajectories of (5.24).

Theorem 5.1. AssumgA1) holds for systenf5.23)and that
xQ(x,y)—yP(x,y)#0forall (x, y) in the period annulus. (5.25)
Let po: (Whe, v/Bs) x [0, 27) — [0, 00) be a continuous function such that
H(p(R, ¢)cosp, p(R, ¢)sing) = R?, (5.26)

for all R € (WVhe,+/hs) and all ¢ € [0,27). Then the differential equation which
describes the dependence between the square root of ereegyw/h and the anglep
for system(5.24)is

dR _  p®+y*)(0p = Pq)
do 2R(Qx — Py) 4+ 2Rs(gx — py)’

wherex = p(R, ¢) cosp andy = p(R, ¢) Sing.

We takes ; > 0 sufficiently small and = Uhc*<h<hH Iy, whereh, < hey < hgy < hy
are fixed but arbitrarily closed ta,. and iy, respectively. The vector field of E&.26)is
well defined and continuous di x (—¢y, e ¢) and is2r -periodic with respect te.

(5.27)

Proof. We need the relations,

OH = 90H IH IH
P t5,2=0 So=-wuP =
y

3y nr, E_MQ

0x

which are valid on the period annulus sinBeis a first integral angk is an integrating
factor of (5.23). We define the function

G(r, R, ¢) = H(r cosp, r sing) — R,

at every point(r, ¢) from the period annulus (which is an open set) and for eRch
(Whe, ~/hy ). Here(r, ¢) denote the polar coordinates. We have that
_ plx,y)

oG 0H oH .
— = ——cosp + — sing = (Q(x, y)x — P(x,y)y),
ar ax dy r

wherex = rcosp andy = r sing. For every(rg, o) in the period annulus there isRy
such thatG (ro, Ro, o) = 0. Assumption (5.25) assures th%ﬁ (ro, Ro, wo) # 0. By the
Implicit Function Theorem, around every such pdiRp, ¢o) there is a unique continuous
function p = p(R, ¢) such that relation (5.26) holds. Hence this function is well defined
on the whole domaii/%c, /5 ) x [0, 2) and satisfies (5.26).
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The dependence between the square root of energy and the time is givem)by
JH(x(t), y()), and between the angle and the time isp(¢) = arctan}%, whenever
(x(@),y()) eIy ,t €R. Then we get

eu(Qp—Pq) . (Qx —yP) +elgx — py)
2R ’ ¢ x2+4y2 '
Eliminating the time we obtain equation (5.27). Condition (5.25) implies that the vector

field of (5.27) is well defined itD x (—&, e ) for e 7 sufficiently small. Also, it is easy to
see that it is cotinuous andr2periodic ing. O

R=

An important result is the following, which states that the application of the averaging
method for planar systems in the conditions of this section is equivalent to the study of
the displacement function. In particular, the first order averaging method is equivalent to
the study of first order Melnikov function. For more details in this direction we refer to
[1,6,7,11,17].

The proof of this theorem is a direct consequence of Theorem 5.1 and the definition of
the displacement and Melnikov functions.

Theorem 5.2. The functionf : (vhes, v/hs+) x (—er,er) — R described by3.10)for
Eq. (5.27)is given by

2
n(x?+ y3(Qp — Pq)
= 2
F(R.€) S,O/ 2R(Qx — Py) + 2Re(gx — py) de (5.28)
and the functionfi : (W/hes, v/hss ) — R described by1.2)for Eq.(5.26)is
1G24 y2(0p - Pg)
AR = [ MO =D g, (5.29)

where u = u(x, y) is the integrating factor of systeifs.23) corresponding to the first
integral H, andx = p(R, ¢) coSp andy = p(R, ¢) Sing.

Moreover, the functio(b.28)is a displacement function arfl.29)is the corresponding
first order Melnikov function of the systd24)

Example 1 (Bifurcation of limit cycles from an isochronous center via averaying
Following the notations used in [6] or [5] the quadratic differential system

: 2
X =-=y+x°,
. 5.30
y=x-+xy, ( )
with an isochronous center at the origin belongs to the cfasand a first integral in the
2,.,2
period annulus has the expressifitix, y) = g‘ljyy)z. For this system we note that = 0,

hy = 1, and that the functiop which satisfies the hypotheses of Theorem 5.1 is given by

P(R, @)= % forall0< R <1 andg € [0, 27).
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We consider perturbations in the normal Bautin form

¥=—y+x2+ep(x,y),
. 5.31
y=x+xy+eq(x,y), ( )

wherep(x, y) = a1x — azx? + (2a2 + as)xy + agy? andq (x, y) = a1y + asx? + asxy —
azy?. The corresponding 1-dimensional Eq. (5.27) is
dR  aiR +a(@)R?+b(p)R®
—=¢ -
do 1—-Rsing +¢ec(p)R
where

(5.32)

a(p) = (—2a1 + 3az + as) sing + (a4 + ag) COSp
+ (—4az — as) S ¢ + (—az — aa — ag) COS @,
b(¢) = a1+ az + (—a1 — 2a») COS ¢ — a4 COSY Sing,
c(p) = (a3 + ag) Sing + (—3az — as) COSp + (—az — a4 — ag) Sin3<p
+ (4az + as) cos Q.
We denote
a1R 4 a(p)R? + b(p)R®
1— Rsing
__la1R +a(@)R*+b(9) R%lc(p)R
(1— Rsing)(1 — Rsing +&sc(p)R)’
such that (5.32) becomes

Fi(e, R) =

G(p,R,e) =

dR 5
— =¢Fi(p.e) +e°G(p, R, ¢),
do

which is of the form (1.1), i.e. the standard form for first order averaging. In order to apply
Theorem 1.1, we need function (1.2) which is for our problam(0, 1) — R,

21
Al )_/a12+a(<p)zz+b(<p)zsd
1= 1—zsing ¢

0
We compute this integral usingapleand obtain

@) =- 2a7* + (Baz + as — 2a1)z%v/ 1 — 72 — (10az + 2as)z>

1
2(zv/1— z2)[
— (2a5 + 8a2)v'1— z2 + 8as + 2a5].
When we take the new varialdes (0, 1) defined by; = /1 — £2, we get

fi(y1-£2)

1
C2(/1-8?)

(1 - £)(2a26% + (2a1 — daz — as)E + 2a1 + 2az + as).
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We notice thatz € (0,1) is a zero of f1 if and only if £ € (0,1) is a zero of
the polynomial functiong(¢) = 2a26° + c1& + c¢2, Wherecy = 2a; — 4as — as and
c2 =2a1 + 2a2 + as. It is easy to see that, in our discussion about the zergsved can
consider its coefficients as arbitrary real numbers. So, we can conclude that the number of
zeros ofg in the interval(0, 1) is at most 2. This means that the number of zerog a$ at
most 2. Hence at most two limit cycles bifurcates from the period annulus of system (5.30).
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