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1 Introduction

In this paper we give coincidence and data dependence results using Peetre’s condi-
tion [10]. Let X and Y be two nonempty sets and f,g: X — Y be two mappings.
Let us denote the coincidence points set for f and g by

C(f,9) ={r e X | f(x) =g()}.

In the particular cases when ¢ is a constant mapping, g(z) = y, Vo € X, where
y € Y is given, we shall use the notation

Sy(f) ={z e X | f(z) =y},

or g is the inclusion mapping g(z) = z, Vo € X, where X C Y, we shall use the
well-known notation,

F(f) ={z e X | f(z) = z}.

We shall work in the case when (X, d) and (Y] p) are two metric spaces. Let us also
denote

p(z) = p(f(x),9(x)), v € X.

Now we can write the Peetre’s condition below.
(P) There exist 0 < a <1, k>0 and ¢ : X — X such that:

d(w,(x)) <k -p(x) and (P(r)) < a-p(x), Vo e X,
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In the second paragraph we give existence result for coincidence points, using con-
dition (P), reformulated in the sequences language (Lemma 2.1). Next section deals
with data dependence results from same point of view. We mention that we ap-
ply theoretical results from section 2 and 3 for particular cases. In this way we
find known fixed point result (when one of the operators is identity) and known
surjectivity results (when one of the operators is constant).

2 Existence results

Lemma 2.1 If condition (P) is satisfied, then for every xo € X,

(a) Y"(xg) is a Cauchy sequence;

(b) o(¥"(x9)) — 0, as n — oo.

Proof. Let us fixed zp € X. If ¢(x¢) = 0 then ¥ (zg) = xg, hence " (o) = x¢ for
all n > 0. If p(z) > 0 then we have the following estimations.

A" (o), " (w0)) < k- "t - p(wp) and p(¥" (w)) < a” - p(x0).
Then d(¢"(zo), ¥" P (20)) < k(o + a™™ + ..+ " P Np(zg) = k - a" 22 () <
2=p(z9) — 0, asn,p — oo. Thus, (¥"(z0)) is a Cauchy sequence and (¢ (zg)) —
0.

Example 1. Let X =Y and ¢ be the identity mapping of X. If f is a contraction
on the orbit then Peetre’s condition is fulfilled .

Let us remember that f is a contraction on the orbit if there exists 0 < a < 1 such
that

d(f(f(x)), f(x)) < a-d(z, f(z))

or, equivalently, ¢(f(z)) < a - ¢(z).
Indeed, it is easy to see that (P) holds with £ = 1 and ¢ (z) = f(z). The sequence

x, = ¢Y"(xo) from Lemma 1.1 is given by the following relation,

Tpy1 = f(xn)

Example 2. Let g be bijective and such that there exists £ > 0 with

d(xy,22) < k- p(g(xy1), g(z2)) for all x1, 25 € X. (2.1)



If f is contraction w.r.t. g then Peetre’s condition is fulfilled.
Let us remember that f is contraction w.r.t. g if there exists 0 < a < 1 such that

p(f(@1), f(22)) < o p(g(a1), 9(x2)), for all zy, 23 € X. (2.2)

In order to prove this, let z € X and ¢(z) = ¢ '(f(z)). Then we can write

Now, using also relations (2.1) and (2.2), we obtain d(z, ¥ (z)) < k-p(z), ¢(¢¥(x)) <

ap(z).
The sequence from Lemma 1.1, x,, = 1"(zy) is given by the following relation

9(@ny1) = flan).

Example 3. Let Y be a normed space, g be like in Example 2 and A > 0. If
hy = Af + (1 = X)g is contraction w.r.t. g, then condition (P) is fulfilled.
The sequence is given by the following relation for every xg € X,

9(Tni1) = Af(zn) + (1 = N)g(zn).

Example 4. Let X, Y be Banach spaces, y an arbitrary element from Y and
g: X =Y, g(r) =y forall z in X. If f is as in Lemma 2.2 and g as above, then
condition (P) is fulfilled.

Lemma 2.2 [1] Let X, Y be Banach spaces and f : X — Y be Gateaux differen-
tiable operator on X. let § : [0,00) — [0,00) be a continuous, bounded away from
zero and suppose that for each x in X we have

df:(B(0,1)) > B(0,(][]]))

Then for each y €Y, there are operator ¥(.;y) : X — X and « € (0,1/2] such that

(W) () =yl < ellf(z) —yll and
<

() (@) — 2] mnﬂx)—yu

The main results of this section are Theorem 2.1 and Theorem 2.2.

Theorem 2.1 Let (X,d) be a complete metric space and f and g be continuous. If
f, g satisfy Peetre’s condition then



(i) C(f.g) #0;
(1) for every xo € X there exists x* € C(f, g) such that Y™ (xg) — x*(xg)
(111) for every xq € X the following estimation holds

d(z0,2"(20)) < 7 ¢(20)- (2.3)

Proof. By Lemma 2.1, for every zq € X the sequence x, = ¥"(xq) is a Cauchy
sequence in X and such that ¢(x,) — 0 The metric space (X, d) is complete, thus
the sequence (x,,) is convergent to some z* € X. Using the continuity of f and g, we
deduce that the functional ¢ : X — R, is also continuous. Hence, ¢(x,) — p(z*).
From the unicity of the limit in a metric space, p(z*) must be 0. But this means
that p(f(z*),g(«*)) = 0, which implies that f(z*) = g(z*), i.e. C(f,g) # 0.

From the proof of Lemma 2.1 we use the relation d(zy, T,4p) < k- a" =% ¢(z0) to
deduce that d(zo,z,) < k2 ¢(z). Taking by the limit for n — co we obtain
exactly (2.3).

Remark 1. In fact, in the hypothesis of Theorem 1.1, condition (P) is equivalent
to (i)+(ii). The reversed implication coresponds with the trivial case, when we can
choose v from condition (P) the constant operator i(z) = z*, =z € X, where z* is
given by (ii).

Remark 2. If in previous theorem we take the constant operator g as in Example
4., then we obtain the Kasahara surjectivity theorem in formulation given in [1]. In
other words the hypotesis from Kasahara’s surjectivity theorem imply condition (P)
for operators f and g define as above.

Remark 3. The contraction mapping principle can be proved like a consequence
of Theorem 2.1.

The following result is a Maia-type theorem.

Theorem 2.2 Let d' be another metric on X and p' on'Y . Let us suppose that the
following conditions are fulfilled.

(1) Peetre’s condition holds for f,g: (X,d) — (Y, p);

(i) there exist a,b > 0 such that

< a-d(xy,x9) for all x1,29 € X, and
Py, y2) < b-p(yr,y2) for all yi,y, €Y



(111) (X,d") is a complete metric space;
() f,g:(X,d) — (Y,p) are continuous.
Then

(i) C(f,g9) #0
(ii) for every xo € X there exists x* € C(f,g) such that Y™ (z¢) — x*(x0)

(1i1) for every xo € X the following estimation holds

a-k
1l—«

& (0, 2" (20)) < —— - o(ay). (2.4)

Proof. Let us denote ¢(x) = p(f(x),g(z)) and ¢'(z) = p/(f(x),g(x)). By Lemma
2.1, the Cauchy sequence (z,), x, = ¥"(x¢) in (X,d) such that ¢(z,) — 0. Using
(ii) we have that 0 < ¢'(z,) < b-¢(x,). So, ¢'(x,) — 0. Also, by (ii) we have that
d' (2, Tnip) < ¢-d(Tp, Tnip). But the right hand member of this inequality tends to
0 when n,p — oo, which implies that d'(z,, 5+,) — 0 when n,p — oo. This means
that (z,,) is a Cauchy sequence in (X, d’), too. Using (iii), there exists z*(z) € X
the limit of (¢)"(xg)) in (X,d’). The condition (iv) assures that ¢’ : (X,d') — R,

is continuous. As in the proof of Theorem 2.1, we deduce that C(f,g) # () and
1—a” 1—a”
d(xg,z,) < k . a ©(x¢) which imples that d'(zo,z,) < k-a 1 “ ©(xp). When
—«

n — 00, estimation (2.4) holds.

3 Data dependence

Throughout this section we shall consider two pair of operators f;,g; : X — Y,
i = 1,2 such that there exist 7,7, with

p(fi(x), fa(x)) <my, for all x € X

and
p(g1(x), g2(x)) < my for all x € X.

Also, we shall denote by z} a generic element of C(f;, g:), 1 = 1, 2.

Theorem 3.1 Let X be a complete metric space and suppose that f;, g; are contin-
uous and satisfy condition (P) with the constants k; > 0 and a; € (0,1), i =1,2.
Then C(f1,g1) and C(fs,g2) are closed subsets of X and the following estimation
holds

max{ki, ko }
H(C(f1>91)>c(f2792)) = 1 — maX{OébOéZ}

(M + 12)-



Proof. Using the continuity of f; and g; it is easy to see that C(f1,¢1) is a closed
subset of X. Analogously for C(f3, gs).

By Theorem 1.1, for every zp € X there exists * € C(f1, g1) such that d(zg,2*) <
1 (20).

Now let 2y € C(f2,g2). The following estimation hold 1 (zo) = p(f1(20), g1(z0)) <
p(f1(20), f2(x0)) + p(fa(w0), g2(x0)) + p(g2(0), 91(w0)) < M1 + 2. Thus,

ki
1—&1

d(zg,z%) < (171 + 12)- (3.5)

By a similar way, we have that for all yo € C(f1, g1) there exists y* € C(fs, g2) such
that

. k
d(yo,y") < 1 2 (m + 12). (3.6)
—a,

Relations (3.5) and (3.6) assure that the conclusion holds.

Theorem 3.2 Let X be a complete metric space, fn, f,gn, g : X — Y, n > 1 be
continuous operators such that (fn,gn), n > 1 and (f,g) satisfy condition (P) with
the same constants k and «. Let us also suppose that there exists n, — 0 and
B, — 0, as n — oo such that

p(fu(@), f(x)) <, for allz € X,
and

p(gn(@), g(2)) < By for all z € X.
Then H(C(fn,gn), C(f,g)) — 0, as n — oc.

Corollary 3.1 Let (X, d) be a complete metric space, (Y, p) be a metric space and
operators f; : X =Y, g;: X =Y, gi(x) =y;, i = 1,2 which respect the Kasahara’s
surjectivity theorem [8]. Then Sy, (fi) are closed subsets and

H(S,,(f1), Sy, (f2)) < max{ky, ko }

~ 1 — max{ay, az} (- 12).

Proof. From Remark 2 we have that pair (f;, g;) satisfy condition (P) with constant
«; and k; and from Theorem 3.1 the conclusions of corrollary hold.

Theorem 3.3 Let X be a complete metric space and suppose that the following
conditions are fulfilled.
(i) fi,q1 are continuous and satisfy condition (P) with the constants k > 0 and
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ae (0,1);

(11) f1,91 have unique coincidence point;

(111) fao, g2 have at least one coincidence point.
Then the following estimation holds

k

d * * <

(71 + n2). (3.7)

Proof. C(fi,q1) = {zi}. Using (i), by Theorem 2.1, for x5 € X, d(x},z7) <
e (as).

o1(23) = p(u(), 0 (23)) < pa(s), Falap)) Ho(fales). ga(a) +olga(as), g1 (a3)) <
m —+ n2. Thus, (3.7) holds.

Corollary 3.2 [13] Let X =Y be a complete metric space and suppose that the
following conditions are fulfilled.

(i) f1 is a contraction with the constant o € (0,1);

(11) fa has at least one fized point.

Then the following estimation holds

1
11—«

plar, x3) < E
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