
On Peetre’s condition in the coincidence theory.
I. Abstract results

A. Buică and F. Aldea∗

1 Introduction

In this paper we give coincidence and data dependence results using Peetre’s condi-
tion [10]. Let X and Y be two nonempty sets and f, g : X → Y be two mappings.
Let us denote the coincidence points set for f and g by

C(f, g) = {x ∈ X | f(x) = g(x)}.

In the particular cases when g is a constant mapping, g(x) = y, ∀x ∈ X, where
y ∈ Y is given, we shall use the notation

Sy(f) = {x ∈ X | f(x) = y},

or g is the inclusion mapping g(x) = x, ∀x ∈ X, where X ⊂ Y , we shall use the
well-known notation,

F (f) = {x ∈ X | f(x) = x}.
We shall work in the case when (X, d) and (Y, ρ) are two metric spaces. Let us also
denote

ϕ(x) = ρ(f(x), g(x)), x ∈ X.

Now we can write the Peetre’s condition below.
(P) There exist 0 < α < 1, k > 0 and ψ : X → X such that:

d(x, ψ(x)) ≤ k · ϕ(x) and ϕ(ψ(x)) ≤ α · ϕ(x), ∀ x ∈ X.
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In the second paragraph we give existence result for coincidence points, using con-
dition (P), reformulated in the sequences language (Lemma 2.1). Next section deals
with data dependence results from same point of view. We mention that we ap-
ply theoretical results from section 2 and 3 for particular cases. In this way we
find known fixed point result (when one of the operators is identity) and known
surjectivity results (when one of the operators is constant).

2 Existence results

Lemma 2.1 If condition (P) is satisfied, then for every x0 ∈ X,

(a) ψn(x0) is a Cauchy sequence;

(b) ϕ(ψn(x0)) → 0, as n →∞.

Proof. Let us fixed x0 ∈ X. If ϕ(x0) = 0 then ψ(x0) = x0, hence ψn(x0) = x0 for
all n ≥ 0. If ϕ(x0) > 0 then we have the following estimations.

d(ψn−1(x0), ψ
n(x0)) ≤ k · αn−1 · ϕ(x0) and ϕ(ψn(x0)) ≤ αn · ϕ(x0).

Then d(ψn(x0), ψ
n+p(x0)) ≤ k(αn + αn+1 + ... + αn+p−1)ϕ(x0) = k · αn 1−αp

1−α
ϕ(x0) ≤

k αn

1−α
ϕ(x0) → 0, as n, p →∞. Thus, (ψn(x0)) is a Cauchy sequence and ϕ(ψn(x0)) →

0.

Example 1. Let X = Y and g be the identity mapping of X. If f is a contraction
on the orbit then Peetre’s condition is fulfilled .
Let us remember that f is a contraction on the orbit if there exists 0 < α < 1 such
that

d(f(f(x)), f(x)) ≤ α · d(x, f(x))

or, equivalently, ϕ(f(x)) ≤ α · ϕ(x).
Indeed, it is easy to see that (P) holds with k = 1 and ψ(x) = f(x). The sequence
xn = ψn(x0) from Lemma 1.1 is given by the following relation,

xn+1 = f(xn).

Example 2. Let g be bijective and such that there exists k > 0 with

d(x1, x2) ≤ k · ρ(g(x1), g(x2)) for all x1, x2 ∈ X. (2.1)
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If f is contraction w.r.t. g then Peetre’s condition is fulfilled.
Let us remember that f is contraction w.r.t. g if there exists 0 < α < 1 such that

ρ(f(x1), f(x2)) ≤ α · ρ(g(x1), g(x2)), for all x1, x2 ∈ X. (2.2)

In order to prove this, let x ∈ X and ψ(x) = g−1(f(x)). Then we can write

ϕ(x) = ρ(g(ψ(x)), g(x)), ϕ(ψ(x)) = ρ(f(ψ(x)), f(x)).

Now, using also relations (2.1) and (2.2), we obtain d(x, ψ(x)) ≤ k ·ϕ(x), ϕ(ψ(x)) ≤
αϕ(x).
The sequence from Lemma 1.1, xn = ψn(x0) is given by the following relation

g(xn+1) = f(xn).

Example 3. Let Y be a normed space, g be like in Example 2 and λ > 0. If
hλ = λf + (1− λ)g is contraction w.r.t. g, then condition (P) is fulfilled.
The sequence is given by the following relation for every x0 ∈ X,

g(xn+1) = λf(xn) + (1− λ)g(xn).

Example 4. Let X, Y be Banach spaces, y an arbitrary element from Y and
g : X → Y, g(x) = y for all x in X. If f is as in Lemma 2.2 and g as above, then
condition (P) is fulfilled.

Lemma 2.2 [1] Let X, Y be Banach spaces and f : X → Y be Gateaux differen-
tiable operator on X. let δ : [0,∞) → [0,∞) be a continuous, bounded away from
zero and suppose that for each x in X we have

dfx(B(0, 1)) ⊃ B(0, δ(||x||))

Then for each y ∈ Y, there are operator ψ(.; y) : X → X and α ∈ (0, 1/2] such that

||f(ψ(.; y)(x))− y|| ≤ α||f(x)− y|| and

||ψ(.; y)(x)− x|| ≤ 1

δ(||x||) ||f(x)− y||

The main results of this section are Theorem 2.1 and Theorem 2.2.

Theorem 2.1 Let (X, d) be a complete metric space and f and g be continuous. If
f, g satisfy Peetre’s condition then
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(i) C(f, g) 6= ∅;
(ii) for every x0 ∈ X there exists x∗ ∈ C(f, g) such that ψn(x0) → x∗(x0)
(iii) for every x0 ∈ X the following estimation holds

d(x0, x
∗(x0)) ≤ k

1− α
· ϕ(x0). (2.3)

Proof. By Lemma 2.1, for every x0 ∈ X the sequence xn = ψn(x0) is a Cauchy
sequence in X and such that ϕ(xn) → 0 The metric space (X, d) is complete, thus
the sequence (xn) is convergent to some x∗ ∈ X. Using the continuity of f and g, we
deduce that the functional ϕ : X → R+ is also continuous. Hence, ϕ(xn) → ϕ(x∗).
From the unicity of the limit in a metric space, ϕ(x∗) must be 0. But this means
that ρ(f(x∗), g(x∗)) = 0, which implies that f(x∗) = g(x∗), i.e. C(f, g) 6= ∅.
From the proof of Lemma 2.1 we use the relation d(xn, xn+p) ≤ k · αn 1−αp

1−α
ϕ(x0) to

deduce that d(x0, xn) ≤ k 1−αn

1−α
ϕ(x0). Taking by the limit for n → ∞ we obtain

exactly (2.3).

Remark 1. In fact, in the hypothesis of Theorem 1.1, condition (P) is equivalent
to (i)+(ii). The reversed implication coresponds with the trivial case, when we can
choose ψ from condition (P) the constant operator ψ(x) = x∗, x ∈ X, where x∗ is
given by (ii).

Remark 2. If in previous theorem we take the constant operator g as in Example
4., then we obtain the Kasahara surjectivity theorem in formulation given in [1]. In
other words the hypotesis from Kasahara’s surjectivity theorem imply condition (P)
for operators f and g define as above.

Remark 3. The contraction mapping principle can be proved like a consequence
of Theorem 2.1.

The following result is a Maia-type theorem.

Theorem 2.2 Let d′ be another metric on X and ρ′ on Y . Let us suppose that the
following conditions are fulfilled.
(i) Peetre’s condition holds for f, g : (X, d) → (Y, ρ);
(ii) there exist a, b > 0 such that

d′(x1, x2) ≤ a · d(x1, x2) for all x1, x2 ∈ X, and

ρ′(y1, y2) ≤ b · ρ(y1, y2) for all y1, y2 ∈ Y ;
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(iii) (X, d′) is a complete metric space;
(iv) f, g : (X, d′) → (Y, ρ′) are continuous.
Then
(i) C(f, g) 6= ∅
(ii) for every x0 ∈ X there exists x∗ ∈ C(f, g) such that ψn(x0) → x∗(x0)
(iii) for every x0 ∈ X the following estimation holds

d′(x0, x
∗(x0)) ≤ a · k

1− α
· ϕ(x0). (2.4)

Proof. Let us denote ϕ(x) = ρ(f(x), g(x)) and ϕ′(x) = ρ′(f(x), g(x)). By Lemma
2.1, the Cauchy sequence (xn), xn = ψn(x0) in (X, d) such that ϕ(xn) → 0. Using
(ii) we have that 0 ≤ ϕ′(xn) ≤ b · ϕ(xn). So, ϕ′(xn) → 0. Also, by (ii) we have that
d′(xn, xn+p) ≤ c · d(xn, xn+p). But the right hand member of this inequality tends to
0 when n, p →∞, which implies that d′(xn, xn+p) → 0 when n, p →∞. This means
that (xn) is a Cauchy sequence in (X, d′), too. Using (iii), there exists x∗(x0) ∈ X
the limit of (ψn(x0)) in (X, d′). The condition (iv) assures that ϕ′ : (X, d′) → R+

is continuous. As in the proof of Theorem 2.1, we deduce that C(f, g) 6= ∅ and

d(x0, xn) ≤ k
1− αn

1− α
ϕ(x0) which imples that d′(x0, xn) ≤ k · a1− αn

1− α
ϕ(x0). When

n →∞, estimation (2.4) holds.

3 Data dependence

Throughout this section we shall consider two pair of operators fi, gi : X → Y ,
i = 1, 2 such that there exist η1, η2 with

ρ(f1(x), f2(x)) ≤ η1, for all x ∈ X,

and
ρ(g1(x), g2(x)) ≤ η2 for all x ∈ X.

Also, we shall denote by x∗i a generic element of C(fi, gi), i = 1, 2.

Theorem 3.1 Let X be a complete metric space and suppose that fi, gi are contin-
uous and satisfy condition (P) with the constants ki > 0 and αi ∈ (0, 1), i = 1, 2.
Then C(f1, g1) and C(f2, g2) are closed subsets of X and the following estimation
holds

H(C(f1, g1), C(f2, g2)) ≤ max{k1, k2}
1−max{α1, α2}(η1 + η2).
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Proof. Using the continuity of f1 and g1 it is easy to see that C(f1, g1) is a closed
subset of X. Analogously for C(f2, g2).
By Theorem 1.1, for every x0 ∈ X there exists x∗ ∈ C(f1, g1) such that d(x0, x

∗) ≤
k1

1−α1
ϕ1(x0).

Now let x0 ∈ C(f2, g2). The following estimation hold ϕ1(x0) = ρ(f1(x0), g1(x0)) ≤
ρ(f1(x0), f2(x0)) + ρ(f2(x0), g2(x0)) + ρ(g2(x0), g1(x0)) ≤ η1 + η2. Thus,

d(x0, x
∗) ≤ k1

1− α1

(η1 + η2). (3.5)

By a similar way, we have that for all y0 ∈ C(f1, g1) there exists y∗ ∈ C(f2, g2) such
that

d(y0, y
∗) ≤ k2

1− α2

(η1 + η2). (3.6)

Relations (3.5) and (3.6) assure that the conclusion holds.

Theorem 3.2 Let X be a complete metric space, fn, f, gn, g : X → Y, n ≥ 1 be
continuous operators such that (fn, gn), n ≥ 1 and (f, g) satisfy condition (P) with
the same constants k and α. Let us also suppose that there exists ηn → 0 and
βn → 0, as n →∞ such that

ρ(fn(x), f(x)) ≤ ηn, for all x ∈ X,

and
ρ(gn(x), g(x)) ≤ βn for all x ∈ X.

Then H(C(fn, gn), C(f, g)) → 0, as n →∞.

Corollary 3.1 Let (X, d) be a complete metric space, (Y, ρ) be a metric space and
operators fi : X → Y, gi : X → Y, gi(x) = yi, i = 1, 2 which respect the Kasahara’s
surjectivity theorem [8]. Then Syi

(fi) are closed subsets and

H(Sy1(f1), Sy2(f2)) ≤ max{k1, k2}
1−max{α1, α2}(η1 + η2).

Proof. From Remark 2 we have that pair (fi, gi) satisfy condition (P) with constant
αi and ki and from Theorem 3.1 the conclusions of corrollary hold.

Theorem 3.3 Let X be a complete metric space and suppose that the following
conditions are fulfilled.
(i) f1, g1 are continuous and satisfy condition (P) with the constants k > 0 and
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α ∈ (0, 1);
(ii) f1, g1 have unique coincidence point;
(iii) f2, g2 have at least one coincidence point.
Then the following estimation holds

d(x∗1, x
∗
2) ≤

k

1− α
(η1 + η2). (3.7)

Proof. C(f1, g1) = {x∗1}. Using (i), by Theorem 2.1, for x∗2 ∈ X, d(x∗2, x
∗
1) ≤

k
1−α

ϕ1(x
∗
2).

ϕ1(x
∗
2) = ρ(f1(x

∗
2), g1(x

∗
2)) ≤ ρ(f1(x

∗
2), f2(x

∗
2))+ρ(f2(x

∗
2), g2(x

∗
2))+ρ(g2(x

∗
2), g1(x

∗
2)) ≤

η1 + η2. Thus, (3.7) holds.

Corollary 3.2 [13] Let X = Y be a complete metric space and suppose that the
following conditions are fulfilled.
(i) f1 is a contraction with the constant α ∈ (0, 1);
(ii) f2 has at least one fixed point.
Then the following estimation holds

ρ(x∗1, x
∗
2) ≤

1

1− α
η1.
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