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Abstract An abstract unified theory of both monotone iterative and general-
ized quasilinearization methods is presented for operator equations of coincidence
type in ordered Banach spaces. Applications are given for semilinear problems in
C

(
Ω; Rk

)
and Lp

(
Ω; Rk

)
.

1 Introduction

The monotone iterative method and the Newton’s method are known to be two
very available and efficient techniques for finding roots of nonlinear equations.
The first one applies to equations involving monotone operators and produces a
sequence which is monotone and convergent towards a solution. However, like
as Banach’s Contraction Mapping Principle, the convergence of the monotone
iterations is slow. The Newton’s method has the advantage of providing quadrat-
ically convergent sequences. Historically, the first general convergence theorem
for Newton’s method for solving iteratively the equation F (u) = 0 was given
by L.V. Kantorovich (1948) assuming certain bounds for F ′′ and the inverse of
F ′, and also that the first approximation is chosen close enough to the solution.
Later, Kantorovich himself and many other authors have adapted this method
for equations in ordered normed spaces, to produce monotone and quadratically
convergent sequences. For this purpose, the main assumption was the convexity
or a convexity-like property of F . For references and much information about the
stage of art in the sixties we refer the reader to the paper of Vandergraft [22]. For
further contributions see [2, 9, 18, 21].

Applied to differential equations Newton’s method is known as the quasi-
linearization method. A remarkable contribution in this direction has been the
monograph of Bellman and Kalaba [3]. This method applies to semilinear equa-
tions with convex nonlinearities and provides lower approximate solutions which
converge quadratically to the solution of the given nonlinear equation. The lower
approximate solutions are solutions to certain linear equations.
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The nineties brought new extensions of the quasilinearization method. The
most interesting new idea is due to Lakshmikantham [12] (see also [13, 15]) and
consists in an extension of the quasilinearization method for equations with non-
linearities which can be represented as a difference of two convex functions. This
extension, now known as the generalized quasilinearization method, was possible
by combining the method of upper and lower solutions and the monotone iterative
technique together with differential inequalities and comparison results. This pro-
vides a very efficient tool to construct upper and lower approximate solutions that
converge monotonically and quadratically to the solution of the problem under
consideration. The method was used for solving several classes of equations; see
[1, 8, 12, 13, 14, 15, 16, 17, 20]. Nevertheless, by our knowledge, a general theory
to unify all these particular results have not been given until now.

The goal of this paper is to develop an abstract theory of the generalized
quasilinearization method for semilinear operator equations of coincidence type in
ordered Banach spaces. Our theory contains as a particular case, the monotone
iterative method (see [4, 5, 11, 19]), which is applicable to a large class of problems.
However, not all the results existed in the literature can be embedded in the
theory given in the present paper. For example, our results do not cover the case
of discontinuous problems, for which a specific theory was provided by Heikkilä-
Lakshmikantham [10] and Carl-Heikkilä [7].

The general results are applied to semilinear equations in C
(
Ω; Rk

)
and

Lp
(
Ω; Rk

)
. Finally we present two results for the initial value problem for a scalar

differential equation. The first one is given in terms of divided differences for
nondifferentiable nonlinearities, and the second one in terms of derivatives.

Similar ideas are used in [6] for finding roots of nonlinear equations by Newton
type iterations.

2 Abstract Theory

We start with a result in ordered linear spaces which provides two monotone
sequences of upper and respectively lower estimations of any zero of a nonlinear
mapping in a given order interval.

Lemma 2.1. Let D, Z be two ordered linear spaces, F : D → Z be a mapping
and let α0, β0 ∈ D. Assume

α0 ≤ β0, F (α0) ≤ 0 ≤ F (β0)

and that for every u, v ∈ D satisfying α0 ≤ u ≤ v ≤ β0, there exists a bijective
linear operator A (u, v) : D → Z with positive inverse such that

F (v) ≤ F (u) + A (u, v) (v − u) . (2.1)

In addition assume that for every α, β, u, v ∈ D with α ≤ u ≤ v ≤ β,

A (u, v) z ≤ A (α, β) z for all z ∈ D, z ≥ 0. (2.2)

Then the sequences (αn) , (βn) given by the iterative schemes

F (αn) + A (αn, βn) (αn+1 − αn) = 0, (2.3)
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F (βn) + A (αn, βn) (βn+1 − βn) = 0 (2.4)

(n ∈ N) are well and uniquely defined in D and

α0 ≤ α1 ≤ ... ≤ αn ≤ ... ≤ βn ≤ ... ≤ β1 ≤ β0. (2.5)

Moreover, for each u ∈ D with α0 ≤ u ≤ β0 and F (u) = 0, one has

αn ≤ u ≤ βn for all n ∈ N. (2.6)

Proof. We shall prove by induction that for each n ∈ N, αn+1, βn+1 are well and uniquely defined,
αn ≤ αn+1 ≤ βn+1 ≤ βn,
F (αn+1) ≤ 0 ≤ F (βn+1) .

(2.7)

First we prove (2.7) for n = 0. The bijectivity of A (α0, β0) guarantees that α1, β1

are well and uniquely defined by (2.3) and (2.4), respectively. From (2.3) using
F (α0) ≤ 0, we obtain

A (α0, β0) α1 = −F (α0) + A (α0, β0) α0 ≥ A (α0, β0)α0.

This yields α1 ≥ α0 since A (α0, β0) has a positive inverse. Similarly, from (2.4)
and F (β0) ≥ 0, we deduce

A (α0, β0) β1 = −F (β0) + A (α0, β0) β0 ≤ A (α0, β0)β0,

whence β1 ≤ β0. Furthermore, using successively (2.3), (2.1) and (2.4), we obtain

A (α0, β0) α1 = −F (α0) + A (α0, β0) α0

≤ −F (β0) + A (α0, β0) β0

= A (α0, β0) β1.

It follows that α1 ≤ β1. Now the inequalities F (α1) ≤ 0 ≤ F (β1) follow from the
next relations by using (2.2):

F (α1) ≤ F (α0) + A (α0, α1) (α1 − α0)
= (A (α0, α1)−A (α0, β0)) (α1 − α0) ,

F (β1) ≥ F (β0)−A (β1, β0) (β0 − β1)
= (A (α0, β0)−A (β1, β0)) (β0 − β1) .

Thus (2.7) holds for n = 0. Similar arguments can be used to prove (2.7) for n+1,
when it is assumed (2.7) is true for n.

Now let u ∈ D be any element satisfying α0 ≤ u ≤ β0 and F (u) = 0. We shall
prove (2.6) by induction. Let us assume that (2.6) holds for n. Then from

A (αn, βn) αn+1 = −F (αn) + A (αn, βn)αn

≤ −F (u) + A (αn, u) (u− αn) + A (αn, βn) αn

= A (αn, βn) u + (A (αn, u)−A (αn, βn)) (u− αn)
≤ A (αn, βn) u
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and

A (αn, βn) βn+1 = −F (βn) + A (αn, βn) βn

≥ −F (u)−A (u, βn) (βn − u) + A (αn, βn) βn

= A (αn, βn) u− (A (u, βn)−A (αn, βn)) (βn − u)
≥ A (αn, βn) u,

since the inverse of A (αn, βn) is positive, we deduce that (2.6) also holds for
n + 1.

In what follows we deal with the coincidence operator equation

Lu = N (u) , u ∈ D. (2.8)

Our first result represents a generalization of the monotone iterative technique for
coincidences.

Theorem 2.1. Let X be an ordered Banach space, Z be an ordered topological
linear space, D a linear subspace of X and α0, β0 ∈ D. Let L : D → Z be a linear
operator and N : X → Z be a mapping. Assume that the following conditions are
satisfied:

(i) α0 ≤ β0, Lα0 ≤ N (α0) and Lβ0 ≥ N (β0) ;

(ii) for every u, v ∈ X with α0 ≤ u ≤ v ≤ β0, there is a linear operator P (u, v) :
X → Z such that L− P (u, v) : D → Z is bijective with positive inverse,

N (u) ≤ N (v)− P (u, v) (v − u) (2.9)

and
−P (u, v) z ≤ −P (α, β) z (2.10)

for all α, β, u, v, z ∈ X with α0 ≤ α ≤ u ≤ v ≤ β ≤ β0 and z ≥ 0;

(iii) either
(a) the positive cone of X is regular and the operators{

(L− P (α0, β0))
−1

N, (L− P (α0, β0))
−1

P (α0, β0) ,

(L− P (α0, β0))
−1

P (u, u) , u ∈ X, α0 ≤ u ≤ β0

are continuous on [α0, β0] ,
or
(b) the positive cone of X is normal and the operators (2.11) are completely
continuous on [α0, β0] .

Then the sequences (αn) , (βn) given by the iterative schemes

Lαn+1 = N (αn) + P (αn, βn) (αn+1 − αn) , (2.11)

Lβn+1 = N (βn) + P (αn, βn) (βn+1 − βn) (2.12)

(n ∈ N) are well and uniquely defined in D. In addition, they are monotonically
convergent in X to the minimal and, respectively, to the maximal solution in
[α0, β0] of (2.8).
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Proof. We apply Lemma 2.1. Here F = L−N and A (u, v) = L−P (u, v) . Clearly,
(ii) guarantees (2.1) and (2.2). Also (2.11)-(2.12) coincide with (2.3)-(2.4). Hence
the sequences (αn) , (βn) are well and uniquely defined in D, and satisfy (2.5)
and (2.6). For the convergence we discuss two cases which correspond to the
alternatives in (iii).
Case 1. Assume (iii)(a) holds. Then the regularity of the positive cone of X
implies that the monotone sequences (αn) , (βn) are convergent, say to u∗ ∈ X
and u∗ ∈ X, respectively. Also

αn ≤ u∗ ≤ u∗ ≤ βn, n ∈ N

and
u∗ ≤ u ≤ u∗

for any u ∈ D with α0 ≤ u ≤ β0 and Lu = N (u) . It remains to prove that
u∗, u

∗ ∈ D and Lu∗ = N (u∗) , Lu∗ = N (u∗) . From (2.11) we have

αn+1 = (L− P (α0, β0))
−1 [N (αn) (2.13)

+P (αn, βn) (αn+1 − αn)− P (α0, β0) αn+1].

Also (2.10) guarantees

−P (u∗, u∗) (αn+1 − αn) ≤ −P (αn, βn) (αn+1 − αn) (2.14)
≤ −P (α0, β0) (αn+1 − αn) .

Then (2.13) yields

(L− P (α0, β0))
−1 [N (αn)− P (α0, β0)αn] ≤ αn+1

≤ (L− P (α0, β0))
−1 [N (αn) + P (u∗, u∗) (αn+1 − αn)− P (α0, β0) αn+1].

Letting n →∞ and using the continuity of the operators (2.11) we obtain

u∗ = (L− P (α0, β0))
−1 [N (u∗)− P (α0, β0)u∗].

This shows that u∗ ∈ D and yields Lu∗ = N (u∗) .
Case 2. Assume (iii)(b) holds. From (2.11) we also have

αn+1 = (L− P (α0, β0))
−1 [N (αn) + (2.15)

(P (αn, βn)− P (α0, β0)) (αn+1 − αn)− P (α0, β0) αn].

From (2.14),

0 ≤ (P (αn, βn)− P (α0, β0)) (αn+1 − αn)
≤ (P (u∗, u∗)− P (α0, β0)) (αn+1 − αn) .

In particular, this implies that the sequence (γn) given by

γn = (L− P (α0, β0))
−1 (P (u∗, u∗)− P (α0, β0))αn
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is increasing. On the other hand, since the operators

(L− P (α0, β0))
−1

P (u∗, u∗) , (L− P (α0, β0))
−1

P (α0, β0)

are completely continuous, (γn) has a convergent subsequence. Now its mono-
tonicity together with the semimonotonicity of the norm of X (a consequence of
the normality of the cone) guarantees that the whole sequence (γn) is convergent.
Consequently,

(L− P (α0, β0))
−1 (P (αn, βn)− P (α0, β0)) (αn+1 − αn) → 0.

Then from (2.15), since

(L− P (α0, β0))
−1

N, (L− P (α0, β0))
−1

P (α0, β0)

are completely continuous, we see that (αn) contains a convergent subsequence.
Thus the whole sequence (αn) is convergent. Further we continue as in Case 1.

Similar arguments yield the analogue conclusion for (βn) .

Remark 2.1. If N and P (u, v) are continuous then the assumption on operators
(2.11) in (iii) is satisfied if (L− P (α0, β0))

−1 is continuous, in case (a), and if
N is bounded and (L− P (α0, β0))

−1 is completely continuous, in case (b).

Remark 2.2. In particular, if P (u, v) = 0 for every u, v, Theorem 2.1 reduces
to the monotone iterative method for the operator equation Lu = N (u) with an
increasing mapping N. The reader can see that in this case, (iii) (b) requires that
L−1N is completely continuous.

The next result gives conditions so that (αn) , (βn) converge quadratically to
the unique solution in [α0, β0] of (2.8).

Theorem 2.2. Assume all the assumptions of Theorem 2.1 hold. If

(iv) for every u, v ∈ D with α0 ≤ u ≤ v ≤ β0, there exists a mapping R (v, u) :
D → Z such that

N (u) ≥ N (v)−R (v, u) (v − u) ; (2.16)

(v) L−R(v, u) is inverse positive, i.e. (L−R(v, u)) z ≥ 0 implies z ≥ 0,

then (2.8) has a unique solution u∗ in [α0, β0].
In addition assume that the following conditions are satisfied:

(vi) (L− P (u, u))−1 : Z → X is continuous for every u ∈ D, α0 ≤ u ≤ β0;

(vii) there exist two constants c1, c2 > 0 such that

|(R (w,α)− P (α, β)) z|Z ≤ c1 |w − α|X |z|X + c2 |α− β|X |z|X (2.17)

for all α, β, w, z ∈ D, α0 ≤ α ≤ w ≤ β ≤ β0, z ≥ 0.

Then the convergence of (αn) , (βn) to u∗ is quadratic.
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Proof. First we prove that u∗ = u∗, where u∗ is the minimal and u∗ is, respectively,
the maximal solution in [α0, β0] of (2.8). We write (2.16) for u∗ ≤ u∗, replace
N(u∗) by Lu∗ and N(u∗) by Lu∗, and obtain

Lu∗ −R(u∗, u∗)u∗ ≥ Lu∗ −R(u∗, u∗)u∗.

The hypothesis (v) assures that u∗ ≥ u∗. Then u∗ = u∗, i.e. equation (2.8) has a
unique solution in [α0, β0].

Let
pn = u∗ − αn, qn = βn − u∗.

Using (2.9), (2.10) and (2.16) we obtain the following two inequalities:

Lpn+1 − P (u∗, u∗) pn+1 ≤ Lpn+1 − P (αn, βn) pn+1

= −P (αn, βn) pn −N (αn) + N (u∗)
≤ (R (u∗, αn)− P (αn, βn)) pn.

Let Γ = (L− P (u∗, u∗))−1 : Z → X. Since Γ is positive, we deduce

0 ≤ pn+1 ≤ Γ (R (u∗, αn)− P (αn, βn)) pn.

Furthermore, the norm of X being semimonotone and Γ being continuous, we
obtain

|pn+1|X ≤ c |Γ| |(R (u∗, αn)− P (αn, βn)) pn|Z
≤ c |Γ|

(
c1 |pn|2X + c2 |αn − βn|X |pn|X

)
≤ c |Γ|

(
c1 |pn|2X + c2 (|pn|X + |qn|X) · |pn|X

)
≤ a |pn|2X + b |qn|2X .

Here c > 0 comes from the semimonotonicity of |·|X , and |Γ| is the norm of the
operator Γ.

A similar inequality can be established for |qn+1|X .

Remark 2.3. All the above results are valid if the operator N is defined only on
[α0, β0] ∩D, instead on the whole space X.

As a consequence of Theorem 2.2, we obtain the following abstract version of
Lakshmikantham’s generalized quasilinearization method for the semilinear oper-
ator equation (2.8).

Theorem 2.3. Let X be an ordered Banach space, Z be another ordered Banach
space, D a linear subspace of X and α0, β0 ∈ D. Let L : D → Z be a linear
operator and N : X → Z be a mapping. Assume that the following conditions are
satisfied:

(a) α0 ≤ β0, Lα0 ≤ N (α0) and Lβ0 ≥ N (β0) ;
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(b) N = N1−N2, where N1, N2 : X → Z are C1-Gâteaux differentiable mappings
which are convex on [α0, β0], and for every u, v, z ∈ X with α0 ≤ u ≤ v ≤ β0

and z ≥ 0,
N ′

i(u)z ≤ N ′
i(v)z, i = 1, 2;

(c) L − N ′
1 (u) + N ′

2 (v) : D → Z are bijective with positive inverse for every
u, v ∈ [α0, β0] with u ≤ v or v ≤ u;

(d) either
(1) the positive cone of X is regular and the operator

(L−N ′
1 (α0) + N ′

2 (β0))
−1 (2.18)

is continuous on [α0, β0] ,
or
(2) the positive cone of X is normal, the mapping N is bounded and the
operator (2.18) is completely continuous on [α0, β0] .

Then (2.8) has a unique solution u∗ in [α0, β0] and the sequences (αn), (βn)
given by the iterative schemes

Lαn+1 = N (αn) + (N ′
1 (αn)−N ′

2 (βn)) (αn+1 − αn) , (2.19)

Lβn+1 = N (βn) + (N ′
1 (αn)−N ′

2 (βn)) (βn+1 − βn) (2.20)

(n ∈ N) are well and uniquely defined in D and they are monotonically convergent
in X to u∗.

If in addition (L−N ′ (u))−1 : Z → X is continuous for every u ∈ D, α0 ≤
u ≤ β0, and N ′

1, N ′
2 are Lipschitz on [α0, β0] , then the convergence of (αn) , (βn)

in X is quadratic.

Proof. We shall apply Theorems 2.1-2.2. In order to prove relations (2.9) and
(2.16) we use Lemma 4.1 from [22] which assures that N ′

1(z)h ≤ N1(z+h)−N1(z)
for all z, h with z, z +h ∈ [α0, β0]. A similar relation holds for N2. Then, for every
u, v satisfying α0 ≤ u ≤ v ≤ β0, we have

N ′
1(u)(v − u) ≤ N1(v)−N1(u) ≤ N ′

1(v)(v − u),

−N ′
2(v)(v − u) ≤ −N2(v) + N2(u) ≤ −N ′

2(u)(v − u).

By summing up, we obtain that (2.9) and (2.16) hold with

P (u, v) = N ′
1(u)−N ′

2(v) and R(v, u) = N ′
1(v)−N ′

2(u).

It is easy to see that hypotheses (b) guarantees (2.10). Also, the hypothesis (d) and
Remark 2.1 imply (iii) in Theorem 2.1. As regards condition (vi) from Theorem
2.2, it is satisfied since P (u, u) = N ′(u). Finally, the Lipschitz property of N ′

1 and
N ′

2 guarantee (vii) in Theorem 2.2.
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Remark 2.4. The hypothesis (b) can be replaced by the assumption that N1 and
N2 are twice uniformly differentiable on every segment of X, the positive cone of
Z is normal, and N ′′

i (u) ≥ 0 for every u ∈ X and i = 1, 2 (see [22]).

3 Applications to Semilinear Problems

3.1 Systems of Semilinear Equations

In this section we discuss the semilinear equation in Rk

Lu = Nf (u) , u ∈ D, (3.1)

where D is a linear subspace of Lp
(
Ω; Rk

)
(Ω ⊂ Rm open, 1 < p ≤ ∞), L :

D ⊂ Lp
(
Ω; Rk

)
→ Lq

(
Ω; Rk

)
is a general linear operator, q ∈ [1,∞) and Nf

is the superposition operator associated to a given (p, q)-Carathéodory function
f : Ω× Rk → Rk.

If p, q ∈ [1,∞), we say that a function g : Ω×Rk → Rn is (p, q)-Carathéodory
if g satisfies the Carathéodory conditions (i.e. g(·, z) : Ω → Rn is measurable for
each z ∈ Rk, g(x, ·) : Rk → Rn is continuous for a.e. x ∈ Ω) and there exist a
function h ∈ Lq (Ω; R+) and a constant c ∈ R+ with

|g(x, z)| ≤ h(x) + c|z|p/q a.e. x ∈ Ω, for all z ∈ Rk.

Here | · | stands for the euclidean norm in Rk or Rn. Also, we say that g is (∞, q)-
Carathéodory if g satisfies the Carathéodory conditions, and for each r > 0 there
is a function hr ∈ Lq (Ω; R+) such that

|g(x, z)| ≤ hr(x) a.e. x ∈ Ω, for all z ∈ Rk with |z| ≤ r.

Similar definitions are given for matrix-valued functions g : Ω× Rk →Mk×k (R),
by identification of Mk×k (R) and Rk2

.
Recall if g is a (p, q)-Carathéodory function (1 ≤ p, q < ∞), then the superpo-

sition operator Ng : Lp
(
Ω; Rk

)
→ Lq (Ω; Rn), given by

Ng(v)(x) = g(x, v(x))

is well defined, bounded and continuous. Also, if g is an (∞, q)-Carathéodory
function (1 ≤ q < ∞), and Ω is bounded, then Ng maps C

(
Ω; Rk

)
into Lq (Ω; Rn),

is bounded and continuous.
In what follows by | · |p we denote the norm of Lp

(
Ω; Rk

)
,

|u|p =
(∫

Ω

|u(x)|pdx

)1/p

, if 1 ≤ p < ∞,

|u|∞ = inf {c ∈ R+ : |u(x)| ≤ c a.e. x ∈ Ω} , if p = ∞.

Obviously | · |∞ also stands for the sup-norm of the space C
(
Ω; Rk

)
when Ω is

bounded.
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Also recall that the positive cone of C
(
Ω; Rk

)
,

KC(Ω;Rk) =
{
u ∈ C

(
Ω; Rk

)
: u(x) ≥ 0 on Ω

}
is normal, and the positive cone of Lp

(
Ω; Rk

)
(1 ≤ p < ∞),

KLp(Ω;Rk) =
{
u ∈ Lp

(
Ω; Rk

)
: u(x) ≥ 0 a.e. on Ω

}
is regular. Here, as well as in what follows, the relation ≤ in Rk means the usual
partial ordering by components.

We will discuss simultaneously the cases of continuous solutions and, respec-
tively, Lp-solutions (1 < p < ∞) to (3.1), by considering 1 < p ≤ ∞.

In the next theorems the notation pq/(p− q) stands for q when p = ∞.

Theorem 3.1. Let Ω ⊂ Rm be open, 1 ≤ q < p ≤ ∞, f : Ω × Rk → Rk a
(p, q)-Carathéodory function, L : D ⊂ Lp

(
Ω; Rk

)
→ Lq

(
Ω; Rk

)
a linear operator,

and α0, β0 ∈ D. Assume

(i) α0 ≤ β0, Lα0 ≤ Nf (α0) , Nf (β0) ≤ Lβ0;

(ii) there exists a (p, pq/ (p− q))-Carathéodory function a : Ω×R2k →Mk×k (R)
such that

f (x, u) ≤ f (x, v)− a (x, u, v) (v − u) (3.2)

for α0 (x) ≤ u ≤ v ≤ β0 (x) , a.e. x ∈ Ω, and

−a (x, u, v) ≤ −a (x, α, β) (3.3)

for α0 (x) ≤ α ≤ u ≤ v ≤ β ≤ β0 (x), a.e. x ∈ Ω;

(iii) if
La =

{
a(·, u(·), v(·)) : α0 ≤ u ≤ v ≤ β0 and u, v ∈ Lp

(
Ω; Rk

)
for p < ∞, resp. u, v ∈ C

(
Ω; Rk

)
for p = ∞

}
then for each l ∈ La, the linear mapping from D to Lq

(
Ω; Rk

)
,

w 7−→ Lw − l(·)w (3.4)

is bijective and has a positive inverse which is continuous from Lq
(
Ω; Rk

)
to Lp

(
Ω; Rk

)
, resp. completely continuous when p = ∞.

Then the sequences (αn) and (βn) given by the iterative schemes

Lαn+1 = f (·, αn) + a (·, αn, βn) (αn+1 − αn) ,

Lβn+1 = f (·, βn) + a (·, αn, βn) (βn+1 − βn)

are well and uniquely defined in D and converge monotonically in Lp
(
Ω; Rk

)
, to

the minimal and respectively maximal solution of (3.1) in [α0, β0] .
If in addition the following conditions are satisfied
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(iv) there exists a (p, pq/ (p− q))-Carathéodory function b : Ω×R2k →Mk×k (R)
such that

f (x, u) ≥ f (x, v)− b (x, v, u) (v − u) (3.5)

for α0 (x) ≤ u ≤ v ≤ β0 (x) , a.e. x ∈ Ω;

(v) for every l ∈ Lb, the linear mapping (3.4) is inverse positive,

then (3.1) has a unique solution in [α0, β0].
Moreover, the next condition

(vii) there exist two constants c1, c2 ≥ 0 such that

|b (x, u, α) z − a (x, α, β) z| ≤ c1 |u− α| · |z|+ c2 |β − α| · |z|

for α0 (x) ≤ α ≤ u ≤ β ≤ β0 (x) , a.e. x ∈ Ω, z ∈ Rk,

assures that the convergence of (αn), (βn) in Lp
(
Ω; Rk

)
is quadratic.

Proof. Apply Theorems 2.1-2.2 for X = Lp
(
Ω; Rk

)
if p < ∞ and X = C

(
Ω; Rk

)
if p = ∞, Z = Lq

(
Ω; Rk

)
, N = Nf ,

P (u, v) w = a(·, u(·), v(·))w,

R (v, u) w = b(·, v(·), u(·))w.

In order to follow easily the correspondence between the hypotheses of Theorem
3.1 on one hand, and those of Theorems 2.1-2.2 on the other hand, we kept the
notations of their numbering items. For example, (i), (ii) in Theorem 3.1 imply
(i), (ii) in Theorem 2.1. Notice N is bounded and continuous, as a superposition
operator. Also, P (u, v) is continuous from X to Lq

(
Ω; Rk

)
. Indeed, if p < ∞,

since p > q and q/p + (p − q)/p = 1, by Hölder’s inequality we have for every
w ∈ Lp

(
Ω; Rk

)
,∫

Ω

|P (u, v) w (x)|q dx ≤
∫

Ω

|a (x, u (x) , v (x))|q |w (x)|q dx

≤
(∫

Ω

(|w (x)|q)p/q
dx

)q/p (∫
Ω

(|a (x, u (x) , v (x))|q)p/(p−q)
dx

)(p−q)/p

= |w|qp |a (·, u (·) , v (·))|qpq/(p−q) < ∞.

Here we have used the fact that a is (p, pq/ (p− q)) -Carathéodory. Hence P (u, v) w ∈
Lq

(
Ω; Rk

)
and

|P (u, v) w|q ≤ |a (·, u (·) , v (·))|pq/(p−q) |w|p ,

which shows that P (u, v) is continuous.
The case p = ∞ is left to the reader.
Now (iii) together with Remark 2.1 guarantees (iii) ((a) for p < ∞, resp. (b)

for p = ∞) in Theorem 2.1. It is easily seen that conditions (iv)-(vii) in Theorem
2.2 are also satisfied.
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Before stating the consequence of Theorem 3.1, let us precise some notations.
For a function g : Ω×Rk → Rk, and a given point x ∈ Ω, by g′(x, ·) we mean the
matrix

g′(x, z) =
[
∂gi(x, z)

∂zj

]
1≤i,j≤k

.

Thus, differentiability refers only to the z argument of g(x, z).

Corollary 3.1. Let Ω ⊂ Rm be open, 1 ≤ q < p ≤ ∞, f : Ω × Rk → Rk a
(p, q)-Carathéodory function, L : D ⊂ Lp

(
Ω; Rk

)
→ Lq

(
Ω; Rk

)
a linear operator,

and α0, β0 ∈ D. Assume

(i) α0 ≤ β0, Lα0 ≤ Nf (α0) , Nf (β0) ≤ Lβ0;

(ii) there exist functions f1, f2 : Ω× Rk → Rk with

f = f1 − f2,

such that for a fixed x, f1 (x, ·), f2 (x, ·) are differentiable in Rk and con-
vex on [α0 (x) , β0 (x)], a.e. x ∈ Ω, and f ′1, f

′
2 : Ω × Rk → Mk×k (R) are

(p, pq/ (p− q))-Carathéodory functions;

(iii) for every l ∈ L = {f ′1 (·, u (·))− f ′2 (·, v (·)) : α0 ≤ u, v ≤ β0,
u, v ∈ Lp

(
Ω; Rk

)
for p < ∞ resp. , u, v ∈ C

(
Ω; Rk

)
for p = ∞

}
,

the linear mapping w 7−→ Lw − l(·)w from D to Lq
(
Ω; Rk

)
is bijective and

has a positive inverse which is continuous, resp. completely continuous if
p = ∞, from Lq

(
Ω; Rk

)
to Lp

(
Ω; Rk

)
.

Then the sequences (αn) and (βn) given by the iterative schemes

Lαn+1 = f (., αn) + (f ′1 (., αn)− f ′2 (., βn)) (αn+1 − αn) ,

Lβn+1 = f (., βn) + (f ′1 (., αn)− f ′2 (., βn)) (βn+1 − βn)

are well and uniquely defined in D and converge monotonically in Lp
(
Ω; Rk

)
to

the unique solution of (3.1) in [α0, β0] .
If in addition f ′1 (x, ·) and f ′2 (x, ·) are Lipschitz on [α0 (x) , β0 (x)] for a.e.

x ∈ Ω with Lipschitz constants independent on x, then the convergence of (αn)
and (βn) in Lp

(
Ω; Rk

)
is quadratic.

Proof. Apply Theorem 3.1 for

a (x, u, v) = f ′1 (x, u)− f ′2 (x, v) , (3.6)
b (x, v, u) = f ′1 (x, v)− f ′2 (x, u) .
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3.2 The Initial Value Problem

Consider the initial value problem{
u′ = f (x, u) , x ∈ [0, T ] ,
u (0) = 0.

(3.7)

For any number 1 ≤ q < ∞, we let W 1,q[0, T ] be the space of all absolutely
continuous functions u : [0, T ] → R with u′ ∈ Lq[0, T ]. We seak solutions u to
(3.7) in W 1,q[0, T ] with u(0) = 0.

We discuss (3.7) under the assumption that f can be represented in the form
f = f1−f2 with f1, f2 convex in the second variable. Without any differentiability
assumptions on f , we can give an iterative procedure for monotone approximation
of the extremal solutions of (3.7) in a given interval of functions, in terms of divided
differences.

For a function g : [c, d] → R and two given points u, v ∈ [c, d], u 6= v, we let
the divided difference of g on points u, v be defined by

[g;u, v] =
g(u)− g(v)

u− v
.

Recall if the function g is convex, then (by Jensen’s inequality),

[g;u, v] ≤ [g;u, w] ≤ [g; v, w] (3.8)

whenever c ≤ u ≤ v ≤ w ≤ d.

Theorem 3.2. Let 1 ≤ q < ∞, f : [0, T ] × R → R, α0, β0 ∈ W 1,q[0, T ] and
α−1, β−1 ∈ C[0, T ] such that α0(0) = β0(0) = 0, α−1 < α0 ≤ β0 < β−1 on [0, T ]
and

α′0(x) ≤ f(x, α0(x)), β′0(x) ≥ f(x, β0(x) a.e. on [0, T ].

In addition assume that f = f1 − f2 where f1, f2 : [0, T ] × R → R are (∞, q)-
Carathéodory and for each fixed x ∈ [0, T ], f1(x, ·), f2(x, ·) are convex on [α−1(x), β0(x)]
and respectively on [α0(x), β−1(x)], for a.e. x ∈ [0, T ]. Then the sequences (αn),
(βn) given by the iterative procedures

α′n+1 = f (·, αn) + ([f1;α−1, αn]− [f2;β−1, βn]) (αn+1 − αn) ,

β′n+1 = f (·, βn) + ([f1;α−1, αn]− [f2;β−1, βn]) (βn+1 − βn)

are well and uniquely defined in D =
{
u ∈ W 1,q [0, T ] : u(0) = 0

}
and converge

monotonically in C [0, T ] to the unique solution of (3.7) in [α0, β0].

Proof. Apply Theorem 3.1. Here p = ∞, k = 1, Lu = u′,

a(x, u, v) = [f1(x, ·);α−1(x), u]− [f2(x, ·); v, β−1(x)] .

Using inequalities (3.8) we have

[f1(x, ·);α−1(x), u] ≤ [f1(x, ·);u, v] , [f2(x, ·); v, β−1(x)] ≥ [f2(x, ·);u, v] ,

[f1(x, ·);α−1(x), u] ≥ [f1(x, ·);α−1(x), α] ,
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[f2(x, ·); v, β−1(x)] ≤ [f2(x, ·);β, β−1(x)] ,

whenever α−1(x) < α0(x) ≤ α ≤ u ≤ v ≤ β ≤ β0(x) < β−1(x). Whence, by
summing up the first two inequalities and the last two ones, we obtain (3.2) and
(3.3), respectively.

Notice the mapping (3.4) is bijective, since the initial value problem for a linear
equation has a unique global solution. Its inverse is the Volterra integral operator
V , given by

V (f)(x) =
∫ x

0

el(s)(x−s)f(s)ds, for f ∈ Lq[0, T ],

which is trivially positive, and completely continuous as follows by the Ascoli-
Arzèla Theorem.

In order to prove the uniqueness of the solution, we choose

b(x, v, u) = [f1(x, ·); v, β−1(x)]− [f2(x, ·);α−1(x);u] .

Now, we use again (3.8), and obtain that

[f1(x, ·);u, v] ≤ [f1(x, ·);α−1(x), v] , [f2(x, ·);α−1(x), u] ≤ [f2(x, ·);u, v]

whenever α0(x) ≤ u ≤ v ≤ β0(x). Whence, by summing up we get (3.5).

Corollary 3.2 in particular yields the following theorem which extends a similar
result from [15].

Theorem 3.3. Let 1 ≤ q < ∞, f : [0, T ] × R → R and α0, β0 ∈ C1 [0, T ] such
that α0(0) = β0(0) = 0, α0 ≤ β0 and

α′0 ≤ f (x, α0) , β′0 ≥ f (x, β0) on [0, T ] .

In addition assume that f = f1 − f2, where f1, f2 : [0, T ] × R → R, f1 (x, .) ,
f2 (x, .) are (∞, q)-Carathéodory and for each fixed x ∈ [0, T ], f1(x, ·), f2(x, ·)
are differentiable on R and convex on [α0 (x) , β0 (x)] for a.e. x ∈ [0, T ], and
their derivatives are (∞, q)-Carathéodory. Also assume that f ′1 (x, ·), f ′2 (x, ·) are
Lipschitz on [α0 (x) , β0 (x)] with Lipschitz constants not depending on x. Then
the sequences (αn) and (βn) given by the iterative schemes

α′n+1 = f (·, αn) + (f ′1 (αn)− f ′2 (βn)) (αn+1 − αn) ,

β′n+1 = f (·, βn) + (f ′1 (αn)− f ′2 (βn)) (βn+1 − βn)

are well and uniquely defined in D =
{
u ∈ C1 [0, T ] : u(0) = 0

}
and converge

monotonically and quadratically in C [0, T ] to the unique solution of (3.7) in [α0, β0] .

Proof. The result is a direct consequence of Corollary 3.2 with p = ∞ and k =
1.
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[10] S. Heikkilä and V. Lakshmikantham, ”Monotone Iterative Techniques for
Discontinuous Nonlinear Differential Equations”, Marcel Dekker, New York,
1994.

[11] G.S. Ladde, V. Lakshmikantham and A.S. Vatsala, ”Monotone Iterative Tech-
niques for Nonlinear Differential Equations”’, Pitman, Boston, 1985.

[12] V. Lakshmikantham, Further improvement of generalized quasilinearization,
Nonlinear Anal. 27(1996), 223–227.

[13] V. Lakshmikantham, S. Leela and S. Sivasundaram, Extensions of the method
of quasilinearization, J. Optim. Theory Appl. 87 (1995), 379–401.

[14] V. Lakshmikantham and S. Malek, Generalized quasilinearization, Nonlinear
World 1 (1994), 59–63.

[15] V. Lakshmikantham and A.S. Vatsala, ”Generalized Quasilinearization for
Nonlinear Problems”, Kluwer Academic Publishers, Dordrecht, 1998.



16 Adriana Buică and Radu Precup
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