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Abstract. In this paper we investigate the Ulam-Hyers stability of several integral equations with

singularity. First we give some results concerning the Ulam-Hyers stability of integral equations with

weak singularities. Our approach is also suitable for studying some fractional differential equations.

In order to emphasize this aspect we prove that some conditions (5) in S. Abbas, M. Benchohra, Ulam-

Hyers stability for the Darboux problem for partial fractional differential and integro-differential

equations via Picard operators published in Results Math. 65(2014), 67-79 (respectively condition

(3.1) from S. Abbas, M. Benchohra, A. Petruşel, Ulam stability for partial fractional differential

inclusions via Picard operators theory, Electron. J. Qual. Theory Differ. Equ., 2014, No. 51,

1-13) can be omitted without losing the validity of the obtained results. In the second part we

establish some generalized Ulam-Hyers-Rassias stability results for the Bessel equation and related

equations. Our approach is based on fixed point methods and the obtained results are more general

than those established by Byungbae Kim and Soon-Mo Jung in Bessel’s differential equation and its

Hyers-Ulam stability appeared in J. Inequal. Appl., Volume 2007.

Key Words and Phrases: Ulam-Hyers stability, Picard operators, Bessel equation, integral equa-

tions with singularities, fractional differential equations.

2010 Mathematics Subject Classification: 34G20, 34A40, 45E99, 47H10.

Acknowledgement. The research of S. András and Á. Baricz was supported by a
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22 SZILÁRD ANDRÁS, ÁRPÁD BARICZ AND TIBOR POGÁNY
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