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1. Introduction

Let X be a real Banach space with the dual space X∗. Denote by BX and SX

the closed unit ball and the unit sphere of X, respectively. For two sets of vectors
{x1, x2, . . . , xn+1} ⊂ X and {f1, f2, . . . , fn} ⊂ X∗ where n ∈ N, the following matrix

1 1 · · · 1
〈x1, f1〉 〈x2, f1〉 · · · 〈xn+1, f1〉

...
...

. . .
...

〈x1, fn〉 〈x2, fn〉 · · · 〈xn+1, fn〉


is denoted by M(x1, x2, . . . , xn+1; f1, f2, . . . , fn).

1Corresponding author.
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In 1951, Silverman [20] introduced the concept of volume of the convex hull of
x1, x2, . . . , xn+1 in X by

V (x1, x2, . . . , xn+1) := sup{detM(x1, x2, . . . , xn+1; f1, f2, . . . , fn) :

f1, f2, . . . , fn ∈ SX∗}.
In 1979, by using this concept, Sullivan introduced the concept of n-dimensional

uniform convexity:

Definition 1.1. [22] A Banach space X is n-dimensional uniformly convex (n-UR)
if for any ε > 0 there exists δ > 0 such that

1
n + 1

‖x1 + x2 + · · ·+ xn+1‖ ≤ 1− δ

whenever x1, x2, . . . , xn+1 ∈ SX and V (x1, x2, . . . , xn+1) ≥ ε.

It is obvious that V (x1, x2) = ‖x1 − x2‖. For n = 1, this definition coincides with
the classical uniform convexity of Clarkson [4].

Theorem 1.2. [22] If a Banach space X is n-UR, then X is superreflexive.

In 1988, Kirk introduced the modulus of n-dimensional uniform convexity as follows
[14]:

Definition 1.3. Let X be a Banach space. Then

δn
X(ε) := inf

{
1− 1

n + 1
‖x1 + x2 + · · ·+ xn+1‖ :

x1, x2, . . . xn+1 ∈ SX ,
V (x1, x2, . . . , xn+1) ≥ ε

}
,

where 0 ≤ ε ≤ 2 is called the modulus of n-dimensional uniform convexity of X.
Furthermore, εn

0 = sup{ε > 0 : δn
X(ε) = 0} is called the characteristic of n-dimensional

uniform convexity.

He also proved the following sufficient condition for a Banach space to have normal
structure in term of δn

X(·):

Theorem 1.4. If X is a Banach space with εn
0 < ( 1

2 )n−1, then X is reflexive and
has normal structure.

In particular, we have the following result:

Corollary 1.5. Every n-UR space has normal structure.

In 1989, Bae and Park extended the results for n = 1, 2, 3 and proved:

Theorem 1.6. [1] If X is a Banach space with εn
0 < 1 for n = 1, 2, 3, then X is

reflexive and has normal structure.

In [9], Gao introduced the modulus of U -convexity defined by

UX(ε) = inf{1− ‖x + y‖
2

: x, y ∈ SX , 〈x− y, f〉 ≥ ε for some f ∈ ∇x},

where 0 ≤ ε ≤ 2, and ∇x denotes the set of norm one supporting functionals of
x ∈ SX .
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For more information in this direction, see references, e.g., [2], [8], [10], [11], [13],
[16], [17], [18], and [19].

In this paper, we first introduce the modulus of n-dimensional U -convexity which
simultaneously generalizes modulus of n-dimensional uniform convexity due to Kirk
[14] and modulus of U -convexity due to Gao [9]. Then the properties of this modulus
are investigated and the relationships between this modulus and normal structure,
reflexivity, and other geometric properties of Banach spaces are studied. Some results
for nonexpansive mappings and normal structure in Banach spaces are improved.

2. Main results

Recall that for x ∈ SX , ∇x ⊂ SX∗ denotes the set of norm 1 supporting func-
tionals of x ∈ SX . We first introduce the following matrix: For two sets of vectors
{x1, x2, . . . , xn+1} ⊆ X and {f2 ∈ ∇x2 , f3 ∈ ∇x3 , . . . , fn+1 ∈ ∇xn+1} ⊆ X∗ where
n ∈ N, the following matrix

1 1 · · · 1
〈x1, f2〉 〈x2, f2〉 · · · 〈xn+1, f2〉

...
...

. . .
...

〈x1, fn+1〉 〈x2, fn+1〉 · · · 〈xn+1, fn+1〉


is denoted by m(x1, x2, . . . , xn+1; f2, f3, . . . , fn+1).

Similar to Silverman [20], we introduce another concept of volume by the convex
hull of x1, x2, . . . , xn+1 in X by

v(x1, x2, . . . , xn+1) := sup{detm(x1, x2, . . . , xn+1; f2, f3, . . . , fn+1) :

f2 ∈ ∇x2 , f3 ∈ ∇x3 , . . . , fn+1 ∈ ∇xn+1}.

It is clear from the definition that:

Proposition 2.1. v(x1, x2, . . . , xn+1) ≤ V (x1, x2, . . . , xn+1).

The following example shows that the inequality in Proposition 2.1 can be strict.

Example 2.2. Consider the Hilbert space H = l2, and let

e1 = (1, 0, 0, 0, . . . ), e2 = (0, 1, 0, 0, . . . ), e3 = (0, 0, 1, 0, . . . ),

and f2 = (0, 1, 0, 0, . . . ) ∈ ∇e2 , f3 = (0, 0, 1, 0, . . . ) ∈ ∇e3 . From the smoothness of
H, we have {f2} = ∇x2 and {f3} = ∇x3 . It is clear that

v(e1, e2, e3) = det m(e1, e2, e3; f2, f3) = 1.

But let f ′2 = ( 1√
2
,− 1√

2
, 0, 0, . . . ) ∈ SH , f ′3 = ( 1√

3
, 1√

3
,− 1√

3
, 0, . . . ) ∈ SH , we have

V (e1, e2, e3) ≥ 4√
6
.

We give an example to show some possible values of v(x1, x2, . . . , xn+1) in some
Banach spaces.
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Example 2.3. Let X = l∞ be the space of bounded real sequences equipped with
the supremum norm. For each n ∈ N there exist vectors with x1, x2, . . . , xn+1 ∈ SX

such that v(x1, x2, . . . , xn+1) = 2n. Let

x1 = (1, 1, 1, . . . , 1, 1, 1, 0, . . . ), x2 = (−1, 1, 1, . . . , 1, 1, 1, 0, . . . ),

x3 = (1,−1, 1, . . . , 1, 1, 1, 0, . . . ), . . . , xn = (1, 1, 1, . . . , 1,−1, 1, 0, . . . ),

xn+1 = (1, 1, 1, . . . , 1, 1,−1, 0, . . . ),
and

f2 = (0, 1, 0, . . . 0, 0, 0, 0, . . . ) ∈ ∇x2 , f3 = (0, 0, 1, . . . , 0, 0, 0, 0, . . . ) ∈ ∇x3 , . . . ,

fn−1 = (0, 0, 0, . . . , 0, 1, 0, 0, . . . ) ∈ ∇xn−1 , fn = (0, 0, 0, . . . , 0, 0, 1, 0, . . . ) ∈ ∇xn
,

fn+1 = (1, 0, 0, . . . , 0, 0, 0, 0, . . . ) ∈ ∇xn+1 .

We have

detm(x1, x2, . . . , xn+1; f2, f3, . . . , fn+1)

= det



1 1 1 · · · 1 1
〈x1, f2〉 〈x2, f2〉 〈x3, f2〉 · · · 〈xn, f2〉 〈xn+1, f2〉
〈x1, f3〉 〈x2, f3〉 〈x3, f3〉 · · · 〈xn, f3〉 〈xn+1, f3〉

...
...

...
. . .

...
...

〈x1, fn〉 〈x2, fn〉 〈x3, fn〉 · · · 〈xn, fn〉 〈xn+1, fn〉
〈x1, fn+1〉 〈x2, fn+1〉 〈x3, fn+1〉 · · · 〈xn, fn+1〉 〈xn+1, fn+1〉



= det



1 1 1 · · · 1 1
1 1 −1 · · · 1 1
...

...
...

. . .
...

...
1 1 1 · · · −1 1
1 1 1 · · · 1 −1
1 −1 1 · · · 1 1


= −2n.

If we let

g2 = (−1, 0, 0, . . . , 0, 0, 0, 0, . . . ) ∈ ∇x2 , g3 = (0,−1, 0, . . . , 0, 0, 0, 0, . . . ) ∈ ∇x3 , . . . ,

gn−1 = (0, 0, 0, . . . ,−1, 0, 0, 0, . . . ) ∈ ∇xn−1 , gn = (0, 0, 0, . . . , 0,−1, 0, 0, . . . ) ∈ ∇xn
,

gn+1 = (0, 0, 0, . . . , 0, 0,−1, 0, . . . ) ∈ ∇xn+1 ,

we have

det m(x1, x2, . . . , xn+1; g2, g3, . . . , gn+1)

= det



1 1 1 · · · 1 1
〈x1, g2〉 〈x2, g2〉 〈x3, g2〉 · · · 〈xn, g2〉 〈xn+1, g2〉
〈x1, g3〉 〈x2, g3〉 〈x3, g3〉 · · · 〈xn, g3〉 〈xn+1, g3〉

...
...

...
. . .

...
...

〈x1, gn〉 〈x2, gn〉 〈x3, gn〉 · · · 〈xn, gn〉 〈xn+1, gn〉
〈x1, gn+1〉 〈x2, gn+1〉 〈x3, gn+1〉 · · · 〈xn, gn+1〉 〈xn+1, gn+1〉


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= det



1 1 1 · · · 1 1
−1 1 −1 · · · −1 −1
...

...
...

. . .
...

...
−1 −1 −1 · · · −1 −1
−1 −1 −1 · · · 1 −1
−1 −1 −1 · · · −1 1


= 2n.

Similar to Sullivan [22], we can extend U -convexity [9] to the n-dimension and
introduce a more generalized concept of n-dimensional uniform convexity as follows:

Definition 2.4. A Banach space X is n-dimensional U -convex (n-U) if for any ε > 0
there exists δ > 0 such that

1
n + 1

‖x1 + x2 + · · ·+ xn+1‖ ≤ 1− δ

whenever x1, x2, . . . , xn+1 ∈ SX and v(x1, x2, . . . , xn+1) ≥ ε.

Definition 2.5. Let νn
X = sup{v(x1, x2, . . . , xn+1) : x1, x2, . . . xn+1 ∈ SX} be the

upper bound of all n-dimensional volume in X.

Proposition 2.6. For a Banach space X with dim(X) > n, νn
X ≥ 2.

Proof. We proceed by induction on n. For n = 1, consider x1, and x2 = −x1,
we have v(x1, x2) = 2. Let us now assume that the result is true for an integer
n ≥ 1, and x1, x2, . . . , xn+1 ∈ SX such that v(x1, x2, . . . , xn+1) ≥ 2 − ε. By using
the Hahn-Banach theorem, we can take an xn+2 ∈ SX and an fn+2 ∈ ∇xn+2 , such
that 〈xi, fn+2〉 = 0 for i = 1, 2, . . . , n + 1 and 〈xn+2, fn+2〉 = 1. We therefore have
v(x1, x2, . . . , xn+2) ≥ 2− ε. Since ε is arbitrarily, the proof is complete. �

Similar to Kirk [14], we can extend modulus of U -convexity [9] to n-dimension
and introduce a more generalized concept of modulus of n-dimensional U -convexity
as follows:

Definition 2.7. Let X be a Banach space. Then

Un
X(ε) := inf

{
1− 1

n + 1
‖x1 + x2 + · · ·+ xn+1‖ :

x1, x2, . . . xn+1 ∈ SX ,
v(x1, x2, . . . , xn+1) ≥ ε

}
,

where 0 ≤ ε ≤ νn
X is called the modulus of n-dimensional U -convexity of X.

Proposition 2.8. For a Banach space X with dim(X) > n, if 0 ≤ ε ≤ 2, then
δn
X(ε) ≤ Un

X(ε).

Lemma 2.9. Un
X(ε) is a continuous function in [0, νn

X).

Proof. The proof of this lemma is exactly same as the proof of Corollary 5 of [15]. �

Lemma 2.10 (Bishop-Phelps-Bollobás [3]). Let X be a Banach space, and let 0 <

ε < 1. Given z ∈ BX and h ∈ SX∗ with 1− 〈z, h〉 < ε2

4 , then there exist y ∈ SX and
g ∈ ∇y such that ‖y − z‖ < ε and ‖g − h‖ < ε.

Remark 2.11. It is easy to know that the condition of Theorem 2.10 can be extended
to 1− 〈z, h〉 ≤ ε2

4 for given z ∈ BX and h ∈ SX∗ .
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The following result was proved by James.

Theorem 2.12 ([12]). Let X be a Banach space. Then X is not reflexive if and only
if for any 0 < ε < 1 there are a sequence {xn} ⊆ SX and a sequence {fn} ⊆ SX∗

such that
(a) 〈xm, fn〉 = ε whenever n ≤ m; and
(b) 〈xm, fn〉 = 0 whenever n > m.

Theorem 2.13. If X is a Banach space with Un
X(1) > 0 where n ∈ N, then X is

reflexive.

Proof. For the following (n + 1)× (n + 1) matrix,

det


1 1 · · · 1 1
0 1 · · · 1− ε2

4 1− ε2

4
...

...
. . .

...
...

0 0 · · · 0 1

 = 1.

If X is not reflexive, for 0 < ε < 1, let {xi} ⊆ SX and {fi} ⊆ SX∗ , i = 1, 2, ..., n+1
satisfy the two conditions for 1 − ε2

4 in Theorem 2.12. We have 〈xi, fj〉 = 1 − ε2

4
whenever j ≤ i; and 〈xi, fj〉 = 0 whenever j > i.

From the remark of Lemma 2.10, for 0 < ε < 1, there are {yi} ⊆ SX and {gi} ⊆
SX∗ , i = 1, 2, . . . , n + 1 such that gi ∈ ∇yi , ‖xi − yi‖ < ε and ‖fi − gi‖ < ε for
i = 1, 2, . . . , n + 1.

Since 〈yi, gj〉 = 〈xi, fj〉−〈xi−yi, fj〉+〈yi, gj−fj〉 for 1 ≤ i ≤ n+1 and 1 ≤ j ≤ n+1,
we have 1− ε2

4 − 2ε ≤ 〈yi, gj〉 ≤ 1− ε2

4 + 2ε whenever j ≤ i; and −2ε ≤ 〈yi, gj〉 ≤ 2ε
whenever j > i.

Evaluating the determinant of (n + 1) × (n + 1) matrix as the sum of (n + 1)!
product of entries, we have

det


1 1 · · · 1 1

〈y1, g2〉 〈y2, g2〉 · · · 〈yn, g2〉 〈yn+1, g2〉
...

...
. . .

...
...

〈y1, gn+1〉 〈y2, gn+1〉 · · · 〈yn, gn+1〉 〈yn+1, gn+1〉

 ≥ 1− cε,

where c is a constant.
So,

v(y1, y2, . . . , yn+1) := sup{det m(y1, y2, . . . , yn+1; g2, g3, . . . , gn+1) :

g2 ∈ ∇y2 , g3 ∈ ∇y3 , . . . , gn+1 ∈ ∇yn+1} ≥ 1− cε.

On the other hand, since

‖x1 + x2 + · · ·+ xn+1‖
n + 1

≥ 〈x1 + x2 + · · ·+ xn+1

n + 1
, f1〉 = 1− ε2

4
,

we have
‖y1 + y2 + · · ·+ yn+1‖

n + 1
≥ 1− ε2

4
− ε.

From the definition of Un
X(ε), we have Un

X(1− cε) < ε2

4 + ε.
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Since ε can be arbitrarily small, we have Un
X(1) = 0. �

Definition 2.14. [6, 7] Let X and Y be Banach spaces. We say that Y is finitely
representable in X if for any ε > 0 and any finite dimensional subspace N ⊆ Y there is
an isomorphism T : N → X such that for any y ∈ N , (1−ε)‖y‖ ≤ ‖Ty‖ ≤ (1+ε)‖y‖.

The Banach space X is called superreflexive if any space Y which is finitely repre-
sentable in X is reflexive.

Theorem 2.15. If X is a Banach space with Un
X(1) > 0 where n ∈ N, then X is

superreflexive.

Proof. If X is not superreflexive, then there exists a Banach space Y such that Y can
be finitely representable in X, but Y is not reflexive. From Theorem 2.13, if 0 < ε < 1
is small enough, then Un

Y (1− ε) < ε.
Therefore, there exist {yi} ⊆ SY for i = 1, 2, 3, . . . , n+1 and {gi} ∈ ∇yi

⊆ SY ∗ for
i = 2, . . . , n + 1 such that

det


1 1 · · · 1 1

〈y1, g2〉 〈y2, g2〉 · · · 〈yn, g2〉 〈yn+1, g2〉
...

...
. . .

...
...

〈y1, gn+1〉 〈y2, gn+1〉 · · · 〈yn, gn+1〉 〈yn+1, gn+1〉

 ≥ 1− ε,

but 1− ‖y1+y2+...+yn+1‖
n+1 < ε.

Let N = span{y1, y2, ..., yn+1}, and T : N → M ⊆ X be an isomorphism with
range M .

Consider the conjugate mapping T ∗ of T . We have 〈Tyj , (T ∗)−1gi〉 = 〈yj , gi〉
for 1 ≤ i, j ≤ n + 1. By Hahn-Banach theorem, (T ∗)−1gi can be extended to the
whole space of X. We have 1 − ε ≤ ‖T‖ ≤ 1 + ε, 1 − ε ≤ ‖T ∗‖ ≤ 1 + ε, and
1− ε ≤ ‖(T ∗)−1‖ ≤ 1 + ε.

Let xi = Tyi and fi = (T ∗)−1gi for 1 ≤ i ≤ n + 1, we have

〈xj , fi〉 = 〈Tyj , (T ∗)−1gi〉 = 〈yj , gi〉.

If i = j, then 〈xi, fi〉 = 〈yi, gi〉 = 1, so fi ∈ ∇xi and we have

det


1 1 · · · 1 1

〈x1, f2〉 〈x2, f2〉 · · · 〈xn, f2〉 〈xn+1, f2〉
...

...
. . .

...
...

〈x1, fn+1〉 〈x2, fn+1〉 · · · 〈xn, fn+1〉 〈xn+1, fn+1〉



=det


1 1 · · · 1 1

〈y1, g2〉 〈y2, g2〉 · · · 〈yn, g2〉 〈yn+1, g2〉
...

...
. . .

...
...

〈y1, gn+1〉 〈y2, gn+1〉 · · · 〈yn, gn+1〉 〈yn+1, gn+1〉

 ≥ 1− ε.
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On the other hand,
‖x1 + x2 + · · ·+ xn+1‖

n + 1
=
‖T (y1 + y2 + · · ·+ yn+1)‖

n + 1

≥ (1− ε)
‖y1 + y2 + · · ·+ yn+1‖

n + 1
≥ (1− ε)2 > 1− 2ε.

Since ε can be arbitrarily small, we have Un
X(1) = 0. �

In 2008, Saejung proved the following result:

Lemma 2.16. [19] If X is a Banach space with BX∗ is weak* sequentially compact
and it fails to have weak normal structure, then for any ε > 0 and n ∈ N there are
{x1, x2, . . . , xn} ⊆ SX and {f1, f2, . . . , fn} ⊆ SX∗ such that

(a) |‖xi − xj‖ − 1| < ε, for all i 6= j;
(b) 〈xi, fi〉 = 1, for all 1 ≤ i ≤ n; and
(c) |〈xj , fi〉| < ε, for all i 6= j.

Remark 2.17. From the proof of Lemma 2.16, we can choose {x1, x2, . . . , xn+2} ⊆
SX such that ‖x1+x2+···+xn+1

n+1 − xn+2‖ > 1− ε.

Theorem 2.18. If X is a Banach space with Un
X(1) > 0 where n ∈ N, then X has

normal structure.

Proof. From Theorem 2.13, X is reflexive. So, BX∗ is weak* sequentially compact,
and normal structure and weak normal structure coincide.

Suppose X does not have weak normal structure, for 0 < ε < 1 let {xi} ⊆ SX and
{fi} ⊆ SX∗ , i = 1, 2, ..., n + 2 satisfy the three conditions for ε in Lemma 2.16. We
have 〈xi, fi〉 = 1; and |〈xi, fj〉| < ε whenever i 6= j and 1 ≤ i, j ≤ n + 2.

Consider {xi − xn+2} ⊆ (1 + ε)BX and {fi} ⊆ SX∗ , i = 1, 2, . . . , n + 1. We have
1− ε < 〈xi − xn+2, fi〉 < 1 + ε; and −2ε < 〈xi − xn+2, fj〉 < 2ε whenever i 6= j, and
1 ≤ i, j ≤ n + 1.

From Lemma 2.10 (since ε can be arbitrarily small, if necessary we can normalize
xi−xn+2 to use Lemma 2.10), for 0 < ε < 1, there are {yi} ⊆ SX and {gi} ⊆ SX∗ , i =
1, 2, . . . , n + 1 such that gn ∈ ∇yn

, ‖(xi − xn+2)− yi‖ < 2
√

ε and ‖fi − gi‖ < 2
√

ε for
i = 1, 2, . . . , n + 1.

Since 〈yi, gj〉 = 〈xi−xn+2, fj〉−〈(xi−xn+2)−yi, fj〉+〈yi, gj−fj〉 for 1 ≤ i, j ≤ n+1,
we have −2ε− 4

√
ε ≤ 〈yi, gj〉 ≤ 2ε + 4

√
ε whenever i 6= j.

Similar to the proof of Theorem 2.13, we have

det


1 1 · · · 1 1

〈y1, g2〉 〈y2, g2〉 · · · 〈yn, g2〉 〈yn+1, g2〉
...

...
. . .

...
...

〈y1, gn+1〉 〈y2, gn+1〉 · · · 〈yn, gn+1〉 〈yn+1, gn+1〉

 ≥ 1− dε,

where d is a constant.
So,

v(y1, y2, . . . , yn+1) := sup{det m(y1, y2, . . . , yn+1; g2, g3, . . . , gn+1) :
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g2 ∈ ∇y2 , g3 ∈ ∇y3 , . . . , gn+1 ∈ ∇yn+1} ≥ 1− dε.

On the other hand, since

‖y1 + y2 + · · ·+ yn+1‖
n + 1

≥ ‖x1 + x2 + · · ·+ xn+1

n + 1
− xn+2‖ − ε > 1− 2ε,

we have

1− ‖y1 + y2 + · · ·+ yn+1‖
n + 1

< 2ε.

From the definition of Un
X(ε), we have Un

X(1− dε) < 2ε.
Since ε can be arbitrarily small, we have Un

X(1) = 0. �

We consider the uniform normal structure.
Let F be a filter of an index set I, and let {xi}i∈I be a subset in a Hausdorff

topological space X, {xi}i∈I is said to converge to x with respect to F , denoted by
limF xi = x, if for each neighborhood U of x, {i ∈ I : xi ∈ U} ∈ F . A filter U on I is
called an ultrafilter if it is maximal with respect to the ordering of the set inclusion.
An ultrafilter is called trivial if it is of the form {A : A ⊆ I, i0 ∈ A} for some i0 ∈ I.
We will use the fact that if U is an ultrafilter, then

(i) for any A ⊆ I, either A ⊆ U or I −A ⊆ U ;
(ii) if {xi}i∈I has a cluster point x, then limU xi exists and equals to x.

Let {Xi}i∈I be a family of Banach spaces and let l∞(I,Xi) denote the subspace of
the product space equipped with the norm ‖(xi)‖ = supi∈I ‖xi‖ < ∞.

Definition 2.19. [5, 21]. Let U be an ultrafilter on I and let NU = {(xi) ∈ l∞(I,Xi) :
limU ‖xi‖ = 0}. The ultraproduct of {Xi}i∈I is the quotient space l∞(I,Xi)/NU
equipped with the quotient norm.

We will use (xi)U to denote the element of the ultraproduct. It follows from remark
(ii) above, and the definition of quotient norm that

‖(xi)U‖ = lim
U
‖xi‖ (2.1)

In the following we will restrict our index set I to be N, the set of natural numbers,
and let Xi = X, i ∈ N for some Banach space X. For an ultrafilter U on N, we use
XU to denote the ultraproduct. Note that if U is nontrivial, then X can be embedded
into XU isometrically.

Lemma 2.20. [21]. Suppose that U is an ultrafilter on N and X is a Banach space.
Then (X∗)U ∼= (XU )∗ if and only if X is superreflexive; and in this case, the mapping
J defined by

〈(xi)U , J((fi)U )〉 = lim
U
〈xi, fi〉, for all (xi)U ∈ XU

is the canonical isometric isomorphism from (X∗)U onto (XU )∗.

Theorem 2.21. Let X be a superreflexive Banach space. Then for any nontrivial
ultrafilter U on N, and for all n ∈ N and ε > 0, we have Un

XU
(ε) = Un

X(ε).
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Proof. Since X can be embedded into XU isometrically, we may consider X as a
subspace of XU . From the definition of Un

X(ε), we have Un
XU

(ε) ≤ Un
X(ε).

We prove the reverse inequality. For any very small η > 0, from the definition of
Un

XU
(ε), let (x1

i )U , (x2
i )U , . . . , (xn

i )U , (xn+1
i )U belong to SXU , and let (f2

i )U ∈ ∇(x2
i )U ,

(f3
i )U ∈ ∇(x3

i )U ,. . . , (fn
i )U ∈ ∇(xn

i )U , (fn+1
i )U ∈ ∇(xn+1

i )U
be such that

m((x1
i )U , (x2

i )U , . . . , (xn
i )U , (xn+1

i )U ; (f2
i )U , (f3

i )U , . . . , (fn
i )U , (fn+1

i )U ) ≥ ε,

but

1− ‖(x1
i )U + (x2

i )U + · · ·+ (xn
i )U + (xn+1

i )U‖
n + 1

< Un
XU

(ε) + η.

Without loss of generality, from (2.1) we may assume

1− η < ‖(xj
i )U‖ < 1 + η,

for 1 ≤ j ≤ n + 1,
1− η < ‖(f j

i )U‖ < 1 + η

and
1− η < 〈(xj+1

i )U , (f j+1
i )U 〉 < 1 + η,

for all 1 ≤ j ≤ n.
From the property of ultraproduct, we know the subsets

P = {i : m((x1
i )U , (x2

i )U , . . . , (xn
i )U , (xn+1

i )U ; (f2
i )U , (f3

i )U , . . . , (fn
i )U , (fn+1

i )U ) ≥ ε}
and

Q = {i : 1− ‖(x1
i )U + (x2

i )U + · · ·+ (xn
i )U + (xn+1

i )U‖
n + 1

< Un
XU

(ε) + η}

are all in U . So the intersection P ∩Q is in U too, and is hence not empty.
Let i ∈ P ∩Q. For this fixed i, we have

1− η < ‖xj
i‖ < 1 + η,

for 1 ≤ j ≤ n + 1;
1− η < ‖f j

i ‖ < 1 + η,

1− η < 〈xj+1
i , f j+1

i 〉 < 1 + η,

for 1 ≤ j ≤ n;

m(x1
i , x

2
i , . . . , x

n
i , xn+1

i ; f2
i , f3

i , . . . , fn
i , fn+1

i ) ≥ ε,

and

1− ‖x1
i + x2

i + · · ·+ xn
i + xn+1

i ‖
n + 1

< Un
XU

(ε) + η.

From Lemma 2.10, for 0 < η < 1 (since η can be arbitrarily small, if necessary we
can normalize xj

i and f j
i to use Lemma 2.10) there are {yj} ⊆ SX , for 1 ≤ j ≤ n + 1,

and {gj} ⊆ SX∗ , for 2 ≤ j ≤ n+1, such that gj ∈ ∇yj
, for 2 ≤ j ≤ n+1, ‖xj

i−yj‖ < η,
for 1 ≤ j ≤ n + 1, and ‖f j

i − gj‖ < η for j = 2, . . . , n + 1.
Similar to the proof of Theorem 2.13, we have

m(y1, y2, . . . , yn, yn+1; g2, g3, . . . , gn, gn+1) ≥ ε− cη,
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and 1− ‖y1+y2+···+yn+yn+1‖
n+1 < Un

XU
(ε) + dη, where c and d are constants.

Since η > 0 can be arbitrarily small, we have Un
X(ε) ≤ Un

XU
(ε). �

Lemma 2.22. [13] If X is a superreflexive Banach space, then X has uniform normal
structure if and only if XU has normal structure.

Theorem 2.23. If X is a Banach space with Un
X(1) > 0, then X has uniform normal

structure.

Proof. It follows directly from Theorems 2.15, 2.18, 2.21 and Lemma 2.22. �

Theorem 1.2, Theorem 1.4, and Theorem 1.6 in Section 1 are all corollaries of
Theorem 2.15 and Theorem 2.23. The existing results are improved.
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