
Fixed Point Theory, 16(2015), No. 2, 371-380

http://www.math.ubbcluj.ro/∼nodeacj/sfptcj.html

A FAST CONVERGING ITERATIVE METHOD FOR
VOLTERRA INTEGRAL EQUATIONS OF THE SECOND

KIND WITH DELAYED ARGUMENTS

SANDA MICULA

Department of Mathematics and Computer Science
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1. Introduction

We recall the main results for fixed point theory on a Banach space.

Definition 1.1 Let (X, || · ||) be a Banach space. A mapping T : X → X is called a
q−contraction if 0 ≤ q < 1 and

||Tx− Ty|| ≤ q||x− y||, (1.1)

for all x, y ∈ X.

We have the classical result, the contraction principle on a Banach space.

Theorem 1.2 Let (X, || · ||) be a Banach space and T : X → X be a q−contraction.
Then

(a) equation x = Tx has exactly one solution x∗ ∈ X;
(b) the sequence of successive approximations xn+1 = Txn, n ∈ N, converges to

the solution x∗, for any arbitrary choice of initial point x0 ∈ X;
(c) the error estimate

||xn − x∗|| ≤ qn

1− q
||x0 − Tx0|| (1.2)

holds for every n ∈ N.
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Altman (see [1]) gave a stronger fixed point result:

Theorem 1.3 Let (X, || · ||) be a Banach space and T : X → X be a q−contraction.
Let 0 < εn ≤ 1 be a sequence of numbers satisfying

∞∑
n=0

εn = ∞. (1.3)

Then
(a) equation x = Tx has exactly one solution x∗ ∈ X;
(b) the sequence of successive approximations

xn+1 = (1− εn)xn + εnTxn, n = 0, 1, . . . (1.4)

converges to the solution x∗, for any arbitrary choice of initial point x0 ∈ X;
(c) for every n ∈ N, there holds the error estimate

||xn − x∗|| ≤ e1−q

1− q
||x0 − Tx0|| e−(1−q)yn , (1.5)

where y0 = 0, yn =
n−1∑
i=0

εi, for n ≥ 1.

Remark 1.4 Theorem 1.3 still holds true if instead of X, we consider any closed
convex subset Y ⊂ X.

Obviously, the error estimate in (1.5) is better than the one in (1.2) and the iterative
method (1.4) converges faster than the classical one.

For more considerations on iterative algorithms, see [4]. The aim of this paper is
to apply Altman’s Theorem 1.3 to Volterra integral equations of the second kind with
delayed arguments.

2. An iterative method for Volterra integral equations

Integral equations arise in many applications in the fields of mathematics, engi-
neering, physics, mechanics, electrochemistry. They provide an important tool for
modeling various phenomena and processes occurring in actuarial sciences, statistical
study of dynamic living population, elasticity theory, diffraction problems, quantum
mechanics, etc. Also, a large class of initial and boundary value problems can be
converted to Volterra integral equations. Finding efficient and rapidly convergent al-
gorithms for solving Volterra integral equations has been a long time goal for scientists
in many areas of research (see e.g. [2], [3], [8]).

For more details on functional integral equations, we refer the reader to [6], [5] and
[7].

We consider Volterra integral equations of the form

x(t) =

 ϕ(0) + h(t) +
∫ t

0

K
(
t, s, x(s), x(s− δ)

)
ds, t ∈ [0, b],

ϕ(t), t ∈ [−δ, 0],
(2.1)
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where δ > 0, K ∈ C
(
[0, b]× [0, b]× R2

)
, ϕ ∈ C[−δ, 0], h ∈ C[0, b] and h(0) = 0.

Other assumptions will be made on K, h and ϕ later on.
As is well known, the solvability of (2.1) is based on fixed point theory. We define
the operator F : C[−δ, b] → C[−δ, b] by

Fx(t) =

 ϕ(0) + h(t) +
∫ t

0

K
(
t, s, x(s), x(s− δ)

)
ds, t ∈ [0, b],

ϕ(t), t ∈ [−δ, 0].
(2.2)

Then finding a solution of the integral equation (2.1) is equivalent to finding a fixed
point for the operator F :

x = Fx. (2.3)

We want to apply Altman’s iterative algorithm to the operator equation (2.3). To
this end, we consider the space X = C[−δ, b] equipped with the Bielecki norm

||x||τ := max
t∈[−δ,b]

|x(t)| e−τt, x ∈ X, (2.4)

for some suitable τ > 0. Then (X, || · ||τ ) is a Banach space and we have the following:

Theorem 2.1 Assume that there exist constants l1, l2 > 0 such that

|K(t, s, u1, v1)−K(t, s, u2, v2)| ≤ l1|u1 − u2|+ l2|v1 − v2|, (2.5)

for all t, s ∈ [0, b] and all u1, u2, v1, v2 ∈ R. Then

(a) equation (2.3) has exactly one solution x∗ ∈ X;
(b) the sequence of successive approximations

xn+1 =
(

1− 1
n + 1

)
xn +

1
n + 1

Fxn, n = 0, 1, . . . (2.6)

converges to the solution x∗, for any arbitrary initial point x0 ∈ X;
(c) for every n ∈ N, there holds the error estimate

||xn − x∗||τ ≤ e1−q

1− q
||x0 − Fx0||τ e−(1−q)yn , (2.7)

where y0 = 0, yn =
n−1∑
i=0

1
i + 1

, for n ≥ 1 and q =
l1 + l2

τ
< 1.

Proof. We want to use Theorem 1.3 for T = F and εn =
1

n + 1
, which obviously

satisfies condition (1.3). Since (X, || · ||τ ) is a Banach space, all that is left to show is
that F is a q−contraction.
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For t ∈ [−δ, 0], |(Fx−Fy)(t)| = 0. Let t ∈ [0, b] be fixed. By (2.2) and (2.5), we have

|(Fx− Fy)(t)| ≤
t∫
0

∣∣K(
t, s, x(s), x(s− δ)

)
−K

(
t, s, y(s), y(s− δ)

)∣∣ ds

≤ l1

t∫
0

|x(s)− y(s)| ds + l2

t∫
0

|x(s− δ)− y(s− δ)| ds

= l1

t∫
0

|x(s)− y(s)|e−τseτs ds

+ l2

t∫
0

|x(s− δ)− y(s− δ)| e−τ(s−δ)eτ(s−δ) ds

≤ l1||x− y||τ

t∫
0

eτs ds + l2||x− y||τ

t∫
0

eτ(s−δ) ds

≤ l1 + l2
τ

||x− y||τeτt.

Hence,

||Fx− Fy||τ = max
t∈[a,b]

(
|(Fx− Fy)(t)| e−τt

)
≤ q||x− y||τ

and since τ can always be chosen so that q < 1, it follows that F is a q−contraction.
Now, our result follows from Altman’s Theorem. �

Remark 2.2 We denote by || · || the max norm on C[−δ, b] and for some R > 0,
consider the set YR ⊂ C[−δ, b] defined by YR := {x ∈ C[−δ, b]

∣∣ ||x− ϕ̃|| ≤ R}, where
ϕ̃(t) = ϕ(t), for t ∈ [−δ, 0] and ϕ̃(t) = ϕ(0) + h(t), for t ∈ [0, b]. If F (YR) ⊆ YR, then
it follows that x∗ ∈ YR. Thus, we have the following result:

Theorem 2.3 Assume that there exist constants l1, l2 > 0 such that

|K(t, s, u1, v1)−K(t, s, u2, v2)| ≤ l1|u1 − u2|+ l2|v1 − v2|, (2.8)

for all t, s ∈ [0, b] and all u1, u2, v1, v2 ∈ [R1 −R,R2 + R], where

R1 := min
t∈[−δ,b]

ϕ̃(t), R2 := max
t∈[−δ,b]

ϕ̃(t).

Further assume that

bM ≤ R, (2.9)

(the condition for the invariance of the ball YR), where M := max |K(t, s, u, v)| over
all t, s ∈ [0, b] and all u, v ∈ [R1 − R,R2 + R]. Then the conclusions of Theorem 2.1
still hold on YR.
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3. Computation of the iterates in (2.6)

The successive iterates in (2.6) contain integrals that need to be approximated
numerically.

Recall the composite trapezoidal rule for approximating integrals:

d∫
c

f(s) ds =
d− c

2m

f(c) +
m−1∑
j=1

f(sj) + f(d)

 + Rf, (3.1)

where the m + 1 nodes are sj = c +
d− c

m
j, j = 0,m and the remainder is given by

Rf = − (d− c)3

12m2
f ′′(η), η ∈ (c, d). (3.2)

Now, we consider m+1 nodes over the interval [−δ, b], tk = −δ+
b + δ

m
k, k = 0,m,

where m is taken so that one of the nodes is 0, say tk0 = 0 for some k0 ∈ {0, . . . ,m},

i.e. m =
b + δ

δ
k0. Then for k = 0, k0,

xn+1(tk) = ϕ(tk), n = 0, 1, . . .

and for l = 1,m− k0 (i.e. k = k0 + l ∈ {k0 + 1, . . . ,m}), we approximate

xn+1(tk0+l) =
(

1− 1
n + 1

)
xn(tk0+l) (3.3)

+
1

n + 1

ϕ(0) + h(tk0+l) +

tk0+l∫
0

K (tk0+l, s, xn(s), xn(s− δ)) ds

 ,

using the quadrature formula (3.1) with the initial approximation x0(t) = ϕ(0)+h(t),
for t ∈ [0, b] and x0(t) = ϕ(t), for t ∈ [−δ, 0]. Since for each l = 1,m− k0 and each
j = 0, l, tk0+j − δ = tk0+j − t0 = tj , we have

xn+1(tk0+l) =
(

1− 1
n + 1

)
xn(tk0+l)

+
1

n + 1

[
ϕ(0) + h(tk0+l) +

b + δ

2m

(
K (tk0+l, 0, xn(0), xn(−δ))

+ 2
l−1∑
j=1

K (tk0+l, tk0+j , xn(tk0+j), xn(tj)) (3.4)

+ K (tk0+l, tk0+l, xn(tk0+l), xn(tl))
)

+ Rn+1,k0+l

]
, n = 0, 1, . . .
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For the error, we need the second derivative [K(tk, s, xn(s), xn(s− δ))]
′′

s

[K(tk, s, u, v)]
′

s =
∂K

∂s
+

∂K

∂u
u′ +

∂K

∂v
v′

[K(tk, s, u, v)]
′′

s =
∂2K

∂s2
+ 2

∂2K

∂s∂u
u′ + 2

∂2K

∂s∂v
v′ + 2

∂2K

∂u∂v
u′v′

+
∂2K

∂u2
(u′)2 +

∂2K

∂v2
(v′)2 +

∂K

∂u
u′′ +

∂K

∂v
v′′

So

[K(tk, s, xn(s), xn(s− δ))]
′′

s =
∂2K

∂s2
+ 2

∂2K

∂s∂u
x′n(s) + 2

∂2K

∂s∂v
x′n(s− δ)

+ 2
∂2K

∂u∂v
x′n(s)x′n(s− δ) +

∂2K

∂u2
(x′n(s))2 (3.5)

+
∂2K

∂v2
(x′n(s− δ))2 +

∂K

∂u
x′′n(s) +

∂K

∂v
x′′n(s− δ)

Now, for t ∈ [0, b],

xn(t) =
(

1− 1
n

)
xn−1(t) +

1
n

ϕ(0) + h(t) +

t∫
0

K (t, s, xn−1(s), xn−1(s− δ))

 ,

x′n(t) =
(

1− 1
n

)
x′n−1(t) +

1
n

(
h′(t) + K(t, t, xn−1(t), xn−1(t− δ))

+

t∫
0

∂K

∂t
(t, s, xn−1(s), xn−1(s− δ)) ds

)
,

x′′n(t) =
(

1− 1
n

)
x′′n−1(t) +

1
n

(
h′′(t) + 2

∂K

∂t
(t, t, xn−1(t), xn−1(t− δ))

+
∂K

∂s
(t, t, xn−1(t), xn−1(t− δ)) +

∂K

∂u
(t, t, xn−1(t), xn−1(t− δ)))x′n−1(t)

+
∂K

∂v
(t, t, xn−1(t), xn−1(t− δ))x′n−1(t− δ)

+

t∫
0

∂2K

∂t2
(t, s, xn−1(s), xn−1(s− δ)) ds

)
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Let

M1 = max
|α|≤2

t,s∈[0,b]
u,v∈R

∣∣∣ ∂αK(t, s, u, v)
∂tα1∂sα2∂uα3∂vα4

∣∣∣,
M2 = max

|α|≤2
t∈[−δ,0]

∣∣ϕ(α)
∣∣, (3.6)

M3 = max
|α|≤2
t∈[0,b]

∣∣h(α)
∣∣.

Then, by induction, we have the following bounds:

|xn(t)| = |ϕ(t)| ≤ M2 ≤ bM1 + M2 + M3, t ∈ [−δ, 0],

|xn(t)| =
∣∣∣ (

1− 1
n

)
xn−1(t)

+
1
n

ϕ(0) + h(t) +

t∫
0

K (t, s, xn−1(s), xn−1(s− δ)) ds

 ∣∣∣
≤

(
1− 1

n

)
(bM1 + M2 + M3) +

1
n

(M2 + M3 + bM1)

= bM1 + M2 + M3, t ∈ [0, b]. (3.7)

|x′n(t)| = |ϕ′(t)| ≤ M2 ≤ (b + 1)M1 + M2 + M3, t ∈ [−δ, 0]

|x′n(t)| =
∣∣∣ (

1− 1
n

)
x′n−1(t) +

1
n

(
h′(t) + K(t, t, xn−1(t), xn−1(t− δ))

+

t∫
0

∂K

∂t
(t, s, xn−1(s), xn−1(s− δ)) ds

)∣∣∣,
≤

(
1− 1

n

)
((b + 1)M1 + M2 + M3) +

1
n

(M3 + M1 + bM1 + M2)

= (b + 1)M1 + M2 + M3, t ∈ [0, b]. (3.8)

Let M ′′ := 3M1 + 2M1(M1 + M2) + bM1(2M1 + 1) + M2 + M3. We have:

|x′′n(t)| = |ϕ′′(t)| ≤ M2 ≤ M ′′, t ∈ [−δ, 0]

|x′′n(t)| ≤
(

1− 1
n

)
M ′′

+
1
n

(M3 + 3M1 + 2M1((b + 1)M1 + M2) + bM1 + M2)

= M ′′, t ∈ [0, b]. (3.9)

Let M4 = max{bM1 + M2 + M3, (b + 1)M1 + M2 + M3,M
′′}. Then

|xn(t)|, |x′n(t)|, |x′′n(t)| ≤ M4, for all t ∈ [−δ, b].
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So by (3.5), for all k = k0,m and all s ∈ [0, b],∣∣∣ [K(tk, s, xn(s), xn(s− δ))]
′′

s

∣∣∣ ≤ M1 + 2M1M4 + 2M1M4

+ 2M1M
2
4 + 2M1M

2
4 + 2M1M4

=: M0. (3.10)

Thus, for the remainders in (3.4), we have the bound

|Rn,k| ≤ b3

12m2
M0, (3.11)

for all k = k0,m, n = 0, 1, . . . Note that the bound above does not depend on n or k.

Remark 3.1 It is clear now that in order to use the quadrature formula (3.1) and
to approximate the remainder in (3.2), we need to make some considerations on the
smoothness of the iterations xn. To this end, let X0 = {x ∈ C[−δ, b]

∣∣∣ x
∣∣
[−δ,0]

= 0}.
Then:

(1) F (X0) ⊆ X0;
(2) if K, h ∈ C1 and K(0, 0, 0, 0) = h′(0) = 0, then F

(
X0 ∩ C1[−δ, b]

)
⊆ X0 ∩

C1[−δ, b];

(3) if K, h ∈ C2 and K(0, 0, 0, 0) =
∂K

∂t
(0, 0, 0, 0) =

∂K

∂s
(0, 0, 0, 0) = h′(0) =

h′′(0) = 0, then F
(
X0 ∩ C2[−δ, b]

)
⊆ X0 ∩ C2[−δ, b].

Then the values at the nodes xn(tk) are approximated by x̃n(tk), by using the
quadrature formula (3.4) and, by the work above, the errors satisfy

∣∣xn(tk)− x̃n(tk)
∣∣ ≤ b3

12m2
M0. (3.12)

Now we can give error bounds for our approximations:

Theorem 3.2 Assume the conditions in Theorem 2.3 and Remark 3.1 are satisfied.
Then we can choose x0 ∈ X0 ∩C2[−δ, b]∩ YR, such that the sequence defined in (2.6)
has the following properties:

(a) xn ∈ X0 ∩ C2[−δ, b] ∩ YR, ||xn − h|| ≤ R;
(b) {x′n} and {x′′n} are bounded sequences;
(c) for all k = 0,m and all n = 0, 1, . . . , the following error bound holds:

∣∣x∗(tk)− x̃n(tk)
∣∣ ≤ eτb+1−q

1− q
||x0 − Fx0||τ e−(1−q)yn +

b3

12m2
M0, (3.13)

where y0 = 0, yn =
n−1∑
i=0

1
i + 1

, for n ≥ 1, q =
l1 + l2

τ
< 1 and M0 defined in

(3.10) is independent of n.
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Proof. Conclusions (a) and (b) follow from our considerations in (3.6)-(3.9) and
Remark 3.1. For (c), by (2.7) and (3.12), we have∣∣x∗(tk)− x̃n(tk)

∣∣ ≤
∣∣x∗(tk)− xn(tk)

∣∣ +
∣∣xn(tk)− x̃n(tk)

∣∣
=

∣∣x∗(tk)− xn(tk)
∣∣e−τteτt +

∣∣xn(tk)− x̃n(tk)
∣∣

≤ ||xn − x∗||τeτb +
∣∣xn(tk)− x̃n(tk)

∣∣
≤ eτb+1−q

1− q
||x0 − Fx0||τ e−(1−q)yn +

b3

12m2
M0.

�

4. Example

Consider the integral equation (see [9])

x(t) =

 h(t) +
35
34

∫ t

0

t2
(
x(s)− 1

)(
x(s− 1) + 1

)
ds, t ∈ [0, 2] ,

0, t ∈ [−1, 0],
(4.1)

where h(t) = −352

34

(
35

(
1
7
t9 − 1

2
t8 − 3

5
t7 − 1

4
t6

)
+ t5 − 3

2
t4

)
. The exact solution

of (4.1) is x∗(t) = 35t3, for t ∈ [0, 2] and x∗(t) = 0, for t ∈ [−1, 0]. We take m = 12

and the nodes tk = −1 +
1
4
k, k = 0, 12. Notice that t4 = 0. Table 1 contains the

errors ||x̃n − x∗||∞ = max
k=0,m

|x̃n(tk)− x∗(tk)|, with initial approximations x0(tk) = 0,

for k = 0, 4 and x0(tk) = h(tk), for k = 5, 12.

Table 1. Error estimates for Example 4.1
n ||x̃n − x∗||∞
1 2.792740e− 00
2 3.235162e− 01
5 8.539002e− 02

10 2.576896e− 02
20 4.482729e− 03
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