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Abstract. We present an existence result for positive monotonic solutions for a certain nonlinear

functional hybrid integral equation of quadratic type via fixed point theoretic technique of Dhage
[10, 11] in Banach algebras. Our result generalizes the existence result proved in Darwish and

Ntouyas [7] and thereby several results as special cases with a different method.
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1. Introduction

Given a closed and bounded interval J = [0, T ] in R, the set of real numbers and
given a real number q > 0, consider the following functional hybrid fractional integral
equation of quadratic type (in short HFIE),

x(t) = k(t, x(t), x(α(t)))

+
[
f(t, x(t), x(β(t)))

]( 1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
g(s, x(s), x(η(s))) ds

)
(1.1)

for all t ∈ J, where the functions k, f, g : J × R × R → R, α, β, η : J → J and
v : J × J → R are continuous and Γ is the Gamma function.

By a solution of HFIE (1.1) we mean a function x ∈ C(J,R) that satisfies (1.1) on
J, where C(J,R) is the space of continuous real-valued functions defined on J.

The integral equations of quadratic type has been discussed in the literature for
a long time. In this connection we refer the readers to the work of Chandrasekhar
[5] who established his famous quadratic equation in the theory of radiative trans-
fer. The study of fractional integral equation of quadratic type gained momentum
because of their occurrence in some natural problems of kinetic theory of gases, neu-
tron transport, traffic theory and some biological phenomenon (cf. [6, 7]). The study

1Member of Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group at King
Abdulaziz University, Jeddah, Saudi Arabia.

273



274 BAPURAO C. DHAGE AND SOTIRIS K. NTOUYAS

of quadratic integral equations using the measure of noncompactness is initiated by
Dhage in [9] and since then several authors have studied quadratic integral equations
via a measure theoretic technique established by Darbo [8, 12]. See for example [1],
[2], [3], [4], [6] and the references given therein. Recently Dhage established some
fixed point theorems in Banach algebras and they are employed for proving the exis-
tence theorems for quadratic differential and integral equations. In this connection,
the readers are referred to the work of Dhage [10]. It is known that fixed point theo-
retic technique is more powerful than the measure theoretic technique established by
Darbo [12] which is further generalized by Dhage [11]. The main difference between
these two techniques is that the former needs the nonlinear function under integral
sign to be Carathéodory whereas the later needs the same function to be continuous
on the domain of it’s definition.

It can be shown as in Darwish and Ntouyas [7] that the functional HFIE (1.1)
is more general and new to the theory of fractional integral equations and includes
several well-known fractional integral equations as special cases. In this article, we
prove the existence as well as positivity and monotonic results for the functional HFIE
(1.1) with a different method than [7].

2. Auxiliary Results

We place the problems in the function space E = C(J,R) of continuous real-valued
functions defined on J . Define a norm ‖ · ‖ and a multiplication in E by

||x|| = sup
t∈J
|x(t)| (2.1)

and
(xy)(t) = x(t) y(t), ∀ t ∈ J. (2.2)

Clearly E is a Banach algebra with respect to above supremum norm and the
multiplication in it. Let L1(S) we denote the Banach space of all Lebesgue integrable
functions defined on J equipped with the norm ‖ · ‖L1 defined by

‖x‖L1 =

∫ T

0

|x(s)| ds.

We need the following definitions in what follows.

Definition 2.1. A mapping A : E → E is said to be D-Lipschitz if there exists an
upper semi-continuous nondecreasing functions ψA : R+ → R+ such that

‖Ax−Ay‖ ≤ ψA(‖x− y‖) (2.3)

for all x, y ∈ E. The function ψA is called a D-function of A on E. In particular if
ψA(r) = λr, then A is called a Lipschitz mapping on E with a Lipschitz constant λ.
If λ < 1 then A is called a contraction on A. Further if ψA(r) < r for r > 0 then ψA

is called a nonlinear D-contraction on A with a D-function ψA.

Definition 2.2. An operator B : E → E is called compact if B(E) is a relatively
compact subset of E. B is said to be totally bounded if B(S) is a totally bounded
subset of E for any bounded subset S(E). B is said to be completely continuous if it
is totally bounded and continuous on E.
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Remark 2.3. It is known that every compact operator is totally bounded, but the
converse may not be true. However, both the concepts coincide for an operator A
on a bounded subset S of E. Thus complete continuity is a weaker concept than the
compactness of continuous operator B on the Banach space E.

The following hybrid fixed point theorem in a Banach algebra E is well-known in
the literature on fixed point theory. See Dhage [10] and the references therein.

Theorem 2.4 (Hybrid Fixed Point Theorem). Let S be a nonempty closed convex
and bounded subset of a Banach algebra E and let A,C : E → E and B : S → E be
three operators satisfying:

(a) A and C are D-Lipschitz with D-functions ψA and ψC respectively,
(b) B is completely continuous,
(c) AxBy + Cx = x ∀ y ∈ S =⇒ x ∈ S and
(d) MψA(r) + ψC(r) < r for r > 0, where M = ‖B(S)‖ = sup{‖x‖ : x ∈ S}.

Then the operator equation
AxBx+ Cx = x (2.4)

has a solution.

Remark 2.5. If we take ψA(r) =
L1r

K + r
and ψC(r) = L2 r, then hypothesis (d) of

the above hybrid fixed point theorem takes the form
L1M

K + r
+ L2 < 1 for each real

number r > 0. Similarly, if ψA(r) = L1 r, and ψC(r) =
L2r

K + r
, then hypothesis (d)

of the above hybrid fixed point theorem takes the form M L1 +
L2M

K + r
< 1 for each

real number r > 0.

We close this section with the following special case of Theorem 2.4 which is fre-
quently used in the existence theory for quadratic differential and integral equations.

Corollary 2.6. Let S be a nonempty closed convex and bounded subset of a Banach
algebra E and let A,C : E → E and B : S → E be three operators satisfying

(a) A and C are Lipschitz with Lipschitz constants α and β respectively,
(b) B is compact and continuous,
(c) AxBy + Cx ∈ S for all x ∈ E and y ∈ S, and
(d) αM + β < 1, where M = ‖B(S)‖.

Then the operator equation (2.4) has a solution.

3. Main Results

Before going to the main results we give some useful definitions. First we recall a
basic definition of fractional calculus [13, 14, 15].

Definition 3.1. Let h ∈ L1 (I), I = [a, b], and let q > 0 be a real number. Then the
Riemann-Liouville fractional integral of order q of the function h(t) is defined as

Iqh(t) =
1

Γ(q)

∫ t

a

h(s)

(t− s)1−q
ds, a < t < b. (3.1)
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An equation containing the fractional integral of unknown function is called a frac-
tional integral equation. If the unknown function in a fractional integral equation
occurs nonlinearly, then it is called nonlinear fractional integral equation. A
fractional integral equation involving two or more nonlinearities which satisfy differ-
ent characteristics from different branches of mathematics is called hybrid fractional
integral equation.

Definition 3.2. A function g(t, x, y) is called Carathéodory if:

(i) The map t 7→ g(t, x, y) is measurable for each x, y ∈ R and
(ii) the map (x, y) 7→ g(t, x, y) is continuous for each t ∈ J.

A Caratheódory function g is called L2-Carathéodory if:

(iii) There exists a function h ∈ L2(J,R) such that

|g(t, x, y)| ≤ h(t) a.e. t ∈ J

for all x, y ∈ R.

We need the following hypotheses in what follows.

(H0) The functions α, β, η : J → J are continuous.
(H1) The function f : J × R × R → R is continuous and there exist constants

L1 > 0, K1 > 0 such that

|f(t, x1, x2)− f(t, y1, y2)| ≤ L1 max{|x1 − y1|, |x2 − y2|}
K1 + max{|x1 − y1|, |x2 − y2|}

for all t ∈ J and x1, x2, y1, y2 ∈ R.
(H2) The function k : J × R × R → R is continuous and there exist constants

L2 > 0, K2 > 0 such that

|k(t, x1, x2)− k(t, y1, y2)| ≤ L2 max{|x1 − y1|, |x2 − y2|}
K2 + max{|x1 − y1|, |x2 − y2|}

for all t ∈ J and x1, x2, y1, y2 ∈ R.
(H3) The function v is continuous on J × J . Moreover, V = supt,s∈J |v(t, s)|.
(H4) The function g is L2-Carathéodory on J × R× R.

Remark 3.3. The conditions given on functions f and g in hypothesis (H1) and (H2)
are more general than Lipschitz condition. In particular, if L1 < K1 and L2 < K2,
then we obtain the Lipschitz conditions of the functions f and g respectively.

Theorem 3.4. Assume that the hypothesis (H0)−(H4) hold. Furthermore, if q > 1/2
and (

V ‖h‖L2 T q−1/2

Γ(q)(2q − 1)1/2

)
L1

K1 + r
+

L2

K2 + r
< 1, r > 0, (3.2)

then the functional HFIE (1.1) has a solution defined on J.

Proof. Denote by E = C(J,R). Define a subset S of E

S = {x ∈ E | ‖x‖ ≤ ρ} (3.3)



HYBRID FRACTIONAL INTEGRAL EQUATIONS 277

where

ρ = L2 +K0 +
V [L1 + F0]‖h‖L2 T q−1/2

Γ(q)(2q − 1)1/2
,

and K0 = supt∈J |k(t, 0, 0)|, F0 = supt∈J |f(t, 0, 0)|.
Define three operators A : E → E, B : S → E and C : E → E by

Ax(t) = f(t, x(t), x(α(t))), t ∈ J, (3.4)

Bx(t) =
1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
g(s, x(s), x(η(s))) ds, t ∈ J (3.5)

and
Cx(t) = k(t, x(t), x(α(t))), t ∈ J. (3.6)

Then the HFIE (1.1) is transformed into an operator equation as

Cx(t) +Ax(t)Bx(t) = x(t), t ∈ J. (3.7)

We shall show that the operators A,B and C satisfy all the conditions of Theorem
2.4. This will be achieved in the series of following steps.

Step I. A,B and C define the mappings A,C : E → E and B : S → E.
Since the function f is continuous, the map t 7→ f(t, x1, x2) is continuous for each

x1, x2 ∈ R. As a result Ax : J → R is a continuous function and that Ax ∈ E.
Similarly, Cx ∈ E. Hence, A and C define the mappings A,C : E → E. We will
show, in step V, that the function Bx is continuous on J for each x ∈ S. As g is
L2-Carathéodory, the function s 7→ g(s, x(s), x(η(s))) is integrable and therefore, the
integral ∫ t

0

v(t, s)

(t− s)1−q
g(s, x(s), x(η(s))) ds

exists for each x ∈ E. Again the map

t 7→
∫ t

0

v(t, s)

(t− s)1−q
g(s, x(s), x(η(s))) ds

is continuous, so the function (Bx) is continuous on J , whence Bx ∈ C(J,R) for each
x ∈ C(J,R). Hence B defines a mapping B : S → E.

Step II. A and C are D-Lipschitz on E.
Let x, y ∈ E be arbitrary. Then, by (H1), for all x, y ∈ E, we have

|Ax(t)−Ay(t)| = |f(t, x(t), x(β(t)))− f(t, y(t), y(β(t)))|

≤ L1 max{|x(t)− y(t)|, |x(β(t))− y(β(t))|}
K1 + max{|x(t)− y(t)|, |x(β(t))− y(β(t))|}

≤ L1‖x− y‖
K1 + ‖x− y‖

= ψA(‖x− y‖),

where ψA is a D-function defined by ψA(r) =
L1r

K1 + r
< r, r > 0. This shows that A

is a D-Lipschitz operator on E into itself. Similarly C is also a D-Lipschitz operator

on E into itself with ψC(r) =
L2r

K2 + r
< r, r > 0.

Step III. B(S) is a uniformly bounded set in E.
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Let x ∈ S be any point. Then, we have, for all t ∈ J , that

|Bx(t)| ≤
∣∣∣∣ 1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
g(s, x(s), x(η(s))) ds

∣∣∣∣
≤ 1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
h(s) ds ≤ 1

Γ(q)

∫ T

0

v(t, s)

(t− s)1−q
h(s) ds.

Thus

‖Bx‖ ≤ 1

Γ(q)

∫ T

0

v(t, s)

(t− s)1−q
h(s) ds.

Step IV. B(S) is an equicontinuous set in E.
Let x ∈ S be arbitrary. Given t1, t2 ∈ J with t2 > t1, we obtain,∣∣∣Bx(t2)−Bx(t1)

∣∣∣ =

∣∣∣∣ 1

Γ(q)

∫ t2

0

v(t2, s)

(t2 − s)1−q
g(s, x(s), x(η(s))) ds

− 1

Γ(q)

∫ t1

0

v(t1, s)

(t1 − s)1−q
g(s, x(s), x(η(s))) ds

∣∣∣∣
≤
∣∣∣∣ 1

Γ(q)

∫ t2

0

v(t2, s)

(t2 − s)1−q
g(s, x(s), x(η(s))) ds

− 1

Γ(q)

∫ t2

0

v(t1, s)

(t2 − s)1−q
g(s, x(s), x(η(s))) ds

∣∣∣∣
+

∣∣∣∣ 1

Γ(q)

∫ t2

0

v(t1, s)

(t2 − s)1−q
g(s, x(s), x(η(s))) ds

− 1

Γ(q)

∫ t1

0

v(t1, s)

(t2 − s)1−q
g(s, x(s), x(η(s))) ds

∣∣∣∣
+

∣∣∣∣ 1

Γ(q)

∫ t1

0

v(t1, s)

(t2 − s)1−q
g(s, x(s), x(η(s))) ds

− 1

Γ(q)

∫ t1

0

v(t1, s)

(t1 − s)1−q
g(s, x(s), x(η(s))) ds

∣∣∣∣
≤ 1

Γ(q)

∫ t2

0

|v(t2, s)− v(t1, s)|
(t2 − s)1−q

|g(s, x(s), x(η(s)))| ds

+
1

Γ(q)

∫ t2

t1

|v(t1, s)|
(t2 − s)1−q

|g(s, x(s), x(η(s)))| ds

+
1

Γ(q)

∫ t1

0

|v(t1, s)| |[(t2 − s)q−1 − (t1 − s)q−1]| |g(s, x(s), x(η(s)))| ds

≤ 1

Γ(q)

∫ T

0

|v(t2, s)− v(t1, s)|
(t2 − s)1−q

h(s) ds+
1

Γ(q)

∫ t2

t1

|v(t, s)|
(t2 − s)1−q

h(s) ds

+
1

Γ(q)

∫ T

0

|v(t1, s)|
∣∣[(t2 − s)q−1 − (t1 − s)q−1

]∣∣ h(s) ds −→ 0 as t1 → t2,

uniformly for all t1, t2 ∈ J and x ∈ S. As a result B(S) is an equicontinuous set in
E. Since B(S) is uniformly bounded and equicontinuous set, by an application of
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Arzelá-Ascoli theorem, B(S) is a compact set in E. Hence B is a compact operator
on S into E.

Step V. B is continuous on S.
Let {xn} be a sequence in S converging to a point x in S. Then, by the dominated

convergence theorem, we have, for all t ∈ J that

lim
n→∞

Bxn = lim
n→∞

1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
g(s, xn(s), xn(η(s))) ds

≤ lim
n→∞

1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
lim

n→∞
g(s, xn(s), xn(η(s))) ds

= lim
n→∞

1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
g(s, x(s), x(η(s))) ds = Bx(t),

This shows that Bxn(t) → Bx(t) pointwise on J. Since, {Bxn} ⊂ B(S), {Bxn} is
an equicontinuous sequence in E. Hence Bxn(t) → Bx uniformly, whence B is a
continuous operator on S.

Step VI. x = AxBy + Cx, ∀ y ∈ S ⇒ x ∈ S.
Let x ∈ E be a fixed element such that x = AxBy + Cx for all y ∈ S. Then,

|x(t)| ≤ |Ax(t)| |By(t)|+ |Cx(t)| ≤
∣∣k(t, x(t), x(α(t)))

∣∣
+
∣∣f(t, x(t), x(β(t)))

∣∣ 1

Γ(q)

∫ t

0

|v(t, s)|
(t− s)1−q

|g(s, x(s), x(η(s)))| ds

≤
∣∣k(t, x(t), x(α(t)))− k(t, 0, 0)

∣∣+ |k(t, 0, 0)|

+
[
f(t, x(t), x(α(t)))− f(t, 0, 0)

∣∣+ |f(t, 0, 0)|
] 1

Γ(q)

∫ t

0

|v(t, s)|
(t− s)1−q

h(s) ds

≤ L2 max{|x(t)|, |x(α(t))|}
K2 + max{|x(t)|, |x(α(t))|}

+ K0

+
1

Γ(q)

[
L1 max{|x(t)|, |x(α(t))|}
K1 + max{|x(t)|, |x(α(t))|}

+ F0

] ∫ t

0

|v(t, s)|
(t− s)1−q

h(s) ds

≤ L2‖x‖
K2 + ‖x‖

+K0 +
1

Γ(q)

[
L1‖x‖

K1 + ‖x‖
+ F0

] ∫ t

0

|v(t, s)|
(t− s)1−q

h(s) ds

≤ L2 +K0 +
1

Γ(q)
[L1 + F0]

∫ t

0

|v(t, s)|
(t− s)1−q

h(s) ds

≤ L2 +K0 +
V

Γ(q)
[L1 + F0]

∫ t

0

h(s)

(t− s)1−q
ds

≤ L2 +K0 +
V

Γ(q)
[L1 + F0]

(∫ t

0

h2(s) ds

)1/2(∫ t

0

1

(t− s)2−2q
ds

)1/2

≤ L2 +K0 +
V

Γ(q)
[L1 + F0]

(∫ T

0

h2(s) ds

)1/2(∫ t

0

(t− s)2q−2 ds
)1/2

= L2 +K0 +
V

Γ(q)
[L1 + F0]‖h‖L2

(
t2q−1

2q − 1

)1/2



280 BAPURAO C. DHAGE AND SOTIRIS K. NTOUYAS

≤ L2 +K0 +
V

Γ(q)
[L1 + F0]

‖h‖L2 T q−1/2

(2q − 1)1/2
= ρ,

which implies that x ∈ S and so, hypothesis (c) of Theorem (2.4) is satisfied.
Step VII. MψA(r) + ψC(r) < r for r > 0.
Here, by hypothesis (H4), we obtain

M = ‖B(S)‖ = sup
x∈S
‖Bx‖ = sup

x∈S

{
sup
t∈J
|Bx(t)|

}
= sup

x∈S
sup
t∈J

{
1

Γ(q)

∫ t

0

|v(t, s)|
(t− s)1−q

|g(s, x(s), x(η(s)))| ds : t ∈ J
}

≤ 1

Γ(q)

∫ T

0

|v(t, s)|
(t− s)1−q

h(s) ds ≤ V

Γ(q)

∫ t

0

(t− s)q−1h(s) ds ≤ V ‖h‖L2 T q−1/2

Γ(q)(2q − 1)1/2
.

Therefore,

MψA(r) + ψC(r) ≤

(
V ‖h‖L2 T q−1/2

Γ(q)(2q − 1)1/2

)
L1r

K1 + r
+

L2r

K2 + r
< r

for r > 0, and so, hypothesis (d) of Theorem (2.4) is satisfied.
Thus all the conditions of Theorem 2.4 are satisfied. Hence we apply it to the

operator equation (3.7) and conclude that the HFIE (1.1) has a solution defined on
J. This completes the proof. �

Next we prove the positivity and monotonic character of the solutions of the func-
tional HFIE (1.1) defined on J . To prove the positivity we need the following hy-
potheses.

(H5) f, g, k define the functions f, g, k : J × R× R→ R+.
(H6) v defines a function v : J × J → R+.

Theorem 3.5. Assume that all the conditions of Theorem 3.4 hold. Furthermore if
hypotheses (H5) and (H6) hold, then the functional HFIE (1.1) has a positive solution
defined on J .

Proof. By Theorem 3.4, the functional HFIE (1.1) has a solution x defined on J . We
show that x is positive on J . To achieve this, it is enough to prove that

|x(t)| = x(t), for all t ∈ J. (3.8)

Now by (H4) and (H5),

|x(t)| − x(t) = |k(t, x(t), x(α(t)))| − k(t, x(t), x(α(t)))

+

∣∣∣∣[f(t, x(t), x(β(t)))
]( 1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
g(s, x(s), x(η(s))) ds

)∣∣∣∣
−
[
f(t, x(t), x(β(t)))

]( 1

Γ(q)

∫ t

0

v(t, s)

(t− s)1−q
g(s, x(s), x(η(s))) ds

)
= 0

for all t ∈ J . Hence |x(t)| = x(t) for all t ∈ J . Consequently x is a positive solution
of the functional HFIE (1.1) defined on J . This completes the proof. �
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Finally we prove the monotonic character of the solutions of the functional HFIE
(1.1) on J . We consider the following hypotheses in the sequel.

(H7) The maps t 7→ f(t, x, y), t 7→ g(t, x, y), t 7→ k(t, x, y) are monotonic increasing
for each x, y ∈ R.

(H8) The map t 7→ v(t, s) is nondecreasing for each s ∈ J with t > s.

Theorem 3.6. Assume that all the conditions of Theorem 3.5 hold. Further if the
hypotheses (H7) and (H8) hold, then the functional HFIE (1.1) has a monotonic
increasing positive solution defined on J.

Proof. By Theorem 3.5, the functional HFIE (1.1) has a positive solution defined on
J . We show that x is monotonic increasing on J . To finish, it is enough to prove that

|x(t)− x(s)| = x(t)− x(s) (3.9)

for all t, s ∈ J with t > s.
In what follows, fix an arbitrary x ∈ X and t1, t2 ∈ J with t2 > t1. Then, taking

into account our hypotheses, we have

|x(t2)− x(t1)| − [x(t2)− x(t1)] =

∣∣∣∣k(t2, x(t2), x(α(t2)))

+[f(t2, x(t2), x(β(t2)))]

(
1

Γ(q)

∫ t2

0

v(t2, s)

(t2 − s)1−q
g(s, x(s), x(η(s)))ds

)
−k(t1, x(t1), x(α(t1)))

−[f(t1, x(t1), x(β(t1)))]

(
1

Γ(β)

∫ t1

0

v(t1, s)

(t1 − s)1−q
g(s, x(s), x(η(s)))ds

) ∣∣∣∣
−
[
k(t2, x(t2), x(α(t2)))

+[f(t2, x(t2), x(β(t2)))]

(
1

Γ(q)

∫ t2

0

v(t2, s)

(t2 − s)1−q
g(s, x(s), x(η(s)))ds

)
−k(t1, x(t1), x(α(t1)))

−[f(t1, x(t1), x(β(t1)))]

(
1

Γ(β)

∫ t1

0

v(t1, s)

(t1 − s)1−q
g(s, x(s), x(η(s)))ds

)]
≤
{
|k(t2, x(t2), x(α(t2)))− k(t1, x(t1), x(α(t1)))|

−[k(t2, x(t2), x(α(t2)))− k(t1, x(t1), x(β(t1)))]
}

+

∣∣∣∣[f(t2, x(t2), x(β(t2)))]

(
1

Γ(q)

∫ t2

0

v(t2, s)

(t2 − s)1−q
g(s, x(s), x(η(s)))ds

)
− [f(t1, x(t1), x(β(t1)))]

(
1

Γ(q)

∫ t2

0

v(t2, s)

(t2 − s)1−q
g(s, x(s), x(η(s)))ds

)∣∣∣∣
+

[
f(t1, x(t1), x(β(t1)))]

(
1

Γ(q)

∫ t2

0

v(t2, s)

(t2 − s)1−q
g(s, x(s), x(η(s)))ds

)
− [f(t1, x(t1), x(β(t1)))]

(
1

Γ(q)

∫ t1

0

v(t1, s)

(t1 − s)1−q
g(s, x(s), x(η(s)))ds

)]
≤
{
|k(t2, x(t2), x(α(t2)))− k(t1, x(t1), x(α(t1)))|
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−[k(t2, x(t2), x(α(t2)))− k(t1, x(t1), x(α(t1)))]
}

+

{
|f(t2, x(t2), x(β(t2)))− f(t1, x(t1), x(β(t1)))|×

×
(

1

Γ(q)

∫ t2

0

v(t2, s)

(t2 − s)1−q
g(s, x(s), x(η(s)))ds

)

+|f(t1, x(t1), x(β(t1)))|

∣∣∣∣∣
(

1

Γ(q)

∫ t2

0

v(t2, s)

(t2 − s)1−q
g(s, x(s), x(η(s)))ds

)

−
(

1

Γ(q)

∫ t1

0

v(t1, s)

(t1 − s)1−q
g(s, x(s), x(η(s)))ds

) ∣∣∣∣∣
}

+

{
[f(t2, x(t2), x(β(t2)))− f(t1, x(t1), x(β(t1)))]×

×
(

1

Γ(q)

∫ t2

0

v(t2, s)

(t2 − s)1−q
g(s, x(s), x(η(s)))ds

)

+[f(t1, x(t1), x(β(t1)))]

[(
1

Γ(q)

∫ t2

0

v(t2, s)

(t2 − s)1−q
g(s, x(s), x(η(s)))ds

)

−
(

1

Γ(q)

∫ t1

0

v(t1, s)

(t1 − s)1−q
g(s, x(s), x(η(s)))ds

)]}
.

Now, we will prove that∫ t2

0

v(t2, s)

(t2 − s)1−q
g(s, x(s), x(η(s)))ds−

∫ t1

0

v(t1, s)

(t1 − s)1−q
g(s, x(s), x(η(s)))ds ≥ 0.

In fact, we have∫ t2

0

v(t2, s)

(t2 − s)1−q
g(s, x(s), x(η(s)))ds−

∫ t1

0

v(t1, s)

(t1 − s)1−q
g(s, x(s), x(η(s)))ds

=

∫ t2

0

v(t2, s)

(t2 − s)1−q
g(s, x(s), x(η(s)))ds−

∫ t2

0

v(t1, s)

(t2 − s)1−q
g(s, x(s), x(η(s)))ds

+

∫ t2

0

v(t1, s)

(t2 − s)1−q
g(s, x(s), x(η(s)))ds−

∫ t1

0

v(t1, s)

(t2 − s)1−q
g(s, x(s), x(η(s)))ds

+

∫ t1

0

v(t1, s)

(t2 − s)1−q
g(s, x(s), x(η(s)))ds−

∫ t1

0

v(t1, s)

(t1 − s)1−q
g(s, x(s), x(η(s)))ds

=

∫ t2

0

v(t2, s)− v(t1, s)

(t2 − s)1−q
g(s, x(s), x(η(s)))ds+

∫ t2

t1

v(t1, s)

(t2 − s)1−q
g(s, x(s), x(η(s)))ds

+

∫ t1

0

v(t1, s) [(t2 − s)q−1 − (t1 − s)q−1]g(s, x(s), x(η(s)))ds.
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Since v(t, s) is nondecreasing with respect to t, we have that v(t2, s) ≥ v(t1, s) and
therefore ∫ t2

0

v(t2, s)− v(t1, s)

(t2 − s)1−q
g(s, x(s), x(η(s)))ds ≥ 0. (3.10)

On the other hand, since the term (t2− s)q−1− (t1− s)q−1 is negative for 0 ≤ s < t1,
we have ∫ t1

0

v(t1, s) [(t2 − s)q−1 − (t1 − s)q−1]g(s, x(s), x(η(s)))ds

+

∫ t2

t1

v(t1, s)

(t2 − s)1−q
g(s, x(s), x(η(s)))ds

≥
∫ t1

0

v(t1, t1) [(t2 − s)q−1 − (t1 − s)q−1]g(t1, x(t1), x(η(t1)))

+

∫ t2

t1

v(t1, t1)

(t2 − s)1−q
g(t1, x(t1), x(η(t1)))ds (3.11)

= v(t1, t1)g(t1, x(t1), x(η(t1)))

[∫ t2

0

ds

(t2 − s)1−q
−
∫ t1

0

ds

(t1 − s)1−q

]
= v(t1, t1)g(t1, x(t1), x(η(t1)))

tq2 − t
q
1

q
≥ 0.

Hence∫ t2

0

v(t2, s)

(t2 − s)1−q
g(t, x(t), x(η(t)))ds−

∫ t1

0

v(t1, s)

(t1 − s)1−q
g(t, x(t), x(η(t)))ds ≥ 0.

This together with (3.10) yields

|x(t2)− x(t1)| − [x(t2)− x(t1)] ≤ 0,

which proves that |x(t2) − x(t1)| = [x(t2) − x(t1)], and so x is monotonic increasing
on J . This completes the proof. �

4. Examples

In this section we illustrate the abstract theory developed in the previous section
by giving some examples of nonlinear fractional integral equations.

Example 4.1. Given a closed and bounded interval J = [0, 1] of the real line R,
consider the fractional integral equation

x(t) =
t

3
|x(t)|+ t2

1 + t2
· |x(t)|
1 + |x(t)|

(
1

Γ( 3
2 )

∫ t

0

(
t− s

) 1
2

log(1 + |x(s)|)
1 + |x(s)|

ds

)
, t ∈ J (4.1)

Let q =
3

2
and define the functions f, g, k : J × R→ R by

f(t, x) =

(
t2

1 + t2

)
|x|

1 + |x|
, g(t, x) =

log(1 + |x|)
1 + |x|

, k(t, x) =
t

3
|x|.
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It is easy to verify that the functions f , g and k satisfy all the hypotheses (H1) through

(H8) of Theorem 3.6 with the values v ≡ 1, L2 =
1

3
, L1 =

1

2
,K1 = 1 and M =

2√
π

,

so that in view of Remark 2.5, we obtain, for every r > 0, that(
V ‖h‖L1 T q−1/2

Γ(q)(2q − 1)1/2

)
L1

K1 + r
+ L2 =

2√
π
· 1√

2
· 1

2

1

1 + r
+

1

3
< 1.

Hence the fractional integral equation (4.1) has a positive and monotone nondecreas-
ing solution defined on J .

Example 4.2. Given a closed and bounded interval J = [0, 1] in R, consider the
nonlinear fractional integral equation

x(t) =
t2

t2 + 1
· |x(t)|

2 + |x(t)|
+
[ t

2
|x(t)|

]( 1

Γ( 3
2 )

∫ t

0

(
t− s

) 1
2

log(1 + |x(s)|)
1 + |x(s)|

ds

)
(4.2)

for all t ∈ J . Now following the arguments similar to those given in Example 4.1 it is
proved that the nonlinear fractional hybrid integral equation (4.2) has a positive and
monotonic nondecreasing solution defined on J .
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