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Abstract. Let E be a uniformly smooth real Banach space and A : E → 2E a multi-valued mapping.

An efficient iteration algorithm for approximating zeros of A, in the case that A is m-accretive and
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Key Words and Phrases: Iterative method, accretive operator, proximal point algorithm.
2010 Mathematics Subject Classification: 47H06, 47H09, 47HJ05, 47J25.

1. Introduction

For several years, the study of fixed point theory for multi-valued nonlinear mappings
has attracted, and continues to attract, the interest of several well known mathemati-
cians, (see e.g., Brouwer [2], Downing and Kirk [13], Geanakoplos [16], Kakutani [20],
Nadler [28], Nash [29, 30] and the references therein).
Interest in such studies stems, perhaps, mainly from the usefulness of such fixed point
theory in real-world applications, such as in Game Theory, Market Economy and other
areas of mathematics,(for details, see e.g.,[11] and the references contained therein).
Consider the following problem:

Find u ∈ H such that 0 ∈ Au (1.1)

where H is a real Hilbert space and A is a maximal monotone operator on H. It is
well known that fixed point theory for nonlinear maps is closely related to the the-
ory of existence and approximation of solution of problem (1.1) for certain nonlinear
operator, A (see e.g., [4, 8, 30] and the references therein). Several methods of ap-
proximating solution of (1.1) assuming existence have been proposed and studied by
many authors (see e.g. [18, 22, 27, 33, 35, 38, 39] and the references therein).
Recently, Chidume and Djitte [9] proved the following result for approximating solu-
tion of (1.1) assuming existence.
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Theorem 1.1. Let E be a 2-uniformly smooth real Banach space and let A : E → E be
a bounded m-accretive map. For arbitrary x1 ∈ E, define the sequence {xn} iteratively
by

xn+1 := xn − λnAxn − λnθn(xn − x1), n ≥ 1, (1.2)

where {λn} and {θn} are sequences in (0, 1) satisfying the following conditions:

(1) lim θn = 0; and {θn} is decreasing;

(2)

∞∑
n=1

λnθn =∞, λn = o(θn);

(3) lim
n→∞

(
θn−1

θn
− 1
)

λnθn
= 0,

∞∑
n=1

λ2n <∞.

Suppose that the equation Ax = 0 has a solution. Then, there exists a constant γ0 > 0
such that if λn ≤ γ0θn ∀n ≥ 1, {xn} converges strongly to a solution of the equation
Ax = 0.
Here, we continue the study of the problem 0 ∈ Au for the much more general case
where A is multi-valued m-accretive and bounded and in a more general uniformly
smooth real Banach space.
Definition 1.1. Let E be a real normed linear space. A map T : D(T ) ⊂ E → E is
called pseudo-contractive (see, e.g., [4] ) if the inequality

‖x− y‖ ≤ ‖x− y + t((x− Tx))− (y − Ty))‖ (1.3)

holds for each x, y ∈ D(T ) and for all t > 0. As a result of Kato [17], it follows from
inequality (1.3) that T is pseudo-contractive if and only if for all x, y ∈ D(T ), there
exists j(x− y) ∈ J(x− y) such that

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2, (1.4)

where J : E → 2E
∗

is the normalized duality mapping.
Definition 1.2. (see, e.g., [31]) Let E be a normed space. A multi-valued mapping
T : D(T )→ 2E is called pseudo-contractive if for all x, y ∈ D(T ), we have

〈u− v, j(x− y)〉 ≤ ‖x− y‖2 ∀u ∈ Tx, v ∈ Ty. (1.5)

The class of pseudo-contractive mappings is deeply connected with the class of accre-
tive operators, where an operator A with domain D(A) in E is called accretive if the
inequality ‖x−y‖ ≤ ‖x−y+s(u−v)‖ holds for each x, y ∈ D(A), u ∈ Ax, v ∈ Ay and
for all s > 0 (see e.g.,[4]). In Hilbert spaces, accretive operators are called monotone.
We remark that A is accretive if and only if T := I − A is pseudo-contractive and
thus, the set of zeros of A, N(A) := {x ∈ D(A) : x ∈ A−1(0)}, coincides with the
fixed point set of T (see [4, 8] for more details). Accretive operators were introduced
and studied independently by Browder and Kato (see [3, 4, 17]).

It is easy to see that every nonexpansive map is pseudocontractive. In general,
pseudocontractive maps are not continuous. It suffices, for example, to consider the
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map T : [0, 1]→ R defined by

Tx =

 x− 1
2 if x ∈ [0, 12 );

x− 1 if x ∈ [ 12 , 1].

Let K be a nonempty subset of a normed space E. The set K is called proximinal
(see, e.g., [32, 34, 36]) if for each x ∈ E, there exists u ∈ K such that

d(x, u) = inf{‖x− y‖ : y ∈ K} = d(x,K),

where d(x, y) = ‖x − y‖ for all x, y ∈ E. Every nonempty, closed and convex subset
of a real Hilbert space is proximinal. Let CB(K) and P (K) denote the families
of nonempty, closed and bounded subsets and nonempty, proximinal and bounded
subsets of K, respectively. The Hausdorff metric on CB(K) is defined by:

D(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(b, A)
}

for all A,B ∈ CB(K). Let T : D(T ) ⊆ E → CB(E) be a multi-valued mapping on
E. A point x ∈ D(T ) is called a fixed point of T if x ∈ Tx. The fixed point set of T
is denoted by F (T ) := {x ∈ D(T ) : x ∈ Tx}.
A multi-valued mapping T : D(T ) ⊆ E → CB(E) is called L- Lipschitzian if there
exists L > 0 such that

D(Tx, Ty) ≤ L‖x− y‖ ∀x, y ∈ D(T ). (1.6)

When L ∈ (0, 1) in (1.6), we say that T is a contraction, and T is called nonexpansive
if L = 1.
Several results have been proved for the problem of approximating fixed points of
multi-valued nonexpansive mappings and their generalizations, when the operator is
defined using the Hausdorff metric and when it is defined without the Hausdorff
metric, using either the Mann-type sequence,[24] or the Ishikawa-type sequence [19],
(see, e.g., [1, 15, 21, 32, 34, 36], and the references therein).

Remark 1.3. We note that for approximating fixed point of a multi-valued Lipschitz
pseudo-contractive map in a real Hilbert space, an example of Chidume and Mutan-
gadura [5] shows that, even in the single-valued case, the Mann iteration method does
not always converge strongly.
Chidume and Zegeye [6] later introduced an iteration algorithm which converges in
this setting. Motivated by this algorithm, Ofoedu and Zegeye [31] introduced an
iteration scheme for approximating a fixed point of a multi-valued Lipschitz pseudo-
contractive mapping. They proved the following theorem.

Theorem 1.4. (Ofoedu and Zegeye [31]) Let E be a reflexive real Banach space
having uniformly Gâteaux differentiable norm, D be a nonempty open convex subset
of E, such that every closed convex bounded nonempty subset of D has the fixed point
property for nonexpansive self-mappings. Let T : D → K(D) be a pseudo-contractive
Lipschitzian mapping with constant L > 0 and let u ∈ D be fixed. Let {xn} be
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generated from arbitrary x0 ∈ D, w0 ∈ Tx0 by

xn+1 := (1− λn)xn + λnwn − λnθn(xn − u), wn ∈ Txn. (1.7)

Suppose that ‖wn−wn−1‖ = d(wn−1, Txn), n ≥ 1. If F (T ) 6= ∅, then {xn} converges
strongly to some fixed point of T .

Remark 1.5. Nadler [28] remarked that requiring a multivalued mapping to be
Lipschitz is placing a strong continuity condition on the mapping.
Recently, Chidume et al, [10] weakened the Lipschitz continuity assumption on T
in theorem OZ and proved a strong convergence theorem for multi-valued continuous
and bounded pseudocontractive mapping T. Precisely, they proved the following result.

Theorem 1.6. Let E be a q-uniformly smooth real Banach space and D be a
nonempty, open and convex subset of E. Assume that T : D → CB(D) is a multi-
valued continuous, bounded and pseudo-contractive mapping with F (T ) 6= ∅. Let {xn}
be a sequence generated iteratively from arbitrary x1 ∈ D by

xn+1 := (1− λn)xn + λnun − λnθn(xn − x1), un ∈ Txn, (1.8)

where {λn} and {θn} are real sequences in (0, 1) satisfying the following conditions:

(i) lim θn = 0;

(ii) λn(1 + θn) < 1,

∞∑
n=1

λnθn =∞, λq−1n = o(θn);

(iii) lim sup
n→∞

(
θn−1

θn
− 1
)

λnθn
≤ 0,

∞∑
n=1

λqn <∞.

Then, there exists a real constant γ0 > 0 such that if λq−1n < γ0θn, for all n ≥ 1, the
sequence {xn} converges strongly to a fixed point of T .

Remark 1.7. It is known that if A : D(A) ⊆ E → 2E is a multivalued continuous
accretive map, then it is always single-valued in the interior of its domain. In fact,
this result holds if continuity is replaced by lower semi-continuity (see, e.g., Chidume
and Morales [7], or Chidume [8], chapter 23).

Definition 1.8. A multi-valued map A defined on a normed linear space E is called
m-accretive if it is accretive and R(I+rA) = E for some r > 0 and it is said to satisfy
the range condition R(I + rA) = E for all r > 0.
Example. Let A : R→ 2R defined by

Ax =

 sgn(x), x 6= 0

[−1, 1], x = 0,
(1.9)

where A is the subdifferential of the absolute value function, ∂|.|, then A is m-
accretive.
It is known that if R(I + rA) = E for some r > 0, then R(I + rA) = E for all r > 0,
(see e.g.,[9] ). Hence, m-accretive condition implies range condition.
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Motivated by remark 1.7 and the on-going research in this direction, it is our purpose
in this paper to extend the result of Chidume et al, [9, 10] and that of Ofoedu and
Zegeye [31] to the case where the operator A is m-accretive, multi-valued and bounded
in uniformly smooth real Banach space without any continuity assumption on the
operator A.

2. Preliminaries

Let E be a real normed space with dual E∗ and let S := {x ∈ E : ‖x‖ = 1}. The
space E is said to have Gâteaux differentiable norm if the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

exists for all x, y ∈ S; E is said to have uniformly Gâteaux differentiable norm if for
each y ∈ S, the limit is attained uniformly for x ∈ S.
The space E is said to have Frêchet differentiable norm if for each x ∈ S(E) := {u ∈
E : ||u|| = 1}, the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

exists for all y ∈ S(E).
Let E be a real normed linear space of dimension ≥ 2. The modulus of smoothness
of E , ρE , is defined by:

ρE(τ) := sup

{
‖x+ y‖+ ‖x− y‖

2
− 1 : ‖x‖ = 1, ‖y‖ = τ

}
; τ > 0.

A normed linear space E is called uniformly smooth if lim
τ→0

ρE(τ)

τ
= 0. It is well known

(see, e.g. [8], [23]) that ρE is nondecreasing. If there exist a constant c > 0 and a
real number q > 1 such that ρE(τ) ≤ cτ q, then E is said to be q-uniformly smooth.
Typical examples of such spaces are the Lp, `p and Wm

p spaces for 1 < p <∞ where,

Lp (or lp) or W
m
p is

{
2− uniformly smooth if 2 ≤ p <∞;
p− uniformly smooth if 1 < p < 2.

Let Jq denote the generalized duality mapping from E to 2E
∗

defined by

Jq(x) :=
{
f ∈ E∗ : 〈x, f〉 = ‖x‖q and ‖f‖ = ‖x‖q−1

}
where 〈., .〉 denotes the generalized duality pairing. J2 is called the normalized duality
mapping and is denoted by J . It is well known that if E is smooth, Jq is single-valued.
Every uniformly smooth real normed space has uniformly Gâteaux differentiable norm
(see, e.g., [8]).
In the sequel we shall need the following results.
Lemma 2.1. (Reich, [14]) Let E be a uniformly smooth Banach space, and let A ⊂
E×E be m-accretive. If 0 ∈ R(A), then for each x ∈ E the strong lim

t→∞
Jtx exists and

belongs to A−1(0), where Jt stands for the resolvent operator of A with parameter t.
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Lemma 2.2. (Cholamjiak and Suantai, [12]) Let E be a real Banach space with
Frêchet differentiable norm. For x ∈ E, let β∗(t) be defined for 0 < t <∞ by

β∗(t) := sup
{ (||x+ ty||2 − ||x||2)

t
− 2Re〈y, J(x)〉 : ||y|| = 1

}
.

Then, lim
t→0+

β∗(t) = 0, and,

||x+ h||2 ≤ ||x||2 + 2〈h, j(x)〉+ ||h||β∗(||h||)∀h ∈ E {0}. (2.1)

Remark 2.3. In a real Hilbert space, we see that β∗(t) = t for t > 0.
In Lp, 2 ≤ p <∞, β∗ in (2.1) is estimated by β∗(t) ≤ (p− 1)t for t > 0.
For the rest of this paper, we shall assume that β(t) ≤ b0t, t > 0, for some b0 > 1.
Lemma 2.4. Let E be a real normed linear space. Then, the following inequality
holds:

||x+ y||2 ≤ ||x||2 + 2〈y, j(x+ y)〉 ∀ j(x+ y) ∈ J(x+ y), ∀x, y ∈ E. (2.2)

Lemma 2.5. (Xu, [38]) Let {ρn} be a sequence of nonnegative real numbers satisfying
the following relation:

ρn+1 ≤ (1− αn)ρn + αnσn + γn, n ≥ 0,

where,
(i) {αn} ⊂ (0, 1),

∑
αn =∞; (ii) lim sup

n→∞
σn ≤ 0;

(ii) γn ≥ 0,
∑

γn <∞. Then, ρn → 0 as n→∞.

3. Main results

We now prove our main result.
Theorem 3.1. Let E be a uniformly smooth real Banach space and let A : E → 2E be
a multi-valued bounded m-accretive map. Assume A−1(0) 6= ∅. For arbitrary x1 ∈ E,
define the sequence {xn} iteratively by

xn+1 := xn − λnun − λnθn(xn − x1), un ∈ Axn n ≥ 1, (3.1)

where {λn} and {θn} are sequences in (0, 1) satisfying the following conditions:

(1) lim θn = 0; {θn} is decreasing;

(2)

∞∑
n=1

λnθn =∞; λn = o(θn);

(3) lim
n→∞

(
θn−1

θn
− 1
)

λnθn
= 0;

∞∑
n=1

λ2n <∞.

Then, there exists a constant γ0 > 0 such that if λn < γ0θn, the sequence {xn}
converges strongly to x∗, where x∗ ∈ A−1(0).
Proof. Let x∗ ∈ E such that x∗ ∈ A−1(0). Then, there exists r > 0 sufficiently large

such that x1 ∈ B(x∗, r/2). Set B := B(x∗, r). Since A is bounded, it follows that
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A(B) is bounded. Define

M1 := sup{||u+ θ(x− x1)|| : x ∈ B, u ∈ Ax, 0 < θ < 1}+ 1

M := b0M
2
1 and γ0 =

r2

4M
.

Step1. We prove that {xn} is bounded. Indeed, it suffices to prove by induction that
xn is in B for all n ≥ 1. By construction, x1 ∈ B. Suppose that xn ∈ B for some
n ≥ 1. We prove that xn+1 ∈ B.
Using Lemma 2.2 and the recursion formula (3.6), we have:

||xn+1 − x∗||2 = ||xn − x∗ − λn(un + θn(xn − x1))||2

≤ ||xn − x∗||2 − 2λn〈un, j(xn − x∗)〉 − 2λnθn〈xn − x1, j(xn − x∗)〉

+ ||λn[un + θn(xn − x1)]||β∗
(
||λn[un + θn(xn − x1)]||

)
≤ ||xn − x∗||2 − 2λn〈un, j(xn − x∗)〉 − 2λnθn〈xn − x1, j(xn − x∗)〉

+ λn||un + θn(xn − x1)||β∗
(
λn||un + θn(xn − x1)||

)
. (3.2)

Since A is accretive and x∗ ∈ A−1(0), then 〈un, j(xn − x∗)〉 ≥ 0. Hence, we obtain
that

||xn+1 − x∗||2 ≤ ||xn − x∗||2 − 2λnθn||xn − x∗||2 + 2λnθn〈x1 − x∗, j(xn − x∗)〉
+ b0M

2
1λ

2
n

≤ (1− 2λnθn)||xn − x∗||2 + λnθn(||x1 − x∗||2 + ||xn − x∗||2) + λ2nM

≤ (1− λnθn)r2 + λnθn
r2

4
+ λnθn

r2

4

=
(

1− λnθn
2

)
r2 ≤ r2.

This implies that xn+1 ∈ B, so by induction, xn ∈ B ∀ n ≥ 1. Therefore, {xn} is
bounded.
Step 2. We prove that {xn} converges strongly to x∗ ∈ A−1(0). Since A is m-
accretive, using Lemma 2, there exists a sequence {yn} in E satisfying the following
properties:

(i) θn(yn − x1) + wn = 0 , for some wn ∈ Ayn, ∀n ≥ 1,
(ii) yn → x∗ with x∗ ∈ A−1(0).

Indeed, applying Lemma 2, with t =
1

θn
, the sequence {yn} defined by

yn :=
(
I +

1

θn
A
)−1

(x1)

has the properties (i) and (ii).
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Claim. ‖xn+1 − yn‖ → 0 as n→ 0. Using Lemma 2, we have

‖xn+1 − yn‖2 = ‖xn − yn − λn(un + θn(xn − x1))‖2

≤ ‖xn − yn‖2 − 2λn〈un + θn(xn − x1), j(xn − yn)〉

+ ||λn[un + θn(xn − x1)]||β∗
(
||λn[un + θn(xn − x1)]||

)
= ‖xn − yn‖2 − 2λn〈un − wn + wn + θn(xn − x1), j(xn − yn)〉

+ ||λn[un + θn(xn − x1)]||β∗
(
||λn[un + θn(xn − x1)]||

)
Since A is accretive, using conclusion (i), we have

〈un − wn + wn + θn(xn − x1), j(xn − yn)〉 ≥ θn||xn − yn||2 ≥
1

2
θn||xn − yn||2.

Furthermore, since {xn} is bounded and A is bounded, there exists a positive constant
K such that:

‖xn+1 − yn‖2 ≤ (1− λnθn)||xn − yn||2 +Kλ2n (3.3)

Using again the fact that A is accretive, we obtain:

‖yn−1 − yn‖ ≤
∥∥∥yn−1 − yn +

1

θn

(
wn−1 − wn

)∥∥∥.
From conclusion (i) and observing that

yn−1 − yn +
1

θn

(
wn−1 − wn

)
=
θn − θn−1

θn
(yn−1 − x1),

it follows that

‖yn−1 − yn‖ ≤
θn−1 − θn

θn
‖yn−1 − x1‖. (3.4)

By Lemma 2.4, we have

‖xn − yn‖2 = ‖(xn − yn−1) + (yn−1 − yn)‖2

≤ ‖xn − yn−1‖2 + 2〈yn−1 − yn, j(xn − yn)〉.

Using Schwartz’s inequality, we obtain:

‖xn − yn‖2 ≤ ‖xn − yn−1‖2 + 2‖yn−1 − yn‖‖xn − yn‖. (3.5)

Using (3.3), (3.4), (3.5) and the fact that {xn} and {yn} are bounded, we have:

‖xn+1 − yn‖2 ≤ (1− λnθn)‖xn − yn−1‖2 +K1

(θn−1 − θn
θn

)
+Kλ2n.

= (1− λnθn)‖xn − yn−1‖2 + (λnθn)σn + γn

for some positive constant K1 > 0, where

σn :=
K1

(
θn−1−θn

θn

)
λnθn

= K1

( θn−1

θn
− 1

λnθn

)
, γn := Kλ2n.
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Thus, using Lemma 2.5, the conditions lim
n→∞

(
θn−1

θn
− 1
)

λnθn
= 0 and

∞∑
n=1

λ2n < ∞, it

follows that xn+1 − yn → 0. Hence from conclusion (ii), we have that xn → x∗ with
x∗ ∈ A−1(0). This completes the proof.

Corollary 3.2. Let E = Lp, 2 ≤ p <∞ and let A : E → 2E be a bounded m-accretive
map. Assume A−1(0) 6= ∅. For arbitrary x1 ∈ E, define the sequence {xn} iteratively
by

xn+1 := xn − λnAxn − λnθn(xn − x1) n ≥ 1, (3.6)

where {λn} and {θn} are sequences in (0, 1) satisfying the following conditions:

(1) lim θn = 0; {θn} is decreasing;

(2)

∞∑
n=1

λnθn =∞; λn = o(θn);

(3) lim
n→∞

(
θn−1

θn
− 1
)

λnθn
= 0;

∞∑
n=1

λ2n <∞.

Then, there exists a real constant γ0 > 0 such that if λn < γ0θn ∀n ≥ 1, the sequence
{xn} converges strongly to x∗ ∈ A−1(0).

Corollary 3.3. Let E be a uniformly smooth real Banach space and let A : E → E,
be a bounded m-accretive map. Assume N(A) 6= ∅. For arbitrary x1 ∈ E, define the
sequence {xn} iteratively by

xn+1 := xn − λnAxn − λnθn(xn − x1) n ≥ 1, (3.7)

where {λn} and {θn} are sequences in (0, 1) satisfying the following conditions:

(1) lim θn = 0; {θn} is decreasing;

(2)

∞∑
n=1

λnθn =∞; λn = o(θn);

(3) lim
n→∞

(
θn−1

θn
− 1
)

λnθn
= 0;

∞∑
n=1

λ2n <∞.

Then, there exists a real constant γ0 > 0 such that if λn < γ0θn ∀n ≥ 1, the sequence
{xn} converges strongly to x∗, a solution of the equation Ax = 0.

Remark 3.4. Let E be a real Banach space and A : E → E. It is known (see e.g.,
[25], [26]) that if A is single-valued, continuous and accretive, then A satisfies range
condition. Consequently, A is m-accretive.

Remark 3.5. The main result of this paper, Theorem 3.1 extends Theorem 1.1
from single valued m-accretive map to the much more general class of multi-valued
accretive map and from 2-uniformly smooth real Banach spaces to uniformly smooth
real Banach spaces.
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Recall that an operator A defined on a Banach space E is accretive if I − A is
pseudocontractive, where I is the identity map on E. Therefore, Theorem 3.1 improves
on Theorem 1.6 in the sense that continuity assumption in Theorem 1.3 is dispensed
with and from q-uniformly smooth real Banach space to uniformly smooth real Banach
space.
Prototype. Real sequences that satisfy the hypotheses of our theorems are

λn =
1

(n+ 1)a
, n ≥ 1, θn =

1

(n+ 1)b
, n ≥ 1,

with 0 < b < a, 1/2 < a < 1 and a+ b < 1.

4. Numerical example

Let E = R, the set of real numbers in Corollary 3 and A : E → E be defined by
Ax = tanh(x). Then, A is continuous, monotone and bounded. Using the prototypes
of our iteration parameters defined above with a = 3

5 , b = 1
4 . Then the sequence {xn}

generated by

xn+1 = xn −
1

(n+ 1)
3
5

tanh(xn)− 1

(n+ 1)
3
5

1

(n+ 1)
1
4

(xn − x1), n ≥ 1

(4.1)

converges strongly to x∗ = 0, where x∗ ∈ A−1(0).
Using Matlab 7.6, to analyze the convergence of the sequence (4.1), we obtain the
figures; fig.1, fig.2 and fig.3 respectively with different initial points x1 = 5000cm, x1 =
1000cm and x1 = .25cm. From the figures, we observe that the sequence converges
to 0 with each of the initial points but the closer the initial point is to 0, the better
approximation we obtain.
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