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Abstract. In a recent paper we offered a theorem which was intended to be a direct parallel of

Brouwer’s fixed point theorem applied to certain mappings of sets in a Banach space of bounded
continuous functions mapping [0,∞) → <. The mappings were generated by integral equations

having roots in fractional differential equations of Caputo type. Brouwer’s theorem in the simplest

form shows that the continuous mapping of the closed n− ball in En has a fixed point. We started
with a set in the Banach space which was not a ball and we had an error in the proof. In this correction

our mapping set is in the Banach space of bounded continuous functions with the supremum norm,
(BC, ‖ · |), and is defined by M = {φ ∈ BC|a ≤ φ(t) ≤ b} for constants a < b. We show that if the

continuous mapping of M into M is generated by our integral equations, then it has a fixed point

in M .
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