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Abstract. It is shown that if X is a weakly orthogonal Banach lattice, K is a nonempty weakly

compact and convex subset of X and T : K → K satisfies condition (C) or is continuous and satisfies
condition (Cλ) for some λ ∈ (0, 1), then T has a fixed point. This generalizes Sims’s result from [11].
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1. Introduction

Let K be a nonempty subset of a Banach space X. A mapping T : K → K is said
to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖
for x, y ∈ K. We say that a Banach space X has the weak fixed point property if
every nonexpansive mapping defined on a nonempty weakly compact convex subset
of X has a fixed point. There is a large literature concerning fixed point theory
of nonexpansive mappings and their generalizations (see [9] and references therein).
Recently, Suzuki [13] defined a class of generalized nonexpansive mappings as follows.
Definition 1.1. A mapping T : K → K is said to satisfy condition (C) if for all
x, y ∈ K,

1

2
‖x− Tx‖ ≤ ‖x− y‖ implies ‖Tx− Ty‖ ≤ ‖x− y‖ .

Subsequently, the above definition has been extended in [6].
Definition 1.2. Let λ ∈ (0, 1). A mapping T : K → K is said to satisfy condition
(Cλ) if for all x, y ∈ K,

λ ‖x− Tx‖ ≤ ‖x− y‖ implies ‖Tx− Ty‖ ≤ ‖x− y‖ .
We say thatX has the weak fixed point property for continuous mappings satisfying

condition (Cλ) if every such mapping defined on a nonempty weakly compact convex
subset of X has a fixed point.

It is not difficult to see that if λ1 < λ2, then condition (Cλ1) implies condition
(Cλ2). Several examples of mappings satisfying condition (Cλ) are given in [6, 13].
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Moreover, if K is convex and T : K → K satisfies condition (Cλ) for some λ ∈ (0, 1),
then for every γ ∈ [λ, 1) the mapping Tγ : K → K defined by Tγx = γTx+ (1− γ)x
satisfies condition (Cλ

γ
).

Recall that (xn) is an approximate fixed point sequence for T (in short afps) if
limn→∞ ‖xn − Txn‖ = 0.

2. Basic lemmas

Recall that a mapping T : M → M acting on a metric space (M,d) is said to be
asymptotically regular if

lim
n→∞

d(Tnx, Tn+1x) = 0

for all x ∈M.
Lemma 2.1. [6, Theorem 4] Let K be a bounded convex subset of a Banach space X.
Assume that T : K → K satisfies condition (Cλ) for some λ ∈ (0, 1). For γ ∈ [λ, 1)
define a sequence (xn) in K by taking x1 ∈ K and

xn+1 = γTxn + (1− γ)xn

for n ≥ 1. Then (xn) is an approximate fixed point sequence for T , that is Tγ is
asymptotically regular. In [1] the following theorem was proven which is the uniform
version of the above theorem.
Theorem 2.2. Let K be a bounded convex subset of a Banach space X. Fix λ ∈
(0, 1), γ ∈ [λ, 1) and let F denote the collection of all mappings which satisfy condition
(Cλ). Let Tγ = (1− γ)I + γT for T ∈ F . Then for every ε > 0, there exists a positive
integer n0 such that

∥∥Tn+1
γ x− Tnγ x

∥∥ < ε for every n ≥ n0, x ∈ K and T ∈ F .
Let D be a nonempty weakly compact convex subset of a Banach space X and

T : D → D. It follows from the Kuratowski-Zorn lemma that there exists a minimal
(in the sense of inclusion) convex and weakly compact set K ⊂ D which is invariant
under T. The next lemma below is a counterpart of the Goebel-Karlovitz lemma
(see [7, 8]). It was proved by Dhompongsa and Kaewcharoen [4, Theorem 4.14] in
the case of mappings which satisfy condition (C), and from Butsan, Dhompongsa
and Takahashi result in[2, Lemma 3.2] and Lloréns Fuster and Moreno Gálvez result
in [10, Th. 4.7] we have the same conclusion in the case of continuous mappings
satisfying condition (Cλ) for some λ ∈ (0, 1). Denote by

r(K, (xn)) = inf{lim sup
n→∞

‖xn − x‖ : x ∈ K}

the asymptotic radius of a sequence (xn) relative to K.
Lemma 2.3. Let K be a nonempty convex weakly compact subset of a Banach space
X which is minimal invariant under T : K → K. If T is continuous and satisfies con-
dition (Cλ) for some λ ∈ (0, 1), then there exists an approximate fixed point sequence
(xn) for T such that

lim
n→∞

‖xn − x‖ = inf{r(K, (yn)) : (yn) is an afps in K}

for every x ∈ K. In the case λ = 1
2 continuity assumption can be dropped.
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Now let (xn) and (x′n) be sequences in K. Fix t ∈ ( 2
3 , 1) and put vn = txn+(1−t)x′n.

The following technical lemma deals with the behaviour of sequences (T kγ vn)n∈N,
k = 1, 2, ....
Lemma 2.4. Let K be a nonempty convex bounded subset of Banach lattice X
such that 0 ∈ K, diamK ≥ 1 and let T : K → K satisfy condition (Cλ) for some
λ ∈ (0, 1). Fix γ ∈ [λ, 1), a positive integer N > 1, 0 < ε < min{ 2

3(N+2) ,
1

12N } and
2
3 + 2Nε < t < 1 − 2Nε. Suppose that (xn), (x′n) are sequences in K such that
diam((xn) ∪ (x′n)) = 1, limn→∞ ‖|xn| ∧ |x′n|‖ = 0 and the following conditions are
satisfied for every n ∈ N and k = 1, ..., N :

(i) min{‖xn‖, ‖xn − T kγ 0‖, ‖x′n‖, ‖x′n − T kγ 0‖, ‖xn − x′n‖} > 1− ε,
(ii) ‖Txn − xn‖ < ε, ‖Tx′n − x′n‖ < ε.

Let vn = txn+(1−t)x′n. Then, there exists n0 ∈ N such that for every n ∈ N, n ≥ n0
and k = 1, ..., N,

t− (k + 1)ε <
∥∥T kγ vn − T kγ 0

∥∥ ≤ t+ ε, (2.1)

1− t− (k + 1)ε <
∥∥T kγ vn − xn∥∥ < 1− t+ kε. (2.2)

t− (k + 1)ε <
∥∥T kγ vn − x′n∥∥ < t+ kε.

Proof. Notice that limn→∞ ‖(t|xn|) ∧ ((1− t)|x′n|)‖ = 0 and hence

lim
n→∞

‖vn‖ = lim
n→∞

‖txn + (1− t)x′n‖ = lim
n→∞

‖t|xn|+ (1− t)|x′n|‖

≤t lim
n→∞

‖|xn|+ |x′n|‖ = t lim
n→∞

‖xn − x′n‖ ≤ t.

On the other hand

‖vn‖ =‖(1− t)(x′n − xn) + xn‖ ≥ ‖xn‖ − (1− t)‖x′n − xn‖
>1− ε− (1− t) = t− ε.

Hence there exists n0 ∈ N such that for every n ≥ n0
t− ε < ‖vn‖ ≤ t+ ε.

Fix n ≥ n0 and note that

1− t− ε < ‖xn − vn‖ = (1− t) ‖xn − x′n‖ ≤ 1− t,
t− ε < ‖x′n − vn‖ = t ‖xn − x′n‖ ≤ t

Since

λ‖Txn − xn‖ < ‖Txn − xn‖ < ε < 1− t− ε < ‖xn − vn‖, (t < 1− 2ε),

it follows from condition (Cλ) that

‖Txn − Tvn‖ ≤ ‖xn − vn‖.
Hence

‖Tγxn − Tγvn‖ ≤ γ‖Txn − Tvn‖+ (1− γ)‖xn − vn‖ ≤ ‖xn − vn‖ ≤ 1− t (2.3)

and, similarly,

λ‖Tx′n − x′n‖ < ‖Tx′n − x′n‖ < ε < t− ε < ‖x′n − vn‖, (ε <
t

2
),
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‖Tx′n − Tvn‖ ≤ ‖x′n − vn‖,
so

‖Tγx′n − Tγvn‖ ≤ γ‖Tx′n − Tvn‖+ (1− γ)‖x′n − vn‖ ≤ ‖x′n − vn‖ ≤ t. (2.4)

Furthermore,

‖Tγvn − vn‖ = γ‖Tvn − vn‖ ≤ ‖Tvn − Txn‖+ ‖Txn − xn‖+ ‖xn − vn‖
< 2‖xn − vn‖+ ε ≤ 2(1− t) + ε.

Now we proceed by induction on k.
For k = 1, notice that

λ

γ
‖Tγvn − vn‖ ≤ ‖Tγvn − vn‖ < 2(1− t) + ε < t− 2ε < ‖vn‖, (t >

2

3
+ ε),

and it follows from condition (Cλ
γ

) that

‖Tγvn − Tγ0‖ ≤ ‖vn‖ ≤ t+ ε,

Furthermore,

‖Tγvn − xn‖ ≤ ‖Tγvn − Tγxn‖+ ‖Tγxn − xn‖ < 1− t+ ε (2.5)

by (2.3) and, similarly, by (2.4)

‖Tγvn − x′n‖ ≤ ‖Tγvn − Tγx′n‖+ ‖Tγx′n − x′n‖ < t+ ε. (2.6)

To prove the reverse inequalities, notice that by assumption, (2.5) and (2.6),

‖Tγvn − Tγ0‖ ≥ ‖xn − Tγ0‖ − ‖Tγvn − xn‖ > t− 2ε,

‖Tγvn − xn‖ ≥ ‖xn − x′n‖ − ‖Tγvn − x′n‖ > 1− t− 2ε,

‖Tγvn − x′n‖ ≥ ‖xn − x′n‖ − ‖Tγvn − xn‖ > t− 2ε.

Now suppose the lemma is true for a fixed k < N. Then∥∥T k+1
γ vn − T k+1

γ 0
∥∥ ≤ ∥∥T kγ vn − T kγ 0

∥∥ ≤ t+ ε, (2.7)

since for every m ∈ N
λ

γ
‖Tmγ vn − Tm−1γ vn‖ ≤ ‖Tm−1γ vn − Tmγ vn‖

and it follows from the fact that Tγ satisfies condition (Cλ
γ

) that for every m ∈ N

‖Tm+1
γ vn − Tmγ vn‖ ≤ ‖Tmγ vn − Tm−1γ vn‖,

so ∥∥TγT kγ vn − T kγ vn∥∥ ≤ ∥∥T kγ vn − T k−1γ vn
∥∥ ≤ ... ≤ ‖Tγvn − vn‖

< 2(1− t) + ε < t− (k + 1)ε <
∥∥T kγ vn − T kγ 0

∥∥ ,
(notice that t > 2

3 + (k+2)ε
3 ). Furthermore, by induction assumption,

λ

γ
‖Tγxn − xn‖ ≤ ‖Tγxn − xn‖ < ε < 1− t− (k + 1)ε < ‖xn − T kγ vn‖,
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(t < 1− (k + 2)ε), and hence

‖T k+1
γ vn − Tγxn‖ ≤ ‖T kγ vn − xn‖.

We thus get ∥∥T k+1
γ vn − xn

∥∥ ≤ ‖T k+1
γ vn − Tγxn‖+ ‖Tγxn − xn‖ (2.8)

< ‖T kγ vn − xn‖+ ε < 1− t+ (k + 1)ε.

Similarly,

λ

γ
‖Tγx′n − x′n‖ ≤ ‖Tγx′n − x′n‖ < ε < t− (k + 1)ε < ‖x′n − T kγ vn‖,

(ε < 2
3(N+2) <

t
k+2 ), hence

‖T k+1
γ vn − Tγx′n‖ ≤ ‖T kγ vn − x′n‖,

and ∥∥T k+1
γ vn − x′n

∥∥ ≤ ‖T k+1
γ vn − Tγx′n‖+ ‖Tγxn − x′n‖

< ‖T kγ vn − x′n‖+ ε < t+ (k + 1)ε.

Now we prove the reverse inequalities∥∥T k+1
γ vn − T k+1

γ 0
∥∥ ≥ ‖xn − T k+1

γ 0‖ − ‖T k+1
γ vn − xn‖ > t− (k + 2)ε,∥∥T k+1

γ vn − xn
∥∥ ≥ ‖xn − x′n‖ − ‖T k+1

γ vn − x′n‖ > 1− t− (k + 2)ε,∥∥T k+1
γ vn − x′n

∥∥ ≥ ‖xn − x′n‖ − ‖T k+1
γ vn − xn‖ > t− (k + 2)ε.

In the sequel we will need the following lemma.
Lemma 2.5. Let K be a convex weakly compact subset of a Banach lattice X such
that 0 ∈ K. Suppose that a mapping T : K → K satisfies condition (Cλ) for some
λ ∈ (0, 1), (xn) and (x′n) are weakly null, approximate fixed point sequences for T
such that

r = lim
n→∞

‖xn − x‖ = lim
n→∞

‖x′n − x‖ = inf{r(K, (yn)) : (yn) is an afps in K} (2.9)

lim
n→∞

‖|xn| ∧ |x′n|‖ = 0 (2.10)

for every x ∈ K. Then, for every ε > 0 and t ∈ ( 2
3 , 1), there exist subsequences of

(xn) and (x′n), denoted again (xn) and (x′n), sequence (zn) in K and element z ∈ K
such that

(i) ‖zn‖ > r(1− ε),
(ii) ‖zn − xn‖ ≤ r(1− t+ ε),

(iii) ‖zn − x′n‖ ≤ r(t+ ε),
(iv) ‖zn − z‖ ≤ r(t+ ε).

Proof. Let us first notice that if S : 1
rK →

1
rK is defined by Sy = 1

rT (ry), then

‖Sy − y‖ =
1

r
‖T (ry)− ry‖
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and S satisfies condition (Cλ). It follows that if the sequences (xn), (x′n) satisfy the

assumptions of Lemma 2, then the sequences (xnr ), (
x′
n

r ) satisfy these assumptions
with S and r = 1. Therefore it suffices to prove the lemma for r = 1.

We claim that for every ε > 0 there exists δ(ε) such that if x ∈ K and ‖Tx− x‖ <
δ(ε) then ‖x‖ > 1−ε. Indeed, otherwise, arguing as in [5], there exists ε0 such that we
can find wn ∈ K with ‖Twn−wn‖ < 1

n and ‖wn‖ ≤ 1− ε0 for every n ∈ N. Then the
sequence (wn) is an approximate fixed point sequence in K, but lim supn→∞ ‖wn‖ ≤
1− ε0, which contradicts our assumption that lim supn→∞ ‖wn‖ ≥ 1.

Fix ε > 0, t ∈
(
2
3 , 1
)

and γ ∈ [λ, 1). From Theorem 2, there exists N > 1 such that

‖TN+1
γ x− TNγ x‖ < γδ(ε) (2.11)

for every x ∈ K. Choose η > 0 so small that 0 < η < min
{

2
3(N+2) ,

ε
N ,

1
12N

}
and

2
3 + 2Nη < t < 1− 2Nη. Put vn = txn + (1− t)x′n and consider sequences (T kγ vn)n∈N
for k = 1, ..., N . Applying (2.9) (with r = 1) and passing to subsequences, we can
assume that the assumptions of Lemma 2 are satisfied i.e., diam((xn) ∪ (x′n)) = 1,
limn→∞ ‖|xn| ∧ |x′n|‖ = 0 and for every n ∈ N and k = 1, ..., N,

(i) min{‖xn‖, ‖xn − T kγ 0‖, ‖x′n‖, ‖x′n − T kγ 0‖, ‖xn − x′n‖} > 1− η,
(ii) ‖Txn − xn‖ < η, ‖Tx′n − x′n‖ < η.

Denote zn = TNγ vn and z = TNγ 0. It follows from Lemma 2 that that there exists
n0 ∈ N such that for every n ≥ n0, n ∈ N, we have

‖zn − z‖ = ‖TNγ vn − TNγ 0‖ ≤ t+ η < t+ ε,

‖zn − x′n‖ = ‖TNγ vn − x′n‖ < t+Nη < t+ ε.

‖zn − xn‖ = ‖TNγ vn − xn‖ < 1− t+Nη < 1− t+ ε.

Furthermore, by (2.11),

‖Tzn − zn‖ =
1

γ
‖TN+1

γ vn − TNγ vn‖ < δ(ε)

and consequently, ‖zn‖ > 1− ε, which completes the proof.

3. Fixed point theorem

In [3] J. Borwein and B. Sims introduced the notation of weakly orthogonal Banach
lattice.
Definition 3.1. We will say that a Banach lattice X is weakly orthogonal if whenever
(xn) converges weakly to 0 we have

lim
n→∞

‖|xn| ∧ |x|‖ = 0, for all x ∈ X.

The proof of the following inequality we can find in [12].
Lemma 3.2. Let X be a weakly orthogonal Banach lattice and let (un),(vn) be weakly
null sequences in X such that

lim
n→∞

‖|un| ∧ |vn|‖ = 0.



WEAK ORTHOGONALITY 213

Then for every sequence (wn) in X and for every x in X

2 lim sup
n→∞

‖wn‖ ≤ lim sup
n→∞

‖wn − x‖+ lim sup
n→∞

‖wn − un‖+ lim sup
n→∞

‖wn − vn‖.

B. Sims in [11] proved that every weakly orthogonal Banach lattice has the weak
fixed point property. Now we generalize his result.
Theorem 3.3. Every weakly orthogonal Banach lattice has the weak fixed point
property for continuous mappings satisfying condition (Cλ) for some λ ∈ (0, 1). In
the case λ = 1

2 continuity assumption can be dropped.
Proof. Assume that theorem is false. Then there exists a nonempty weakly compact
convex subset K of X and a mapping T : K → K satisfying condition (C) or a
continuous mapping satisfying condition (Cλ) for some λ ∈ (0, 1) which has no fixed
point. We can assume that K is minimal and T -invariant. By Lemma 2 there exists
an approximate fixed point sequence (xn) for T in K such that

r = lim
n→∞

‖xn − x‖ = inf{r(K, (yn)) : (yn)is an afps in K}

for every x ∈ K. There is no loss of generality in assuming that r = 1 and (xn)
converges weakly to 0 ∈ K.

We can find subsequences (un) and (u′n) of (xn) such that

lim
n→∞

‖un − u′n‖ = 1 and lim
n→∞

‖|un| ∧ |u′n|‖ = 0.

Fix ε > 0 and t ∈ ( 2
3 , 1) such that 5ε + t < 1. Then from Lemma 2 there exist

subsequences of (un) and (u′n), denoted again (un) and (u′n), sequence (zn) in K and
z ∈ K such that for large n

(i) ‖zn‖ > 1− ε,
(ii) ‖zn − xn‖ ≤ 1− t+ ε,
(iii) ‖zn − x′n‖ ≤ t+ ε,
(iv) ‖zn − z‖ ≤ t+ ε.

By Lemma 3

2 lim sup
n→∞

‖zn‖ ≤ lim sup
n→∞

‖zn − xn‖+ lim sup
n→∞

‖zn − x′n‖+ lim sup
n→∞

‖zn − z‖.

This, in turn, implies that

2(1− ε) ≤ 1 + t+ 3ε,

which contradicts 5ε+ t < 1.
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